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General Spin-Wave Dispersion Relations*
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The general spin-wave dispersion relation obtained by a simultaneous solution of the equation of motion
of the magnetization and Maxwell's equations is given. In contrast to previous calculations, the effects of
conductivity, relaxation, exchange, and propagation are all properly taken into account. The resulting
algebraic equation, being biquadratic in the square of the wave number, k, has four possible pairs of
solutions. Some of these solutions correspond to growing plane waves while others represent attenuated
ones in the direction of propagation. Whereas an analytical solution for k could be easily obtained for the
special case where the wave vector k is in the direction of the static magnetic field (its=0), the solution
for the cases where 8&/0 could be conveniently obtained only by numerical solution. The solutions for the
latter cases have been obtained by using an IBM 709 computer and some of the representative results are
given in this paper in graphical form. When relaxation and eddy current damping are neglected, our result
reduces to that of Herring and Kittel in the static limit (c» —+ 0). Furthermore, it was found that the uniform
precessional mode (&=0) can truly exist only under very special conditions, namely, under the condition of
zero permeability for one of the two normal modes in a gyromagnetic medium.

I. INTRODUCTION

K shall derive the general dispersion relation
~

~

~

for spin waves by a simultaneous solution of
Maxwell's equations and the equation of motion of the
magnetization with conductivity, relaxation, exchange,
and propagation properly considered. The solutions for
the real and imaginary components of the magnitude
of the spin-wave vector k, obtained by numerical
solution will be given in graphical form. A brief account
of this work has previously been given elsewhere. '

Herring and Kittel, neglecting relaxation damping,
derived the dispersion relation for spin waves in an
insulator. They assumed that the wavelengths of such
spin waves are much smaller than the electromagnetic
wavelength in the medium. For thermal spin waves,
this condition is easily satisied even at and above
microwave frequencies. However, the situation is quite
different in a conductor and for spin waves whose
wavelengths are substantially longer than the thermal
ones. The wavelengths of the spin waves of interest in
a metal (e.g., those responsible for spin-wave resonance
in thin Permalloy films) may be comparable to sample
dimensions, skin depth, and the electromagnetic
wavelength in the medium. Under these conditions,
the spin-wave dispersion relation can be determined
only by a simultaneous splution of Maxwell's equations
and the equation of motion of the magnetization by
taking proper account of the sects of conductivity,
exchange, propagation, and relaxation. The dispersion
relation obtained in this way would then be applicable
to ferromagnets of any conductivity and for spin
waves of any wavelength. The assumptions under

*After this work was completed, the author became aware of a
Letter by M. A. Gintsburg, J. Exptl. Theoret. Phys. (U.S.S.R.}
35, 1047 (1958) Ltranslation: Soviet Phys. -JETP 35(8), 730
(1959)g, in which he treated the special case of spin waves in an
insulator including displacement currents.

/Operated with support from the U. S. Army, Navy, and
Air Force.' R. F. Soohoo, Bull. Am. Phys. Soc. 5, 356 (1960).

2 C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951).

which the special cases reported in the literature are
valid can then be more easily understood.

Inasmuch as the magnetization and electromagnetic
field distribution within a medium can, in principle at
least, be explained in terms of plane waves, we shall
examine in this note the plane wave solutions and shall

only briefIy discuss their application to the solutions
of actual boundary value problems.

where e and cr are, respectively, the dielectric constant
and the conductivity of the medium.

Taking the curl of Eq. (1) and substituting the
resulting expression for VXe into Eq. (2), we obtain
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where we have made use of the constitutive Maxwell's
equation V.b= V (h+47rm) =0. Assuming that
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IL MAXWELL'S EQUATIONS

We shall start our derivation of the general spin-wave
dispersion relation with a determination of the dipolar
fields associated with the interaction of spins from
Maxwell's equations. In Gaussian units, Maxwell's

equations are
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III. EQUATION OF MOTION

A phenomenological equation of motion of the
magnetization is:

dM ( n dM 2A
&&
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yMo dt Moo ) (8)

where p, n, and A are, respectively, the gyromagnetic
ratio, the damping and exchange constants. Equation
(8) is a modified form' of the equation first proposed by
Landau and Lifshitz. ' Several other equations' ' have
been proposed for ferromagnetic resonance. Equation
(8), however, displays the relaxation damping (n term)
in the Simplest form in our final results. Consequently,
for simplicity, we have chosen to use Eq. (8) instead
of any of the other equations.

For the spatial independent part, V2M =0, so that
if we assume that:

8= l,Ho+ hoe""'

M = 1,Mo+moe'"'

Equation (8) in component form becomes

(ice/y) mo, = (Ho icon/y) m—o& Moko„, —
(ico/y) mo„—(Ho ico——n/y) m—o,+Moko„

o T. A. Gilbert, Armour Research Institute (unpublished
reports).

'L. Landau and E. Lifshitz, Physik Z. Sowjetunion 8, 153
(1935).' N. Bloembergen and S. Wang, Phys. Rev. 93, I2 (1953).' H. B. Callen, J. Phys. Chem. Solids 4, 256 (1958).

7 R. C. Fletcher, R. C. LeCraw, and E. G. Spencer, Phys. Rev.
11j, 955 (1960).

we Gnd from Eq. (3) that for the spatial nonvarying
part (k=0),

ho= —4ormo (6)

For the spatial varying part (k/0), we find from Eq.
(3) that

4ir (co'e,/c') ms —4s.k(k mc)

k' —co'e./c'

where e,=e(1+47ro/icos) is the equivalent dielectric
constant of the material with finite conductivity.

Equation (7) gives the general relationship between
hc and ms, and it can be combined with the equation
of the magnetization to obtain the dispersion relation
for the spin waves. We note that if k' cosct))cose, /cs
where g is the angle between m and k, then Eq. (7)
reduces to hs —4sk(k m)/k', the often used expres-
sion for hs in the so-called static approximation. Jt is
worth noting, however, that if k m=0, then hs is prop-
erly given by 47rco'e, /k'c' in the static approximation.

Returning now to Eq. (6), we find that the k=0
spin wave could exist if and only if mo/ho= —1/4or.
Under this condition, the flux density bo ——ho+4irmo
inside the medium is zero because ho and 4irmo are
equal in magnitude but oppositely directed.

Since cdo is in general real, Eq. (11) can be satisfied only
if +=0.

Additional insight may be gained by solving Eq. (10)
directly for the ratio mo/ho without invoking Eq. (6).
In that case, we obtain the well-known Polder tensor

p given by'

where

—iE 0
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E=
y'(Ho io)n/y) —' co'— (13)

Diagonalizing tensor (12), we find the eigenvalues
x+E and x—E corresponding to the susceptibilities of
the two counter rotating circularly polarized modes.
Whereas x—E is always positive, x+E is equal to
—1/4ir at the frequency given by Eq. (11). Since the
equivalent susceptibility x+E is equal to the ratio
mo/ho for this normal mode, we see that condition (6)
as imposed by Maxwell's equations is satisfied for this
particular situation. However, it is interesting to note
that at no other combination of co and Ho could the
requirement of tensor (12) as imposed by the equation
of motion (8) be compatible with the condition (6)
derived from Maxwell's equations.

From the foregoing analysis, we conclude that if the
frequency is Gnite, the uniform precessional mode (k =0)
can exist only under very special conditions, namely,
under the condition where the equivalent susceptibility
is equal to —1/4or, i.e., at zero equivalent permeability.
However, if co —+0, the problem reduces to that of
magnetostatics as far as Maxwell's equations are
concerned. By combining the Laplace equation V'lt =0
where P is a scalar magnetic potential and the equation
of motion (8) neglecting relaxation and exchange,
Walker' obtained the magnetostatic modes of an
ellipsoid. He also found that the uniform mode of
Kittel, " being related to demagnetization factors
derived from entirely static considerations, is one of
the normal modes of the ellipsoid.

If the permeability is other than zero, it appears that
the wavelength of h and m are finite at a Gnite frequency

s D. Polder, Phil. Mag. 40, 99—115 (1949).
~ R. L. Walker, Phys. Rev. 105, 390 (1957)."C.Kittel, Phys. Rev. 73, 155 (1948).

where we have assumed that ho&(HO and mo(&M() and
Ho and Mo are the static field and static magnetization,
respectively. Combining Eqs. (6) and (10), we obtain
two algebraic equations for tpso and mp&. Setting the
determinant of this equation equal to zero, we find the
dispersion relation for the k=0 spin wave as

coo' y'(H o——+4m-Mo iowan/y—)'. (11)



R. F. SOOHOO

so that strictly speaking no uniform distribution of h
and m within a Qnite sample is possible. The spatial
distribution of the magnetization may then be expanded
in terms of the various plane spin waves with arbitrary
coeScients to be determined by the electromagnetic
and exchange boundary conditions. Thus, their disper-
sion relation to be derived in the next section would
be of general interest.

(io&+CgyMpk, k„)rrs,

+ (CPM pk„' C,yM p
—yH p+i—nor) m„=O,

—(CgyM pk, ' C.yM—
p yH p+—inpr) ns

+ (ior —CgyMpk, k„)m„=0,
where

i2m8"

(14)

C,= + k'
1—s—'b"k' Mp'

and 8's= i2c'/—or'e, is a generalized skin depth of the
medium. Setting the determinant of Eq. (14) equal to
zero, we obtain an equation biquadratic in k':

(E')4+A(E')'+8(E')'+CK'+D=O (15)

IV. SPIN WAVES

Combining Eqs. (7) and (8), we obtain two linear
algebraic equations in the x and y components of m:

where

A =2''+sin'Or, +i4P,
8= r) '(r1'+ sin'Or )—Q'+i4P (2g'+ 1+—,

' sin'Or )—4t4,

C= i4Pt g'(1+-', sin'Os)+-,'sin'Or, —Q'+g"j —8P(r1'+1),
D=4PLQ2 —(~'+ 1)sf,

and E, r1', p, and Q are dimensionless parameters
given by

K= k/8,

r1'= (Hp/47rM p)i nQ, —
P= A/2~M'p8"

Q =or/74rrM p.

In the static approximation, as mentioned previously,
the expression —4rrk(k m)/k' instead of that given by
Eq. (7) is used for h&. Correspondingly, Cz ~ —4rr/k'
and C, ~2Ak'/Mp. Within the framework of these
approximations, Eq. (15) reduces to the Herring-Kittel
formula which is quadratic in O'. Thus, the other two
pairs of possible solutions have been implicitly discarded
in such an approximate calculation.

If 8&00, the solution of Eq. (15) is quite complicated.
We should like to first investigate two special cases,
i.e., eg, =0 and 0~=90'. First consider the solution of
Eq. (15) when Os=0. In this case, it can befactored
into two terms, each quadratic in E' having the
solutions:

and
K&,ps = —,'{Q—~'—i2P+ L(Q—~'—i2P)'+i8P (Q—&'—1)$'*},

K, ,'=-,'{—(Q+q'+i2P) aL(Q+q'+i2P) —
i8P (Q+q'+1) $-'}. (16)

There are several interesting results to be noted in
Eq. (16).First, if Q=g'+1, Es'=0 while Kq, p, 4' remain
6nite. On the other hand, if Q= —(r1'+1)r Esp=0 and
E~,2, 4' remain finite. These conditions are exactly those
required by Eq. (11) to give a uniform mode (k=0).

Secondly, we note that for 0 negative E2 is always
real while E& is imaginary but never complex for a
perfect insulator (n —+ 0, 3"~ i2c'/or'—e) On th. e
other hand, E3,4 could both be real or imaginary also
for an insulator. The characteristics of these K's are
largely dependent upon the value of Q+r7' and Q+r1'+1.
These imaginary E's do not imply a violation of the
law of conservation of energy as they merely represent
reactive attenuation analogous to that of waves
beyond cutoff in waveguiding structures.
g, In general, we End that if either the direction of the
dc 6eld or the sense of rotation of the circular polariza-
tion of the exciting radiation h is reversed, we obtain
the complex conjugates of the original K's.

In the special case where 8=90', Eq. (15) becomes

(K'+2iP) {E'+(2g'+1+i2P)K'
+Lr1'(rr'+ 1)—Q'+i4P (g'+1)jE'.

—i2Pt Q —(~'+1) j}=0. (17)

We see from Eq. (17) that one of the solutions for K' is
—2iP Equatio. n (17) agrees with the results of Rado"
except that in his case the Landau-Lifshitz instead
of the Gilbert' damping term was used.

V. NUMERICAL SOLUTION

In Figs. i—3 and 4—6, we have plotted the real and
imaginary components of the magnitude of E (E' iE"), —
i.e., E' and E" as a function of frequency for an
insulator whose c= 12 and o.=0.05 and for a conductor
whose resistivity 1/o=21&(10 ' ohm-cm and n=0.
The exchange constant was assumed to be equal to
10 ' erg/cm for both cases. For simplicity, we have
assumed that o. for the insulator case to be a constant
independent of frequency. Curves for three different
8~'s are shown. It is seen from Figs. 4—6, that E~" is
negative representing growing waves while E2,3,4" are
in general positive representing decaying waves. We
have shown here only plus E"s and associated E'"s.
The positive K"s correspond to waves travelling in
the positive r direction. Thus, there are a total of eight
waves, four each travelling in opposite directions.

"G. T. Rado, Phys. Rev. 97, 1559 (1955).
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We notice that except for E4', there are substantial
differences between the E's of the insulator and conduc-
tor cases. Furthermore, we note from Figs. 4-6 that the
curves are all well behaved except in the vicinity of
—0=g'+1 whereby Ez +0—as required by Eq. (11)and
at —0=g'.

VI. APPLICATIONS

Any magnetic distribution, in principle at least, could
be represented as a linear combination of plane spin
waves with arbitrary coeKcients. The various coe%-
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FIG. 3. Normalized components of k vs normalized frequency for
an insulator with 81,=90' and g = 0. q=0.3.
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cients can in turn be evaluated by imposing the
appropriate electromagnetic and exchange boundary
conditions. In practice, however, this procedure is not
always easy to carry out. Fortunately, in the case of
spin-wave resonance in Permalloy films, a problem of
considerable interest, the required linear combination
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FIG. 4. Normalized components of k vs normalized frequency for
a conductor with 8=0'. g=0.3.
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of plane spin waves can easily be found. Seavey and
Tannenwald" and Pincus" have obtained solutions for
the s-directed spin waves in Permalloy 6lms while the
author" has applied this method to obtain the general
absorption spectrum for spin-wave propagation in
diferent directions in Permalloy films.

VII. CONCLUDING REMARKS

In summary, we have derived the general spin-wave
dispersion relations by properly taking into account
the effects of conductivity, exchange, and propagation.

'~ M. H. Seavey and P. E. Tannenwald, Phys. Rev. Letters 1,
168 (1958);J. phys. radium 20, 323 (1959)."P.Pincus, Phys. Rev. 118, 658 (1960)."R.F. Soohoo, BulL Am. Phys. Soc. 4, 453 (1959).

In contrast to the Herring-Kittel spin-wave dispersion
relation which is quadratic in k', our dispersion relation
is biquadratic in k'. The four new solutions did not
appear in their calculation because they use the static
approximation for the dipolar Geld hI, . In Fig. 4, we
have shown the E'—0 curve as calculated from the
Herring-Kittel relation for comparison. It is seen that
this curve is quite similar to those corresponding to E4 .
We note also that E3 —+0 only in the vicinity of
—0=+(r)'+1); the E=O mode corresponds to the
well-known uniform precession. The results of this
paper may be applied to the determination of mag-
netization distribution in a ferromagnetic ellipsoid of
any size and conductivity.


