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A quantum mechanical variational method is used to calculate several properties of a close-packed lattice
phase of solid He* and He?® at 0°K. The method consists in expressing the expectation value of the interatomic
potential energy, with respect to a Heitler-London trial wave function, as a series of powers of the mean
square deviation of an atom from its lattice site. Due to the small mass of a helium atom this mean square
deviation is relatively large and the series converges slowly. Three sets of numerical results are obtained by
truncating the series after the first, second, and third term, respectively. A comparison of these results with
the experimental data shows that the final results, i.e., after minimizing () with respect to the variational
parameter, converge much faster than the expectation value series itself. The results include values for:
cohesive energy, sound velocity, compressibility, Debye temperature, and Griineisen constant. The calcu-
lations are repeated for a body-centered cubic lattice, and no indication of a crystallographic phase transition

is found.

I. INTRODUCTION

T should be possible to derive the properties of the
gaseous, liquid, and solid phases of either helium
isotope from the solutions of a Schrodinger equation:

<H/e>ws[~vé VALY S o(e) = (B/O¥, (1)

=1 j=1

where v(x:;)=V (ri;/0)/¢ is a given two-body inter-
atomic potential, N>=#%%/2Mes?, ¢ and o are energy
and length scale factors, M is the mass of a helium
atom, and V2 is the Laplacian with respect to x,=r;/s.
In the present paper we restrict the discussion to a
12-6 Mie-Lennard-Jones potential, i.e.,

(i) =4 (s 2 —w475). (2)

Properties such as superfluidity! of liquid He* and
nuclear magnetic susceptibility of liquid® or solid® He?
depend in a crucial way on the required symmetry or
antisymmetry of the wave function ¥. On the other
hand, at least in the solid phases, the appropriate
exchange integrals are small compared to the cohesive

* Contribution No. 913. Work was performed in the Ames
Laboratory of the U. S. Atomic Energy Commission.

IN. Bogoliubov, J. Phys. (U.S.S.R.) 11, 23 (1947).

2 A. A. Abrikosov and I. M. Khalatnikov, Reports on Progress

in Physics (The Physical Society, London, 1959), Vol. 22, p. 329.
3 N. Bernardes and H. Primakoff, Phys. Rev. 119, 968 (1960).

energy® even at low (~30 atm) pressures, and hence
we can expect that an unsymmetrized wave function
will provide a good description of cohesive properties
of the solid phases, especially at not too low pressures.
This fact is gratifying since the first difficulty in
obtaining approximate solutions of Eq. (1), on basis
of an independent-particle model, is connected with the
strong singularity of the interatomic potential v(x;;) at
the origin. The easiest way to remove this difficulty
is to use single-particle trial wave functions localized
about lattice sites, i.e., Heitler-London orbitals, which
do not overlap.*® However, such orbitals have zero-
exchange integrals and consequently they cannot be
used to discuss effects which depend on nuclear wave
function symmetry. Another difficulty in solving Eq.
(1) (by any method of approximation, independent-
particle model or not) comes from the large value of A
for helium [A(He*)=0.302, A\(He?) =0.347]. Such large
values of A imply a large zero-point kinetic energy, and
lead to the following consequences. (a) The two atom
equation [N =2 in Eq. (1)] has no negative eigenvalue,®
i.e., a diatomic helium molecule is not stable, in contrast
to the heavier inert gases.® (b) Even though the lowest

4N. Bernardes, Phys. Rev. 112, 1534 (1958), and Nuov
cimento 11, 628 (1959). -

5 N. Bernardes, Phys. Rev. 120, 807 (1960).

¢ N. Bernardes and H. Primakoff, J. Chem. Phys. 30, 691 (1959).
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state of the many-atom problem (N>1) in Eq. (1)
has a negative eigenvalue, this ground state corresponds
to a liquid rather than to a solid (liquid He?® and He* do
not solidify unless under a pressure of at least 30 atm)
again in contrast to the heavier inert gases which
solidify without any external pressure.

For small values of N\ approximate solutions of Eq.
(1) can be obtained rather easily,*? and the ground-state
(cohesive) energy per atom can be expressed as a sum
of three terms: (1) a classical potential energy E.:
determined by the average positions of all the atoms,
(2) a correction AU to the potential energy due to
zero-point motion, and (3) the kinetic energy K
associated with this zero-point motion. In units of ¢,
E,; is of the order of z/2 (3 the number of nearest
neighbors) and both AU and K are of the order of \.5
Also &, the position mean square deviation, is of the
order of \* (in units of ¢2). In the case of solid helium
(A=0.3) all these terms (K, AU, and §) become of the
order of unity and cannot be regarded as small
corrections.

Our present method consists in expressing AU as a
power series in 2 which can be regarded as a variational
parameter. For a given volume one minimizes AU+K
(K «672) with respect to §, and thus § is obtained asa
function of the volume. In Sec. IT we present a dis-
cussion of the evaluation of AU as a power series. In
Sec. 1T the method is applied to a close-packed lattice
and the results are compared with the experimental
data for He? In Sec. IV the calculations are repeated
for a body-centered cubic lattice and we also discuss
the possibility of a crystallographic phase transition
between these two lattices; no indication of such
transition is found from these calculations, the close-
packed lattice being more stable with respect to a bcc
lattice, at low temperatures and all pressures.

II. QUANTUM MECHANICAL EQUATIONS

As an approximate trial variation solution ® of Eq.
(1) with a 12-6 potential, Eq. (2), we take

N
D (X1,Xz - XN) = I_Il ei(x;—Xy), )

where for simplicity we choose*®

ei(£:)= (w/2d")} sin|woti/a|/|woti/al

and

for £:<a,

[ (El) =0 fOf 51,2 a. (4)

The vectors X; describe a given lattice, and ¢ is a
variational parameter proportional to the root mean
square deviation of an atom from its lattice site.

The expectation value (H)=_f®*H® of the Hamil-
tonian contained in Egs. (1) and (2) is given by*5

(H/Ne)= E*= Eo*+Na 2+ (4 10>+ A 20* 4 A 505-

=E,*(V)+K*(V \a)+AU*(V ),
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TasrE 1. Lattice summation constants.?

Cs Cs Cro Cr2 Cu Cis Cis

Close-packed
lattice

Body-centered
cubic lattice 12.25 10.36  9.56

14.45 12.80 12.31 12.13 12.06 1203 12.01

9.11 882 861 845

a Values from reference 7.

where a=a/mo, E.* is the static interatomic potential
energy given by*?

Ey*=4X35(CX 12— CeXF), (6)

where X is the nearest neighbor distance (in units of ¢),
and the C’s are tabulated constants’” whose values
depend only on the type of lattice. The coefficients in
the power series for AU* depend on the even moments
of the square of the single-particle wave function ¢,
and in the present case, Eq. (4), they have the following
values?:

A1=72(24.9C1. X —5.66CsX8), (7a)
A 9= 7{'4(198C15X—16— 13.8C10X_10), (7b)
A3= 16(1,280C13X—18—33.5C12X“12). (7C)

Table I lists the values” of the C’s for a close-packed
(c.p.), either hexagonal or cubic, and for a body-
centered cubic (bcc) lattice which will be used in the
subsequent sections. Table IT shows the values of the
parameters® ¢, ¢ and their various dimensionless
combinations appropriate to He® and He?.

According to the variational theorem an approximate
value for the lowest eigenvalue of Eq. (1), and the
corresponding eigenfunction Egs. (3) and (4), can be
obtained by minimizing the right-hand side of Eq. (5)
(regarded as a function of the volume V and of «)
with respect to the variational parameter «, ie., the
optimum value ao(V) of a is given by

[BE*(a, V)/(‘)a]a =a0=0. (8)

In view of Eq. (5), Eq. (8) is an algebraic equation
of the fourth degree in o2 if all the terms A, 4, and 43
in AU* are kept. If 43 or 43 and 4, in Eq. (5) are
neglected Eq. (8) becomes, respectively, a quadratic

Tasie IL. Interatomic potential parameters for helium.?

No3(cm3/ e/a®
e(in °K) o(inA) mole) (in atm) A= (#2/2Mec?)}
He3 10.2 2.56 10 83.4 0.347
Het 10.2 2.56 10 834 0.302

a Values from reference 8.

77J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular
Theory of Gases and Liquids (John Wiley & Sons, Inc., New York,
1954).

8 J. de Boer, in Progress in Low-Temperature Physics, edited by
C. J. Gorter (North-Holland Publishing Company, Amsterdam,
1957), Vol. I1, p. 1.
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or linear equation in o In what follows, a subscript »
indicates the highest power of o2 kept in Eq. (5), i.e.,
that 4,41 in Eq. (5) has been neglected. In Sec. IIT we
discuss the case of a close-packed lattice for He® and
He* in three successive approximations: =1, 2, and 3,
respectively. One expects that our approximate results
should improve by keeping higher and higher powers
of a? in Eq. (5). An idea of the rate of convergence of
our approximations can be obtained by comparing our
results in Sec. ITT for the cases #=1, 2, and 3. In Sec. IV
we discuss the case of a face-centered cubic lattice
again for He® and He! for n=3.

III. RESULTS AND DISCUSSION FOR A
CLOSE-PACKED LATTICE

For a close-packed lattice the relation between the
volume per atom V/N and the nearest neighbor
distance R=c¢X is V*273X? where V*=V/Nq®. Using
the values of the constants C shown in Table I we can

102(8/R)2

06 10 15 20 25
v *

F1G. 1. Mean square deviation in a close-packed lattice, in units

of the square of the nearest neighbor distance. The black circles
correspond to values calculated for He? from calorimetric data.?

write Egs. (7a-c) for c.p. lattice as:

A1 =102(5.90V*-14/5—2 84V *-813) (9a)
A= 103(36.7V*“16/3-—5.23 V*—w/s), (gb)
As=104(184V*6—9.8V*4), (9¢)

In view of Eq. (5), Eq. (8) becomes in three different
approximations, #=1, 2, and 3 (see above),

34325'+ 24028+ A122— N=0, n=3 (10a)
240283+ A 1222—)\2=0, n=2 (10b)
Az2—N\=0, n=1 (10c)

where z(V¥)=a2(V*).

The range of validity of a given approximation,
n=1, 2, or 3, is limited by the value of the volume for
which A, A, or A4s, respectively, become zero. For a
close-packed lattice these limits are: V*=1.44 for n=1,
V*=2.65 for n=2, and V*=4.33 for n=3.

For small values of A the quadratic approximation
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Tasre III. Optimal values of the variational parameter, s=a?
for a close-packed lattice for Hed.

z/V* 0.6 0.8 1.0 1.5 2.0 2.5 3.0

10%;, 034  0.72 4.5
10%, 0.32 0.61 0.98 2.6 6.0
10%; 0.31 0.55 0.86 1.7 3.3 5.4 8.2

n=1 is satisfactory.*® In the case of helium, A=1, this
quadratic approximation is poor except at high densities
(V*<1). For instance, the equations in the quadratic
approximation become meaningless for V*<1.44 while
the observed density of solid helium at low pressures
(=30 atm) corresponds to V*=<2.

Equations (102)—-(10c) can be solved numerically, and
Tables III and IV list typical values of the roots which
make the right-hand side of Eq. (5) a minimum for the
case of He! [A(He*)=0.302] and He® [A(He?)=0.347],
respectively.

The mean square deviation 6% of an atom from its
lattice site, 8%= S p*E2¢;, is given by®

5*2= (§/0)?=2.79a%=2.792, (11)

or, in terms of the nearest neighbor distance R=¢X
for a close-packed lattice,

(5/R)*=2.7922-3/V*1=2.215V*4,

Figure 1 shows the mean square deviation for He® and
He* as functions of the volume as given by Eq. (12)
and Tables III and IV, together with values obtained
from calorimetric data for He*.® One should not attribute
much significance to a comparison between theory and
experiment here, since the “experimental” values refer
to the melting curve rather than the 0°K and they were
obtained® on basis of a Debye harmonic model which
certainly is a poor approximation for solid helium at low
pressures. Previous estimates of §/R® for solid helium
compare favorably with our present results.

The cohesive energy can be calculated as a function
of V* when the values of z=q? listed in Tables IIT and
IV are substituted in Eq. (5). Figure 2 shows the results
for E¥*=K*}+AU* for the case of He! corresponding
to three approximations: #=1, 2, and 3, and AE; for
He?. Figure 3 shows the results for AEs* and Es* for
He?® and He?, and Fig. 4 shows in greater detail the
cohesive energies in two approximations, #=2 and 3,

(12)

TasLE IV. Optimal values of the variational parameter, z=qa?,
for a close-packed lattice for Hes.

V¥ 06 08 10 15 20 25 30

10%, 0.45 0.96 6.0
10%, e e 1.1 2.9 6.4
10%;  0.33 0.59 0.92 1.9 3.6 5.7 8.6

9 C. Domb and J. S. Dugdale, in Progress in Low-Temperature
Physics, edited by C. J. Gorter (North-Holland Publishing
Company, Amsterdam, 1957), Vol. I, p. 338.



1930

— He4 —
- Hed

2 ae
10~ . 3. T
AE|®

] L LN P T

o6 08 10 12 14 16 18 20 22 24 26 28

F16. 2. Zero-point energy in a close-packed lattice. The indices
1, 2, 3 indicate the highest power of the mean square deviation
kept in the zero-point potential energy of interaction.

for both He? and He* for large values of V*, i.e., at low
pressures.

A direct comparison of the results contained in
Figs. 2-4 with experiment is not possible. Nevertheless,
the cohesive energy of solid helium at the lowest
pressures (P=30 atm for He? and 25 atm for He?) can
be obtained from the known cohesive energy of the
liquid, its compressibility, and the volume change
during melting. The cohesive energies of liquid and
solid He* at a pressure of 25 atm are shown in Fig. 4.
Even though our approximations become steadily worse
at larger volumes, our values for Es* seem to be in fair
agreement with experiment. One should note that our
cohesive energies at low pressures are obtained as small
differences between large numbers. For instance, for
He! at V*=24 (see Fig. 3), Es*=Eq*+AEs*
=—234+19=—04.

A more meaningful comparison with experimental
data can be obtained for the compressibilities which
can be measured directly. Figure 5 shows the results for

25

)
\
\
\

\

.
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F16. 3. Cohesive and zero-point energies of solid helium as
functions of volume for a close-packed lattice.
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the pressure (P*=—dE*/dV*) as a function of volume
for both He® and He* together with the high-pressure
experimental datal® for He®. Figure 6 shows the same®
at lower pressures. The agreement in the case of He?
seems to be rather good and even at low pressures
(see Fig. 6, P<10® atm) the approximations n=1, 2,
and 3 seem to be converging to the experimental values.
Unfortunately, no data are available for solid He?.

A Debye temperature, 8= 6%, can be obtained in two
different ways as follows. One may assume the results
of a Debye model for the zero-point motion energy
and define

g% = (8/9)AE*, . (13)

or one may assume: (1) isotropy, (2) Cauchy relation,
and (3) elastic continuum model, in which case it

2 T T T
4 SOLID He?
© LIQUID He4} P25 atm
= _
*
E(HE3
3( )
LT
E3(He )
CN 0
E5He?) T~
4 ~
. ~~o_
| -
2 1 1 |
15 20 25 30
V¥

Fic. 4. Cohesive energy of solid helium at low pressures.
The experimental points for liquid and solid Het are from reference

follows that®

0.5 =4 TNV*3 (0 P*/9V*)3. (14)

Figure 7 shows 6, and 65* as functions of the volume
for both He? and He*. The two definitions, Egs. (13)
and (14) lead to values differing by as much as a factor
of 2, which is to be expected since, on one hand due to
strong anharmonicity Eq. (13) may not hold, and on
the other, assumptions (1)-(3) leading to Eq. (14) may
likewise not be satisfied in the case of solid helium.
Figure 7 also shows values for solid He* obtained® from
calorimetric data (black circles), as well as values
calculated by Dugdale (open circles) from Stewart’s
compressibility data.!

The value of an average Griineisen constant, defined
as —9 Inf*/d InV*, varies in the neighborhood of 2

10 T W. Stewart, J. Chem. Phys. Solids 1, 146 (1956).
1 T, S. Dugdale, Suppl. Nuovo cimento 9, 30 (1958).
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P(103 atm)

F16. 5. Volume as a function of pressure for a close-packed lattice.

for volumes 1<V*<3 for both He? and He! and for
either definition of §*. These values are in good agree-
ment with the values calculated by Dugdale' from
compressibility data. '

IV. RESULTS AND DISCUSSION FOR
A BCC LATTICE

It has been reported>'? that both solid He* and He?
undergo phase transitions under pressures of the order
of 10? and 10% atm, respectively. In the case of He* it
has been suggested? that the transition is a crystal-
lographic phase change from fcc to hep lattice. On the
other hand, Schuch ef a/.,® on the basis of x-ray data,
claim that in the case of solid He?® the crystallographic
change at 100-150 atm involves a transition from a
bee to a hep lattice. For V*#£1.5 the classical inter-
atomic potential energy of a bcc static lattice is
practically the same as that of the static hcp lattice, but
especially in He® zero-point motion energies are so large
that a safe conclusion about relative stability of
different lattice cannot be drawn without a quanti-
tative analysis of zero-point motion effects. In this
section we present results for a bcc lattice, and a
comparison of these results with those of the previous
section shows that, with the present model, the close-
packed lattice is more stable at all volumes of interest
(V*£3).

The calculations for a bce proceed exactly in the same

TaBLE V. Optimal values of the variational parameter, y=g?,
for the body-centered cubic lattice.

10%y,/V* 0.5 0.9 14 2.0 2.4 3.0

Het 0.20 0.66 1.56 3.1 4.5 7.65
Hes 0.22 0.73 1.7 3.35 4.85 8.05

2 J. S. Dugdale and F. Simon, Proc. Roy. Soc. (London) A218,
291 (1953).

13 A. F. Schuch, E. R. Grilly, and R. L. Mills, Phys. Rev. 110,
775 (1958).
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F1c. 6. Volume as a function of pressure for a close-packed
lattice. The units of pressure and volume are: ¢/03=283.4 atm,
No?=210 cm?/mole.

fashion as those presented in Sec. III. Equations (3)-(6)
still persist. In Egs. (7a)-(7c) only the lattice sum-
mation constants C are slightly changed (see Table I),
and the relation between volume and nearest neighbor
distance is changed to V*=223-#X*=0.770X? ap-
propriate to a bce lattice. In Egs. (5), (7), (9), and (10)
we change the notation, replacing Ai,2,5 by Bi,2,3 and
a by B. Thus we can write

E*=Ey*+K*+AU*= Ei*+Ng2

+ (B1g*+Bsf*+ BB+ - ), (15)
B;=10%(6.36V*14/3—2 88 *-8/3), (16a)
By=10%(41.0V*-16/3—5 37y *-1013) (16b)
B3=104(214V*6—10.3V*4). (16¢)

Thus the variational theorem gives
3Bsys*+2Boys+ By —N\=0, n=3, W)

where y(V*¥)=p*(V*) and we have disregarded the
lower order approximations, =1, 2, Egs. (10b) and
(10c).

F16. 7. Debye temperature for a close-packed lattice. 6;* is
defined from the zero-point energy and 6,* from the compressi-
bility. The circles represent values for He*: black circles® from
calorimetric data, %2 open circles from compressibility data.!!
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Fi1c. 8. Cohesive energies of hcp and bee lattices as functions
of volume at 0°K. In the present approximation the hcp lattice is
more stable at all pressures for either He? or He!.

Table V shows the roots of Eq. (17) for several
volumes for both He? and He*. Comparing Tables III
and IV with V we see that for either He® or He! the
mean square deviation in a bcc lattice is always less
than that in a close-packed lattice.

The cohesive energy of a bec lattice can be calcu-
lated from Eqs. (15) and (16) and Table V. In Fig. 8
we show the results (in the approximation #=23) for
both He?® and He! for the cases of a bce and a close-
packed lattice. Figure 9 shows the He® Debye tempera-
ture 6,* [see Eq. (13)] for both a hep and a bec lattice.
For volumes V*2>1.5 the static energies of these two
lattices are practically the same and hence all the
difference in cohesive energy comes from the difference
in zero-point energy. In our approximation we find that
the zero-point energy (i.e., the Debye temperature in a
simple Debye model) is larger for a bcc lattice for all
volumes for both He?® and He®. From Fig. 8 we see that
at 0°K the close-packed lattice seems to be more stable,
compared to a bec lattice, at all volumes, and hence no
crystallographic transition would be expected. At
higher temperatures the situation seems to be the same,
at least in the temperature region where the lattice
specific heat is proportional to T3[Classies™ ==y (T/6)%].
The reason is that for a given temperature and volume
the free energies [F*=FE*(T=0)— (vT*/12)(T/6)%]
will satisfy the inequality F.*(T)<Fg*(T) if (a)
EF(T'=0)<Eg*(T=0) and (b) 6,<8s, which are just
the results we find. Thus, our present model does not
explain the crystallographic transition observed in solid
He3. It should be emphasized that all the previous
remarks and conclusions were based on a simple
(Heitler-London) model along with the assumption that

NEWTON BERNARDES
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F16. 9. He® Debye temperature for both a hep and bec lattice.

the system of nuclear spins does not undergo any drastic
change (in free energy) during the crystallographic
transition, and these may not be adequate for solid He?.

V. CONCLUSIONS

From the results of Sec. IIT and the comparison with
the experimental data for solid He* we may conclude
that a simple Heitler-London model and a 12-6 potential
can account for the properties of, at least, solid He! for
which experimental data are available. Not much is
known about the cohesive and thermal properties of
solid He®. But, except for properties, like nuclear
magnetic susceptibility, which depend on the anti-
symmetry of the wave function, one may expect that
our present results describe the properties of this
isotope to a good accuracy. It is true that at low
pressures one may obtain significant improvement over
the present results by keeping higher powers. of o? in
Eq. (5).1

Regarding the observed® crystallographic transition
in solid He? at pressures of the order of 100 atm, our
calculations do not seem to be successful.

It should be pointed out that any contribution
coming from exchange energy would leave all the
conclusions of this paper unchanged, except, possibly,
the results about the relative stability of a bcc and
close-packed lattices, in the event that these two
lattices turn out to have completely different nuclear
magnetic properties. A magnetic transition has been
predicted® at about the same pressure, and the question
of whether or not a change in crystallographic phase
accompanies such magnetic transition has not yet been
investigated.
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4 Note added in proof. R. D. Etters has extended the present
calculations to include terms up to =35, i.e., up to «' in Eq. (5).
The convergence of the results is very good, and all the results in
the present paper remain valid. In particular the hcp lattice is
still more stable with respect to the bec lattice.



