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Considerations on the Propagation and Generation of Magnetostatic
Waves and Spin Waves
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A discussion is given of the dispersion relation, magnetization distribution, and group velocity of magneto-
static waves in an infinite circular cylinder with the static magnetic Geld parallel to the cylinder axis. The
dispersion relation of the modes with e'& angular dependence is, for kR))1,

zp

capp+

y—2zrM, (pig/kE) '+ (D/A) kp,

where s, is a root oi Jp(p:) =0; R is the cylinder radius; and D is the exchange constant. The group velocity
of magnetostatic pulses at low wave vectors is shown to be considerably higher than magnon velocities.

QHp +co (2)

N view of the long magnetic relaxation times" in
~ ~ yttrium iron garnet, it is realistic to contemplate
experiments in which spin waves are generated electro-
magnetically' or acoustically, ' and their propagation
characteristics studied in a single crystal rod of yttrium
iron garnet. In this note we made several points which
we believe are of central importance to the problem.

It is obvious that the applied static magnetic fieM

Hp must be chosen low enough so that the spin wave
dispersion relation &p=io(k) will have solutions for
which the wave vector k is largely real. The dispersion
relation for a long thin circular cylinder with Hp parallel
to the axis is of the form,

~=y&p+I' (k)+i r

for waves propagating parallel to the axis z of the
cylinder; we write k for k, . The function Ii (k) will be
positive real for real k.

The low-order magnetostatic modes have been
discussed by Fletcher. ' The quantity r is the relaxation
time for the relevant spin wave, and we assume that
co7&&1. It is evident that

coupling to the electromagnetic field—the criterion
for the validity of this assumption will be examined
la, ter.

We now consider the function F(k) in (1). For
sufficiently high values of k the function is dominated
by the exchange energy and approaches co, a'k', where a
is the lattice constant. It has not always been recognized,
however, that there is a wide region of k in which
mageetostatic waves of quite simple form may propagate.
For our geometry the Walker' equation for the magneto-
static modes has solutions for the magnetic scalar
potential of the form, in cylindrical coordinates,

P; =A;.J fikpl(1+x) i5e"e'"z'

(1) (ikp)eikzeiny

where H„&') is a Hankel function; here

(3)

(&)

4+~,IIo

&p' —(~/y)'

In the short-wavelength limit kp+)I we may approxi-
mate the Hankel function by

is a criterion for (1) t:o have a solution with k nearly
entirely real. The inequality (2) is satisfied by the
resonance condition yHp=~ —y2~M, for the uniform
mode, but there appears to be no special virtue in
driving the system at this particular condition if our
object is to excite spin waves. If we violate the in-

equality (2), the wave vector rapidly acquires a
cata, strophic imaginary component. We assume further
that the wavelengths of interest are suNciently short
tha, t in the propagation equations we may neglect

&«'& (ikp) ~ (kp)
—

&e
—'&,

so that

(kp) ie speinyeikz—-

The boundary condition on the continuity of the
tangential component of H at the surface p =R is
satisfied provided

2;„J„gikR/(1+x)'7=Ho i(kR) &e s"
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(1+x)(W ./~p) (i~/R) (~4 -/~a) =—~0-p/&p, (9)
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d equation for a Sat plate and And wave-like solutions. The frequency
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for kL))1, where n is a positive integer.
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where

From (9) we have, for kR))1,

2;„((1+z)Lik/(1+ ~)&)J„'LikR/(1+ s) &j
+ (mv/R) J LikR/(1+~) &7)

= —A.„,(k/R) le—'~.
Combining (8) and (11),

i(1+~)'(J '/J ) = —1—(nv/kR). (12)

This is the characteristic equation, where the argument
of the Bessel function is ikR/(1+s)*'; our solution is

just the magnetostatic limit of a problem treated by
Kales. ~

For excitation by an interaction which is uniform
across the specimen we may set e= 1. We set

(M —+Ho)/4s'yM, = e.

For kR))1, it is seen that e((1; then

s—v——1/2e,

and (12) becomes, for m= 1, with x= (2e)&kR,

Jg'(x)/Jg(x) = —1/x,

which may be reduced to

Jo(x) =0.

(13)

(14)

(15)

(16)

&ux
—yHo=i. 3X 10"/(kR)' sec-', (20)

our approximations probably restrict the usefulness of

(20) to kR) 5, or co&
—&Ho(5X10P sec '. This may be

' J. Isles, J.Appl. Phys. 24, 604 (1953).

The three lowest roots are x;=2.405; 5.520; and 8.654;
the lowest corresponding eigenfrequency is

a)g=yHo+2myM, (2.405/kR)'. (17)

The exchange energy may be taken approximately into
account by adding to (17) a term (D/It)k'; this neglects

the exchange energy associated with the radial and

angular variation of the magnetization and is justiGed
so long as the axial (s) variation is the shortest wave-

length in the problem. Here D is the exchange constant.
Thus

cog=yH p+ 2syM, (2 405/kR). '+ (D/k) k'. (17a)

The group velocity of modes described by (17) is

op= 8(ug/elk = —4sM, (2.405/R)'k '. (18)

For yttrium iron garnet at helium temperatures and
R=0.1 cm, we have

~
s,

~

—2.5 X10"k ' cm/sec, (19)

Thus for kR= 10 and 100, we have
~
s,

~

=2.5 X 10' and

2.5X10' cm/sec. We note also from (17) that

4' x = (K v)—
2Mo++k~ s

with x+=M+/H+.

oo, =4~M„and C=2~M, (2.405/R)'.

(23)

The photon and magnon wave vectors are k„and k,
respectively. Under the usual conditions 4m'+ will be
&1, so'that the electromagnetic wave vector k„should
be approximately by e&co=ck„, where e is the dielectric
constant. This neglects waveguide effects, which in any
event only decrease k~. So long as the wave vector k of
the magnetostatic mode is very diGerent from k~, the
coupling of the two dispersion relations should not be
serious. Usually ck ))e&co. We can see that this implies
weak coupling: in the Maxwell equation,

curlE= BB/cBt, — (24)

the left side will involve k,E; if k,/k ~k„/kv, the
value of E accompanying the magnetostatic wave will
be roughly in the ratio kv/k with respect to the value
of E for the electromagnetic mode. The radiative part
of H may thus be reduced in the ratio (kv/k )' with
respect to the magnetostatic part of H. The exact
solutions of the radiative and magnetostatic problem
as given by Kales7 involve precisely this ratio.

We now consider brieQy the magnitude of the
coupling by an excitation Geld into the modes identiGed

by the successive roots of Jo(x) =0, as in Eq. (16). We
shall not enter into the details of any particular coupling
process, but shall use

~B
5$p PdP)

&o

as a crude measure of the relative strength of the
coupling into the several modes.

compared. with 2~%,=2.2X10' sec '. For the limit
Iro ~ 0, see Appendix A.

The group velocity in the wave vector region where
the exchange interaction is dominant is, for s-directed
spin waves,

s,—0.1k cm/sec, (21)

where the constant is evaluated approximately for YIG
at O'K. The ratio of the magnetostatic wave velocity
(19) to the exchange wave velocity (21) is (for R=0.1

cm)
fs „J/fv. /

—2.5X10"/k',

which is equal to unity for k=4)&10' cm '. This value
of k may be considered as the demarcation line between
exchange and magnetostatic modes.

We must now find a criterion for the neglect of the
interaction of the electromagnetic field with our
magnetostatic waves. From the Maxwell equations,

e'k 'H+= ao'(H++4mM+). (22)

where the Walker equation gives, for k,R ~ k R,
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Now

where we have dropped the factor e'"e'~'; we suppose
that the excitation has an appropriate angular depend-
ence to give a nonzero value on angular integration
with e'&, and that a similar requirement is satisfied by
the s dependence. Using (13) and assuming e«1, we
have, with x= zzp/(1+z)'*,

anklc

rg, ~ -P,'(x)+x—'Ji(x) (v/z)]
(1+z)'*

ikf(:

Ja(x). (27)
(1+a)&

We note that for the mode identi6ed by the root x,
of (16),

d ~ 1/x,zJi(x,). (28)

For the first four roots, the relative values of
~
d

~
are

1, 0.3, 0.14, and 0.10. Thus the first root dominates the
excitation, but other modes should perhaps be observ-
able. We note from (27) that m, =0 at the surface, so
that modes of this form will be scattered very little by
surface imperfections. There are similar modes with low
surface magnetization in a flat plate with k~~Hp and in
the plane of the plate.

For low k the velocity of the magnetostatic waves
may exceed appreciably the maximum magnon velocity
for frequencies in the microwave range —at E band
the magnon velocity is about 2X 10s cm/sec in YIG if
all the energy is exchange energy. We have above
made the estimate of 2.5X10"cm/sec for the magneto-
static mode with kR= 10, and R=0.1 cm. Our derivation
involves approximations which break down at low
values of kR, but the exact solutions' for prolate
spheroids with high axial ratios suggest that the
limiting velocities of low-order magnetostatic modes
may be of the order of

I., [
= i,~~/~k

f
=~a,L,„ (29)

where L is the length of the specimen. For L=1 cm,
~s,

~

=4X10 cm/sec. In this situation it is essential
to take account of electromagnetic propagation eGects,
but we see that very rapid transmission of magneto-
static pulses may be expected to occur. This conclusion
is in agreement with some preliminary experiments'
on magnetic pulse propagation in a ferrite cylinder.

The mean-free path A of a wave is given by

A sg7)

8 p. C. Fletcher. (unpublished).

(30)

4aratia ——z(BP;./Bp) —(av/p) (BP;„/d p)

ZkK

Ji'(x)+—Ji(x), (26)
(1+z)-** p

so that if r= 10 ' sec, the amplitudes of waves having
s,= 10', 10', and 10' cm/sec will be reduced by e ' in
distances of 100, 1, and 0.01 cm, respectively. Thus the
low k magnetostatic waves propagate best.

APPENDIX A: MAGNETOSTATIC WAVES IN
ZERO APPLIED FIELD

We consider the same in6nite circular cylinder as
above, but let the static magnetic field approach zero
while still maintaining the saturated state of the
specimen. Then a=0, and we have (for I= 1)

p;,=A;,J,(ikp)e"*e'v (A.1)

Now Ji(ix) =Ii(x), which for x))1 approaches
(2arx) *'e*, so that Ji'(ix)= —zIi'(x) and the charac-

l4

I2

CO

3
C)

UNIFORM MODE

8

MAG NETQSTAT I Q

6 —MOD E.S —LONE.ST
ROOT FOR GIYE.N k

4
0

"'
ROOT

ROOT

4
LOG Io

EXCHANGE MODES~

5 6 7

F&G. I.. Plot of logia(aa —aaa) vs log&ak for z-directed spin waves,
n=1, in a circular cylinder of radius 0.1 cm, with static Geld and
cylinder axis parallel to the z axis. Material constants as for YIG
at O'K; here eo0=yII0, co, ~0 in sec ', k in cm '. It is assumed that
(aa

cuba)/aa

&&1.

teristic equation, Eq. (12) becomes

v= —2kR, (A.2)

M = 2aryM, /kR. (A.3)

This is rather different in form from the earlier result
applicable to the region v=~.

The present result is not hard to understand quali-
tatively, because the magnetostatic energy of a cylinder
divided into disks of thickness k ' magnetized alter-
nately in opposite directions (and normal to the axis)
is of the order of M,'/kE per unit volume, for kR))1.
The distribution of magnetization is actually peaked at
the surface, whereas in the earlier problem the distri-
bution had a node at the surface.
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