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Zeeman Effect of the Purely Cubic Field Fluorescence Line of
MgO: Cr'+ Crystals*
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Bell Telephone laboratories, 3furruy Pill, Rem Jersey
(Received August 5, 1960)

Both transverse and longitudinal Zeeman effects are studied of the most conspicuous red emission line
(14 319 cm ') of a MgO:Crs+ single crystal. The Zeeman patterns are examined experimentally, with a
magnetic field parallel to the L0017, $110$ and f111jaxes, with linear polarizations parallel and perpen-
dicular to each direction of the magnetic field and with circular polarizations around the magnetic field.

Comparing these patterns with those theoretically calculated under the reasonable assumptions, it is
found that the line is a magnetic dipole radiation due to the t23 2E ~ tP 422 transition of chormium ions with
purely cubic environments. It is also found that the Jahn-Teller coupling of chromophoric electrons and
lattice in the excited state may be ignored in explaining the Zeeman eGect.

I. INTRODUCTION It is known since Deutschbein's observation that
the MgO: Cr'+ Quorescence spectrum in the red region
has several sharp lines and some broader ones besides
the above-mentioned 14 319cm ' line. We also observed
many rather sharp lines but only the strongest one
mentioned above seemed to have an isotropic g factor.
Elucidation of the cause of the other lines is not
attempted here, although it is indispensable in under-
standing fully the MgO: Cr'+ spectrum: these lines are
being investigated in our laboratory in collaboration
with Wood. '

The study of the purely cubic field optical line is
interesting because it belongs to the simplest system
without involving any odd crystal field, which causes
electric dipole transitions in the case of corundum
crystals. Therefore, the appearance of the optical line
ascribed to this otherwise forbidden transition has to
be explained either by an electric dipole transition
slightly released by the asymmetric distortion of the
system due to lattice vibrations, or by a magnetic
dipole one. Studying the Zeeman eGect experimentally
and theoretically, it will be shown that a magnetic
dipole transition is responsible for the line.

Another interest of this study comes from the
expectation that the Jahn-Teller effect' might be seen
in the Zeeman patterns of the line. This is because,
for chromium ions in the cubic field, there remains a
degeneracy other than the Kramers degeneracy in the
excited state which will be responsible for the line as
mentioned below. Contrary to this expectation,
however, it will be clarified that we can explain the
Zeeman effect without taking this effect into account.

It will be assumed here that the line in question
arises from the transition t~' 'E —+ t2' 4A2. There is
another excited state, namely t2''T& which is con-
sidered to fall in the spectral region where the line is
observed. The reason for the 'T~ state being excluded
in the assignment is partly as follows; the observed

&~ETAILED analyses of very narrow optical lines
based on the crystal field theory have been

successfully applied to corundum crystals containing
chromium' and vanadium' impurities. The electronic
transitions responsible for these lines involve a change
of spin, but no change of parity, and thus violate both
the spin and parity selection rules. However, in these
crystals, the local crystal Geld at the transition metal
ion sites is nearly cubic but it has a fairly large trigonal
component belonging to both even and odd parities.
This trigonal component causes an admixture of
states of odd-parity, leading to a small electric dipole
strength for the otherwise forbidden transitions in
collaboration with spin-orbit interaction, and we know
that such a mechanism characterizes the nature of the
lines, especially their Zeeman effects. '

Another crystal which presents very narrow spectral
lines due to chromium impurities is magnesium oxide. 4

Paramagnetic resonance studies of this crystal have
revealed that a dominating part of the chromium ions
present is exposed to a purely cubic field while the
others are exposed to tetragonal and rhombic Gelds. '
Therefore, the most conspicuous red Quorescence line
located at 14319 cm—' may be considered to be due
to chromium ions with purely cubic environment.
This is further evidenced by the isotropic behavior
of the Zeeman splitting of this line as a sharp Zeeman
pattern can be obtained even with a powdered sample.

~A preliminary account of this work was presented at the
Symposium on Molecular Structure and Spectroscopy, Ohio State
University, June 13—17, 1960 (unpublished).
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FIG. i. The experimental and calculated Zeeman patterns
(elec. dip. and mag. dip. ) with Hpll IO01j. The transition diagram
is associated with the mag. dip. Zeeman patterns. f stands for
the mode of the coupled vibration in the electric dipole transitions.
The intensities of the experimental Zeeman patterns are the
relative ones in each pattern and not normalized.
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Fro. 2. The similar Ggnre to Fig. t, with Hall[111).

Zeeman patterns of the line show that the excited
state splits into two Zeeman levels and the spectro-
scopic splitting factor is very close to the spin-only
value, while the splitting factors of the 'Tj states' are
expected to be largely deviated from a spin-only value
because of the nonvanishing contribution of the orbital
angular momentum. This assumption will be confirmed
by comparing the theoretical Zeeman patterns with
the experimental ones.

II. EXPERIMENTAL PROCEDURE

A transparent, light greenish single crystal of Mgo
containing about 0.1% chromium impurity was used
in these experiments. A Mgo crystal has the NaCl
type crystal structure and can be cleaved along the

8 This level is slightly split into two sublevels by the spin-orbit
coupling even in absence of a magnetic Geld.

(100) plane fairly easily. Thus a small cube with the
edges of about 3 mm length was obtained. Finally we

polished down the cubes suitably to get the (110) and

(111)faces.
The quantitative measurements of the fluorescence

spectrum were carried out by using both photographic
and photoelectric techniques. All the measurements
were made at 77'K.' The applied magnetic field was

up to 30000 oe. The fluorescence was excited by the
simultaneous use of several tungsten microscope lamps
with appropriate blue filters, which transmitted
radiation in the region of the broad band absorption
of the sample. A matching sharp-cut red filter was

'Some measurements were made at 4.2'K to confirm the
ratio of the transition probabilities from the —,

' and —~ levels of
the excited state. Assuming thermal equilibrium between up and
down spins in the excited state, the observed ratios are in good
agreement with the theoretical ones.
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used on the spectrograph slit to cut out completely
the exciting light.

In order to obtain the polarization data, a microscope
polarizer sheet or a circular-polarizer constructed from
a polaroid and a X/4-plate was placed between the
sample and a focusing lens. Thus the depolarizing
effect of the lens was eliminated. Unfortunately,
however, the Dewar vessel seemed to induce some
undesirable effects and thus will be the main source
of the observed slight polarization mixing.

For photographic measurements a Bausch and Lomb
Dual Grating Spectrograph was used with a 55000
lines per inch grating giving a dispersion of about
1.5 A per mm in the investigated region. Kodak I-I-
plates were used for the detection of the Quorescence.
They were calibrated and microphotometered for
intensities.

During the course of the work, a high-resolution
photoelectric spectrometer became available (manu-
factured by the Jarrell-Ash Company and based on
the design of Fastie, Crosswhite, and Gloersen's).
When used with a good replica of a 7500 line per inch
Harrison grating, a resolution of about 1/30 cm ' in
the investigated region can be achieved. Results
obtained with this instrument agreed well with those
obtained photographically in cases where comparisons
were made. Thus obtained intensity patterns are
shown at the tops of Figs. 1, 2, and 3 for the transverse
Zeeman effects, and at the bottoms of Figs. 5, 6, and 7
for the longitudinal Zeeman effects. It should be
noticed that the absolute unit of the intensities is
chosen arbitrarily for each kind of the Zeeman patterns.
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where V., denotes the spin-orbit interaction, V,„ the

III. CALCULATIONS OF THE ZEEMAN PATTERNS
ASSUMING ELECTRIC DIPOLE TRANSITIONS

The chromium lattice site in MgO crystals is a
center of symmetry. Therefore, we can expect an
electric dipole transition only when the electronic
transition accompanies simultaneous excitation of odd-
parity crystal vibrations, which will slightly distort
the local crystalline Geld. Then the dipole strengths of
the electric dipole transitions" from the 'A2 ground
state to the 'E excited state are given by the following
formula';

P (4AsM, e2 n~'EM. ,y:n)
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'OW. G. Fastie, H. M. Crosswhite, and P. Gloersen, J. Opt.
Soc. Am. 48, 106 (1958).' In the calculation of dipole strengths, we use throughout
this paper a language and formalism for absorption instead of
those for emission because this makes no difference in our approxi-
mation and it is more familiar to the reader.
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Fro. 3. The similar figure to Fig. 1, with E10IIL110$.
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coupling of chromophoric electrons to odd vibrations
and P the electric dipole Per;. W(oSI') is the energy
of the o,SF state, and e and 8 stand for a set of vibra-
tional quantum numbers of the states. The term t/'„
may be expanded as follows:

v..=Z v(i';) ()(f'f), (3)
r&

where Q(1'y) is the normal coordinate of the lattice
vibration belonging to the l y mode.

We assume here that the coupling of chromophoric
electrons is sufficiently large only with the vibrations
within the framework of the Cr-06 octahedron, and
take the T~„, , T~„,~, and T2„modes in the summation
over F. Furthermore, we shall assume that the normal
coordinates of vibrations are the same in the ground
and excited state. ' Then, in the absorption spectrum
at very low temperature, e expresses the state with
zero-point vibrations and n the state in which a single
quantum of the Fp odd vibration is excited. In the
case of the emission spectrum, the situation is just
reversed.

In the purely cubic Geld, the orbital degeneracy of
the 'E state remains unresolved even in presence of a
magnetic field, so that the dipole strength in the ex-
pression (1) should be summed over y.

In the calculation of the Zeeman patterns, it is
convenient to quantize the spin in the direction of the
applied magnetic 6eld, because the spin of both the
ground and excited states in our case always follows
the direction of the magnetic field. For this purpose,
it is necessary to get the matrix element of the spin-
orbit interaction in expression (1) with 3II, and M,
being quantized in the arbitrary direction. This is
achieved by applying the following unitary trans-
formations U .&&&($9$) to the spin states in the spin-
orbit matrix:

, U) —s— 4 P, (i) (g)e—
'

lL Z [Ool]

where U &~'(0) is given by

1
2

and U ~i'(8) is given by

1 1
2 2

6
b a,

C

v3a'b

v3ab'
b3

V3a'h-

a(1—3b')
—b(1—3a')

V3ab'

v3ab'

b(1—3a')

a(1—3b')
v3a'b

b3

v3ab'
—v3a'b

a' . (6)

In (5) and (6) we use the abbrevia, tion

a = cos (8/2), b = sin(0/2).

The transformation angles, p, 8, and P are the Eulerian
angles representing the direction of the magnetic field
which is described in Fig. 4, and ns and m' are the
magnetic spin quantum numbers referred to the Axed
and rotated systems, respectively. The matrix elements
of the spin-orbit interaction thus obtained is given in
Table I, in which the orbital part is left referred to the
fourfold axes of the crystal.

Now, by using these matrix elements, the calculation
of the relative intensities among the Zeeman com-
ponents, with arbitrary directions of the magnetic
field Ho and of the polarization of light E, may be
performed, if we know what orbitals of the 4T2 state
are excited with the given polarization. In order to
make comparison with the experiment, the polarizations

&III.001], &IIL»0], &IIL111] and EJ L111] will be
considered. From these four cases, all the observed
patterns can be derived. For treating the cases of
EIIL111] and EJ L111] with FIsllf 111], it is more
convenient to use trigonal bases from the beginning.
Since these cases have been already treated in another
paper, ' we shall only quote the result. "

From the tables of the Wigner coefficients for a
cubic group, " the orbitals of the 'T2 state excited for
a given polarization are given as follows; for XIII 001],

the excited orbital p' the coupled vibration r~
TI„p and T2Mg

Ty~& and T2~$'

X, &00
f» ZIIL110],

the excited orbital y'

(S-~)/~2
(t.+s)/~&

the coupled vibration Fp
Tq~(n —p) and T2,(]+q)

Tl~p
T2g.

The absolute square of the matrix element

FIG. 4. The relative direction of the applied magnetic
Geld to the crystal axes.

~The Zeeman patterns of this case can be obtained from
Figs. 4 and 5 of reference 3 by superposing both patterns of
Rg and R2."Y. Tanabe and S. Sngano, J. Phys. Soc. (Japan) 9, 'I53
(1954).
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TABLE I. The matrix element (tpP PEM,y [ p„[tpse 4TpM, y'), with M, and M, being quantized along the direction (&,8,$).
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' Take the lower sign for irl.
b All values tabulated for g (or ig) are to be multiplied by ( —if'/Q6).' All values tabulated for g are to be multiplied by (2 +2it'/3).

('AsM, es'.n['@['TpM,y': n) has a common value for
all the above-mentioned excitation so that this value
is not important in the discussion of the relative
intensities.

The transition probabilities from the Zeeman levels
of the 4A2 ground state to those of the 'E state are
thus obtained in an arbitrary unit" as given in Table II.
In Table II, the magnetic spin quantum numbers M,
and M, are referred to the direction given by (&,8,$),
and A, 8, P, and p are defined as follows:

A =cosa, 8= sin8,
X=cos(Q+ pr/4), l4= sin(pb+pr/4).

The procedure of deriving Zeeman patterns from
this table is as follows:

(i) Hp)($001$, E[[L001): The Zeeman pattern is
obtained by putting 8=0 in the E[[L001)column.

(ii) Hpj[L001), Ej[L100): This is equivalent to the
case of Hpj[L100) and Ejjj 001), so that we put 8= pr/2

in the E[[L001)column.
(iii) Hpjj[ 110), E[[L001):The pattern is equivalent

to that given in (ii), because the values in the column
E[[L001)are independent of p.

(iv) Hpj[L110), E[[L1107: The pattern is obtained
by putting pb= pr/4 and 8= pr/2 in the Ej[L1107 column.

(v) Hp L1107, E[[j 110):This is equivalent to the
case of Hp j 110)and E[[j 110),so that we put&= —pr/4

and 8=pr/2 in the E[[L110)column.

The Zeeman patterns thus obtained are illustrated
in Figs. 1, 2, and 3. Comparing these with the observed
patterns, it is clear that even qualitative agreement is
not obtained. " The discrepancy of the Hp[[L001),
E[j[ 100) pattern is fatal, because the observed pattern
corresponding to this case is the most characteristic
one. Furthermore, if we adopt the T1„mode in order
to fit the calculated and experimental patterns in the
Hp[[L111) case, we have qualitative discrepancies in
the Hp[[[ 1107 case, etc.

'4 The unit is calculated as 1 "Cp(FTp)/(9[W(pE) —W(42'p)]p),
C(FT2) being defined in reference 3.-

"The qualitative disagreement between the observed Zeeman
patterns with Hp([[110], E[[[110],H[[[001] and with Hp([[110),
E[[[110],H[[[110]also tells us directly that the radiation is not
electric dipole, but in our work the latter pattern was supple-
mented after we took the procedure mentioned here and arrived
at the conclusion.

f-'(vp) = & +-'(vp)
3P C Mp, Mp, p

where 0. is the wave number of the spectral line and c

TABLE II. Electric dipole strengths of the transition
. t234A&M, ~ t23 EM„where the magnetic spin quantum numbers
M, and 3f, are referred to the direction of the magnetic field
expressed by 8, @, and p: A=costt, B=sin8, ) =cos(p+2r/4)
and @=sin(p+m /4). The upper and lower signs of M, correspond
to the upper and lower signs of M„respectively. I' is the coupled
vibrational mode. The unit is taken arbitrary.

&2
~1

W2

Sum

I'= ~1m, &2u
~12

3(A2+i)
48'

(A'+ 1)
0

El[[110].
I TlQ

~12
P [(3~4+i2)A2+4$32+ (3)2+ap)]

4A2+(3„2+~2)a2
-', [(344P+XP)AP+4BP+ (3)4+444)]

0

a The values for B)j@10),r =T2~ are obtained by interchanging X and p,

in those for Ejj[110],1 =Tip.

IV. CALCULATION OF THE ZEEMAN PATTERNS
ASSUMING MAGNETIC DIPOLE TRANSITIONS

In the previous section, it was clarified that the
electric dipole transitions are unable to explain the
observed Zeeman eR'ect. Another possibility to explain
the experiment is to assume magnetic dipole transitions.

Magnetic dipole has matrix elements between the
'A2 ground state and only one excited state t2'e4T2.
Therefore, a simple calculation of the magnetic dipole
strengths is possible that is exact within the d' con-
figuration. The magnetic dipole strengths polarized in

po are given by

imps(4A pM, es —+ 'E 3f,y'. y p)

=p'
j g, ('A sM.es j

M (yp) ['T,M,y')

x(T,m.&'jv,.j
EM.~)j Lw(T, )—w(E))-', P)

where
M= —P; (f;+2s,),

yp denoting a component of M and p being the Bohr
magneton. The polarized (in yp) oscillator strength
of the line in absence of a magnetic field, f ', is given
by'
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4A2

Sum

M, HIII 001$

3B'
4A'
B2

0

HIII 110$~l
gL3 (Agl 2+~2) + (A2~2+$2) j

3B92+B2p2
l L3 (A 9,'+p') + (A'p'+X') j

0

TABLE III. Magnetic dipole strengths of the transition
t23 4A23f, ~ t232EM, . The notations are the same as those given
in Table II.

For the cases of H~~L111] and HJ L111] with

Ho~~ L111], the transition probabilities are calculated by
using in (7) trigonal bases from the beginning. We
adopt the following form for a magnetic dipole vector;

M = M+—.k M—k++Mgk', (14)

where k+, k, and k' are defined by

k+= —(1/v2) (s+ij),
k—= (1/V2) (z—ij). (15)

is the velocity of light. The P 8 gg(&0) is found to be

pmsg(po)
MsrMs~y

=64k"f'"P'/{27t W(4Tg) —W('E)]'I (10)

(11)

(12)

z and j being the mutually orthogonal unit vectors in
the plane perpendicular to the $111]axis and k parallel
to the same axis. From the tables of the Wigner co-

HQ I[ [oo1]
H IN(OO&)

fmag(+ ) —5 5g 10—9 (13)

where x+ and I+ are trigonal bases of the T2 and E
representation. ' Assuming the values, a. =14000 cm ',
W('Ts) —W('E) =4000 cm—', k'=1 and i'=250 cm '

(slightly less than i = 273 cm ' of a free chromium ion),
we find

THEOR.

1/2
—1/2

TABLE IV. Magnetic dipole strengths of the transition
tgg 4AgM, ~ tgg 'EM„with HgIII 111j.

Sum

3(l &' I'+
I
&+I')

2(I&'I'+I& I')

(I &' I'+
I

& I')

0

1
2

0

(I &' I'+
I
&'I')

2(I&+I'+I& I')

3(I t' I'+
I

& I')

8

For unpolarized light we should multiply by a factor
of two. The value thus obtained seems not too small
to be observed. The assumption of the magnetic dipole
transitions is also consistent with the fact that the
absorption line of Mgo:Cr'+ is much weaker compared
with that of ruby. '

The calculation of the Zeeman patterns is similar
to that of the previous case. I.et us consider the cases
where the magnetic vector of light, H, is parallel to
the L001] and L110] directions. From the tables of
the Wigner coefficient for cubic group, we know that,
for H~~(001] and H~~L110], the |and ($+ri)/v2 orbitals
of the 4T2 state are, respectively, excited, and

~

('A sM, es
~

M
(
'TsM, y')

~

' with the above y' is a
common factor in the transition probabilities. Then,
by using the spin-orbit matrix given in Table I, the
transition probabilities in an arbitrary unit are given
in Table III.

9 3 1 3 3 1 3 9

3/2
1/2

—1/2

EXP.

I1,8

5.1 4.7

i 0.9

FIG. 5. The experimental and theoretical longitudinal Zeeman
patterns with HgIIL001) in terms oi circular polarization. The
straight arrow shows the direction of the applied magnetic Geld,
and the circulating one around the straight arrow indicates the
direction of the rotating magnetic vector of the radiation.

efficient in the trigonal scheme, ' we know that, for
the polarizations in the directions of k+, k, and k',
x+, x, and xo orbitals of the 'T2 state are, respectively,
excited, and

~
('A&M, e&~ M ~'T&M, M') ~' is a common

factor in the transition probabilities. The necessary
matrix elements of the spin-orbit interaction in the
trigonal scheme are already known, ' so that the dipole
strength (7) is now easily evaluated. The dipole
strength for the linear polarization H~~(111] is given

by the coeKcient of
~

k
~

', and that for the linear
polarization HJ [111]is given by the coefficient of

~

f ~' or
~ j~ '. The result is given in Table IV.

"Y.Tanabe and H. Kamimura, J. Phys. Soc. (Japan) 13, 394
(1958).
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TABLE V. Magnetic dipole strengths of the transition t2s'Askr, &-+ tp 'EM„ in terms of a circular polarization in the (001) plane.
The notations are the same as those given in Table II. II in (001).

g'EM,
4A 2M,Q

1
2

3
2

Sum

(9a4+3b4)
(
k+

(
'+ (9b4+3a4)

)
k

16orb ([k+[s+ ]k-[s)
(3b'+a4) fk+['+(3a4+b4) )k f'

0

1
2

0
(3a4+b4) )k+~'+(3b'yo') )k ('

16 ob'(
(
k+ ['+ ) k [

')
(9b4/3o4) P+ [&+ (9a4+3b4)

[ k

8

Taking the same procedure as shown in the previous
section with the use of Table III, and Table IV, the
calculated Zeeman patterns are illustrated in Figs. 1,
2, and 3 together with the transition diagrams. The
agreement between the experimental and theoretical
results is very good in this case, Slight discrepancies,
that the observed central components of the Hs~~L110j,
HIIE001] and HoIIL111j HIID113
vanishing as expected theoretically, are mainly due
to some depolarization effect induced in the cryostat.
The observed slight enhancement of the intensity of
the short-wavelength side component compared to
that of the opposite side component is qualitatively
explained by assuming a thermal equilibrium between
up and down spins in the excited state.

In view of the nice agreement obtained, it may be
concluded that orbital degeneracies of the excited
Zeeman levels are not resolved beyond the linewidth,
that is, the Jahn-Teller coupling between chromophoric
electrons and lattice plays no apparent role in the
excited state. This might be due to the smallness of
the coupling, that is inherent to the system with a
half-filled shell confi uration such as t '.

combined microwave-optical experiments similar to
those by Geschwind, Collins, and Schawlow. "There-
fore, we shall examine, in this section, the longitudinal
Zeeman effect of the magnetic dipole transition in
terms of circular polarizations for the cases of Ho~~ L001j,
Ho~~ t 111j and Ho~[L110j.

In treating the cases of Hp(((001) and Ho[[[110j, we
calculate dipole strengths of the magnetic dipole
transitions with circular polarizations in the planes of
(001) and (110), respectively, leaving the direction of
the magnetic field arbitrary.

For the circular polarization in the (001) plane, the
magnetic vector may be written as

M= —Mpk —M k+, (16)

in which k+ and k have the same forms as those
given in (15) but, in this case, unit vectors s and j are
along the L100] and L010j axes, respectively. The
components 3f~ are defined as follows,

Mp ———(1/K2) (M.+iM„),
M = (1/V2) (M.—iM„).

In the previous sections, we have been concerned
only with the transverse Zeeman effect of the spectrum.
This is sufhcient to establish the magnetic dipole
character of the transition. However, further studies
on the longitudinal Zeeman e8ect will be also interesting
in view of confirming the assignment and of developing

g ) 2
It is easy to see from the Wigner coefFicients for a

V. THE LONGITVDINAL ZEEMAN EFFECT cubic group that the orbitals —($+irf)/v2 and

($ irf)/K2 of the 'Ts—state are excited with equal
probabilities by the k+ and k polarized light, re-
spectively. Then, by the use of the matrix element
given in Table I, the result in Table V is obtained.
The intensities of counter-clock and clockwise circular
polarizations of the magnetic vector of light are given
by the coefficients of (k+(' and (k ~', respectively,

TABLE VI. Magnetic dipole strengths of the transition tms 'A 2M; ~ t2 'EiV„ in terms of a circular polarization in the (110) plane.
The notations are the same as those given in Table II. H in (110).

4A

Sum

3L3A9 '+3gP+A'p'+ (X&28)'j
~

k+
~

'
4L3899+8'p'+ 4A'g

~

k+
~

s

L'3AM+3ps+A'p'+ (X~28)sg
~

k+
~

s

0

1
2

0

$3Amy~+3p~+A~p~+ (&~28)~g (
k+

~

2

4/389'+8'/l'+4A'g ]
k+ ['

3[3A9P+3v'+AV+ P +28)'j
~

k~I'

8

"S. Geschwind, R. J. Collins, and A. L. Schawlow, Phys. Rev. Letters 3, 545 (1959).
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no phase correlation, the Zeeman component is not
elliptically polarized as usually expected from the
figure but only the mixture of radiations with the
circular polarizations in the opposite direction and
with the diferent intensities. This is consistent with
the symmetry consideration that no elliptical polariza-
tion can exist in the (001) plane because of the fourfold
symmetry around the

l 001] axis.
The treatment of the circular polarization in the

(110) plane can be replaced by the treatment of that
in the (110) plane. Here, we will concern with the
latter because of its formal simplicity. The magnetic
dipole vector in the (110) plane may be written in the
same form as (16) with the unit vectors s and j along
the l 110] and

l 001) axes, respectively, and with the

)l rooi]

1 Io]

FIG. 6. The similar figure to Fig. 5, with Hp~~l 111j. &io]

when the magnetic field is coming to our eyes. For
HpllL001), inserting the values a= 1 and b=0 in
Table V we obtain the Zeeman patterns illustrated in
Fig. 5. It will be interesting to notice the following
observation done during the course of the calculation:
for both circular polarizations, the stronger component
is always the radiation from the I (3s' —x')-orbital and
the weaker one from the u (xp —y')-orbital. Since the
respective radiations from the I- and e-orbitals have

Ho ll(l lo]
H lW(&ia)

Fro. 8. The expected mode of the elliptical polarization in the
longer wavelength side component of the longitudinal Zeeman
pattern with Hp~~(110j (Fig. 7). The broken circles indicate the
circularly rotating magnetic vectors in the opposite directions,
which have Axed relative phases and diferent amplitudes. The
solid ellipse is obtained by superposing two circulating vectors
mentioned above.
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EXP.
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components M+ as follows,

M = —(1/42)l (1/K2) (M,+M„)+t'M,),
M = (1/K2)P(1/%2)(M +M„) t'M,)— (18)

In this case, the orbitals —(1/&2)$(1/v2) ()+pi)+if)
and (1/V2) L(1/V2) ($+pi) —if) of the 'Ts state are
excited with equal probabilities by the t|'+ and k
polarized light, respectively. Then, the transition
probabilities in Table Vl are obtained. For HpllL110],
inserting the values A=i, p=O, A=O and 8= j. in
Table VI, we obtain the Zeeman patterns illustrated
in Fig. 7."It will be interesting to mention the follow-

ing facts found during the course of the calculation:
all the side components are radiations from the v-orbital
and the central component is that from the N-orbital.
Then, the phases of the two circularly polarized
radiations within the side component should be cor-

Fro. 7. The similar figure to Fig. 5, with Hp[[$110$.

'P In this figure we return to the case of Hp~~L110$, H in the
(110) plane.
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related to each other, so that we can expect elliptically
polarized radiations for the side components. QThe
predicted elliptical polarization mode of the longer
wavelength side component is illustrated in Fig. 8.
1'he central component is linearly polarized along the
[110) axis (H

~~
L110)) when the magnetic field is

applied along the t 110)axis.
The longitudinal Zeeman effect with Hs~~(111) is

obtained from the results given in Table IV. The
Zeeman patterns are visualized in Fig. 6. The char-
acteristic feature of this result is such that the central
component is linearly polarized in the (111) plane
while the side components are circularly polarized in
the opposite sense to each other in the same plane.

The agreement of these calculated longitudinal
Zeeman patterns with the experimental ones is very
good in all cases as expected.
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Thomas-Feziiii Technique for Deteiiriining Wave Functions for Alkali Atoms
with Excited Valence Electrons*
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A technique has been developed for the calculation of excited state, one-electron wave functions based
on the Thomas-Fermi statistical theory of the atom. This technique is applied to heavy alkali atoms for
which Hartree-type solutions are complex and diKcult to obtain. The Thomas-Fermi differential system
for the alkali positive ions is accurately solved utilizing Milne s method, and the results are summarized.
This Thomas-Fermi core potential is then used as a central 6eld in the Schrodinger equation together with
the Heisenberg type of polarization energy correction. Angular dependence is assumed to be capable of
separation, and two basic techniques for solving the radial Schrodinger equation are discussed, one due to
Ridley, the other to Biermann and Lubeck. The general approach permits correction for penetration of the
excited electron s orbital. The Biermann and Lubeck type solution also allows for the inclusion of a quali-
tative correction for exchange. The techniques are applied to the potassium atom with an excited valence
electron in the 6s state. The results are encouraging when compared with a Biermann and Lubeck type
calculation using a Hartree central potential done by Villars. The 7s state of the cesium atom which has not
been obtained by Hartree central potential is also computed.

I. INTRODUCTION

HE only systematic approach to the calculation
of atomic structure and properties is via the

Hartree' or Hartree-Fock' approximation. However,
there are limitations to these calculations. Their nu-
merical complexity makes it diKcult to obtain an over-
all physical picture of the atom. Only isolated solutions
are possible in these approximations and for heavier
atoms the numerical complexity of the self-consistent
iterations makes the calculations for atomic structure
all but impossible.
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Research, and the Once of Naval Research.
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There are additional complications which arise when

attempting to calculate the structure of excited states
since one requires that the wave functions used be
orthogonal to all lower states, and it is sometimes
impossible to obtain solutions with this requirement.

For those states for which Hartree or Hartree-Fock
one-electron wave functions cannot be obtained, one
can use a somewhat cruder approximation which has
the advantage of simplicity, namely the Thomas-Fermi
model. ' 4 The basic assumptions in this model, however,
require that we investigate only the ground-state
configurations. Some attempts have been made by
Latter' to investigate the excited states of an electron
in the Thomas-Fermi central potential. This is of course
an approximation to the description of excited states

s L. H. Thomas, Proc. Cambridge Phil. Soc. 25, 542 (1926).
4 E. Fermi, Rend. accad. nasl. Lincei 6, 602 (1927); Z. Physiir

48, 73 (i928).' R. Latter, Phys. Rev. 90, 510 (1955).


