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Cross Section and Polarization in the Photodisintegration of the Deuteron*
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The diiferential cross section and polarization of nucleons from the H'(y, rs)H' reaction is investigated
arranging calculations by means of the amplitude method. Electric dipole, electric quadrupole, and magnetic
dipole transitions are considered taking into account coupling between states with the same J but different
L such as produced by the tensor potential. The calculations include the general case of elliptically polarized
gamma rays. Numerical results are obtained for two modiaed versions of the Signell-Marshak two-nucleon
potential. Five approximations have been used to exhibit the effects of the various multipole transitions.
The calculations agree with experiment rather well even at energies for which the potential used does not
represent scattering data at all perfectly. The significance of polarization measurements is discussed.

I. INTRODUCTION enological two-nucleon potentials', ' can give results in
reasonable agreement with experiment at least for the
lower energies in this range. The first calculation on the
polarization of the outgoing nucleon in the photo-
disintegration of the deuteron was published by
Rosentsveig using the zero-range approximation.
Approximate formulas for the polarization have been
later on derived by Czy~ and Sawicki" and Kawaguchi"
in terms of phase shifts and matrix elements. Numerical
results on the basis of the Signell-Marshak potential, ~

using E1—E1, E1—E2, Ei—M1 spin-Qip, and E2—M1
spin-Qip interference terms taking the tensor coupling
of the final states exactly into account have been
computed by de Swart, Czyz, and Sawicki. I2

An improved theoretical treatment of the H'(y, rs)HI
reaction in the medium energy range is of interest
primarily for two categories of reasons. The first
category is concerned with properties of the wave
function of the p-ss system.

The wavelength of relative motion of the outgoing
particles is comparable to the range of nuclear forces,
e.g., for 20-Mev gamma rays the wavelength divided
by 2x is X—1.55&(10 " cm and for 175-Mev gamma
rays, X—0.49)& 10 "cm. As a result, the matrix elements
for the reaction depend on the shape of the assumed
nuclear potential rather than just on the depth and
range as is the case at lower energies. The short wave-
length also leads to considerable cancellation in the
matrix elements for transitions to low angular momen-
tum states so that the relative importance of higher
angular momenta is enhanced. The effect of this is that
the tensor part of the potential plays an important

'HK total cross section and angular distribution
for the photodisintegration of the deuteron have

been known for some time to show reasonably satis-
factory agreement with theoretical calculation up to
gamma-ray energies of about 10 Mev. ' Until recently
theoretical work' on the differential cross section for
gamma-ray energies between 20 and 150 Mev failed
to account for the observed angular distribution, '
particularly the large isotropic component. More
recently, however, it has become evident both as a
result of the work reported here4 and that carried out
by de Swart and Marshak' and Nicholson and Brown'
that a careful calculation on the basis of semiphenom-
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role not only through the admixture of 'D& to 'S& in
the ground state but also through that of 'F2 to 'E'~ in
the continuum states. The spin-orbit potential has
significant effects as well especially in the triplet-odd
states. The enhancement of matrix elements for
transitions to high angular momentum states leads to
the E2 and 3f1 transitions to such states producing
non-negligible effects. It was, therefore, necessary to
include in the calculation all E1, Mi, and E2 transitions
that are possible for the static electromagnetic interac-
tion. In order to simplify the calculations, effects of
exchange currents and of retardation effects have not
been included.

The second category of reasons for the calculation is
its bearing on the interaction of nucleons with the
electromagnetic field, The cross-section data below 10
Mev seem to indicate that the static E1 interaction
works quite well in this region, but they give virtually
no information about the magnetic dipole interaction
except at energies just above threshold. In the medium
energy range the situation is considerably more
complicated and one of the purposes of this work is to
extablish the degree to which different multipole
transitions are responsible for the observable effects.

In addition to retardation which is believed to be
unimportant as a result of the work of Nicholson and
Brown' the present report does not include the consider-
ation of exchange current effects" or of the effects of
higher radiation field multipoles. The potential used is
also by now not the best one from the viewpoint of
scattering data, The calculations of the cross section
have, therefore, been arranged in a form which includes
electromagnetic multipoles of arbitrarily high order in
such a way as to make digital machine calculations
practical. After the present work has been completed,
a prepublication copy of an interesting paper by
Kramer and Werntz" has been received. These authors
find that the inclusion of iV2 transitions produces a
non-negligible increase in the isotropic term at 77 Mev.
Sy itself such a change if applied to the calculations
reported on here would not improve agreement with

"L.D. Pearlstein and A. Klein, Phys. Rev. 118, 193 (1960).
These authors using meson theoretic techniques in certain
conventions 6nd that virtual meson eGects play little role at
gamma-ray energies below 100 Mev in justification of calculations
carried out in this paper. They And some magnetic resonant
terms which are expected to cause modifications at gamma-ray
energy of the order of 250 Mev and report good agreement with
experiment for the total cross section.

'4 The writers are very grateful to Dr. G. Kramer and Dr. C.
Werntz for a preprint of their paper which is to be published in
the Physical Review and which establishes the relative smallness
of the retardation effect in a more detailed rnanaer than by
Nicholson and Brown. Similar effects have also been considered
by J. G. Brennan and R. G. Sachs (Phys. Rev. 88, 824 (1952)j.
The work of Kramer and Werntz does not include the calculation
of polarization. References to earlier work by Kramer and collab-
orators are given in their paper. The conclusions of Nicholson
and Brown and Kramer and Werntz about the smallness of
the retardation effects are in contradiction with those of M.
Matsumoto, Progr. Theoret. Phys. (Kyoto) 23, 597 (1960) who
Ands these effects to be important at energies above E~=80 Mev.

experimental data on angular distributions. Since the
calculations described below are the most complete up
to this time for E1, E2, and M1 transitions and since
the writing of the digital machine program may take
some time, it was felt that the publication of the results
is advisable at this time, especially because it includes
a detailed consideration of the changes produced by the
inclusion of different transitions some of which have
not been considered elsewhere. These are M1('D~—+'Dq)
(J=1,2), M1('S~~'5~), and an explicit listing of
all E2 transitions. It is also possible that the electro-
magnetic structure of the nucleons may produce effects
comparable with those arising from the consideration of
higher multipoles and that, therefore, a complete
calculation of the effects of lower multipoles is likely
to be useful as a point of departure for future work.
Some experimental data additional to those previously
compared with calculation and some revisions in older
data have been included below. Formulas as well as
numbers for neutron polarization are also given.

In Sec. II, the formalism used to calculate the ampli-
tudes for the photodisintegration of the deuteron by
plane-polarized gamma rays is developed. The method
is similar to that used by Breit and Hull" in the treat-
ment of nucleon-nucleon scattering. These amplitudes
can then be combined numerically to obtain the
polarization and differential cross section.

In Sec. III the effect of coupling of states of the same
J but different L on the amplitudes is investigated. The
required modification to Sec. II is first developed follow-
ing the procedure of Breit, Ehrman, and Hull. '
Then it is shown how the S matrix defined in Sec. II
may be rather easily modified to take account of the
coupling.

In Sec. IV a treatment for elliptically polarized
gamma rays is given. In Sec. V, amplitudes for all E1,
M1, and E2 transitions are written out for the outgoing
protons taking the tensor coupling of the final states
into account and the changes that have to be made to
obtain the amplitudes for outgoing neutrons are
described.

Numerical calculations were carried out with two
modified versions of the "Signell-Marshak" two-nucleon
potential. These modifications are due to the work of
Fischer, Pyatt, Hull, and Breit. ' The potential param-
eters are given in Sec. VI.

Numerical values of the differential cross section and
polarization are given in Sec. VII for the two potentials
using five approximations to determine the relative
importance of the various transitions. In approximation
A only the E1 transitions are considered and the
coupling of the 'P2 to 'F2 is neglected. In approximation
8 only E1 transitions are used with full account of the
tensor coupling and similarly in the succeeding approxi-
mations this coupling is fully considered. In approxima-

'5 G. Breit and M. H. Hull, Jr., Phys. Rev. 97, 1047 (1955).
'6 G. Breit, J. B.Ehrman, and M. H. Hull, Jr. , Phys. Rev, 97,

1051 (1955).
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tion C the effect of Mi transitions to singlet states is
taken into account in addition while in approximation
D the effect of Mi transitions to triplets is used as well.
In approximation E there is further included the effect
of E2 transitions to S, D, and G states. The results are
discussed in Sec. VIII.

In an Appendix a brief outline is given of the trans-
formation from specified neutron kinetic energies in
the laboratory scattering system to equivalent gamma-
ray energies in the laboratory photodisintegration
system, this transformation having been employed
incorrectly in some data reductions.

The following notation will be used throughout the
work.

r„, r =proton and neutron coordinates in the center-of-
momentum system.

r= r„—r„=coordinate vector of relative motion.
m =pion rest mass.
M= nucleon rest mass.
f,, Pz

——initial and final state wave functions for the

p ri sys-tem.

p„, p„=magnetic moments of proton and neutron in
nuclear magnetons.

o„, cr =Pauli spin operators for proton and neutron in
the usual representation.

x, &u= photon wave-vector and angular frequency; ~/27r
is the photon wave number.

F (r), R(r) =electric and magnetic field strengths.
0', = quantity introduced in Eqs. (4) and (4.1). In

discussion following Eq. (15.4) the coefficient of 8
in H' is —eB rather than —eb, .

Is=unit vector in direction of G(r).
IiJ= total angular momentum operator.
a=relative velocity of neutron and proton after the

disintegration of the deuteron.
k=Mv/(2') =proton wave vector; k/2~ is the proton

wave number; the same symbols represent nonrela-
tivistically corresponding quantities for relative
motion.

y, go= triplet and singlet spin functions in the primed
system, with the sign defined by go= (n~P n„P„)/V2,—
where n, P are the usual Pauli spin functions.

AJ, AL=total and orbital angular momentum of final
state, respectively.

Am=projection of AJ along the s' axis.
Fz(kr), Gz, (kr) =the regular and irregular solutions of

the differential equation for r&(radial function for
e-p system outside the region of interaction, normal-
ized so as to be asymptotic at r= ~ to sin(kr ——',L~)
and cos(kr —-,'Lm. ), respectively.

L J)
cg IJ —p! !Vz „x„spin-angle function for

4m —p m
triplet states.

(—)m (2L+1)(L—m)! * ( d q z+"
Yl., e' "sin 8!

2zL! 4zr(L+m) ! Ed cos8)
&& (cos'8 —1)z.

( I Jl
! !

=vector-addition coefficient for triplet
&m —p m)

states as defined by Breit and Hull. "
b~J =phase shift for the triplet state described by

quantum numbers I., J.
El,——phase shift for the singlet state of angular momen-

tum L.
F q(kr) =Fz(kr—) cos8 ~+Gz(kr) sin8 ~.
(iti, q2, g3) = combination of ground-state spin-angle func-

tions that transform under rotations like (x,y, s).
a;= weighting factors for the q;.
5;=amplitudes for a triplet final state, i.e., if the

initial state is P, a,q; the final state is proportional
to P„, X Sm, a;.

8;,=transformation matrix from the primed to the
unprimed coordinate system, r= er'.

so;=amplitudes for a singlet final state.
FL(kr) =Fz, (kr) —cosEz+Gz(kr) sinKz.
(So,&,Si,~,S2,&,S3;&) as defined by Eqs. (9.1)—(9.4).
&= deuteron binding energy taken as —2.224 Mev.
U=coupling matrix as defined by Eq. (11.3).
uz, vz, uz~, vz~ as defined by Eq. (12.1).
S,z defined by Eq. (14).
a. (8, q&) =differential cross section.
P'(8, q) =polarization of the protons referred to the

primed coordinate system defined in Fig. 1.
8~=gamma-ray energy in the laboratory system, i.e.,

the system in which the deuteron is initially ar rest.
0-7 = total cross section.

II. GENERAL PROCEDURE FOR OBTAINING
THE AMPLITUDES

The coordinate systems shown in Fig. 1 will be used.
The plane-polarized p ray is taken as incident along
the positive s axis of a Cartesian coordinate system
with electric vector along the x axis. The direction of

FIG. 1. Coordinate systems used. The plane polarized p ray
is incident along the positive s axis with electric vector along the
g axis. The direction of the outgoing proton defines the s' axis.
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the outgoing proton defines the s' axis of a second' transform likea vector, "e.g., for the'5i part,
coordinate system with 0 and p being the colatitude
and azimuthal angles of s' with p referred to x. The
x' and y' axes have direction cosines (cos9 cosq,
cose sinq, —sino) and (—sinq, cosq, 0), respectively.
All directions are in the zero-total-momentum system.
Strictly speaking one should take into account the
motion of the deuteron as a whole before dissociation.
This is done (Appendix A) only in connection with a
correction for the correlation of gamma-ray energies
in the system of the deuteron and the neutron energy
of scattering experiments which matters for phase shift
determination. Corrections to matrix elements resulting
from deuteron motion in the zero-momentum system
are assumed to be negligible in the work described
below. Relative amplitudes for different directions with
assigned states of polarization will now be considered.
The coupling of states in the continuum having the
same J but different L will at first be neglected and the
modification caused by the coupling will be discussed
in a later section.

For triplet states, an undistorted plane wave traveling
along the s' axis may be expanded as

e'""X„=x„giz(2I.+1)(kr) 'Fr, (kr)

XI 4~/(2I+1)]'I'r„o(&', q')

= (4rr) & Q iz(2I.+1)-*'(kr)—'Fr, (kr)
L,J

I. I
I'JJ-"(0',q', ~'), (1)

EO trt

where (0', q', s') represent colatitude, azimuth, and spin
coordinates referred to the primed coordinate system.
In the presence of a nuclear potential, the radial
function is distorted near the origin. Outside the range
of the potential, however, the radial function is still a
solution of the force-free Schrodinger equation and is,
therefore, expressible as a sum of the regular and
irregular functions. Furthermore, it is well known that
in order to be able to identify the amplitudes with the
matrix elements, the asymptotic solution must have
the form of an undistorted plane wave plus an ingoing
wave modification. ' The final-state wave function
formed in this way will be denoted by ib& &. One has,
therefore, to modify Eq. (1) by the replacement

Fr, (kr) —+exp( ib J)S j(k—r) (1.1).

It will be convenient to describe the initial state in
terms of combinations of spin-angle functions that

"A. Sommerfeld, A tombatt ttmd SPektrailr'licit (Friedrich Vieweg
und Sohn, Brauschweig, 1939), Vol. 2, pp. 457 and 502; G. Breit
and H. A. Bethe, Phys. Rev. 93, 888 {1954).An account of earlier
literature will be found in the latter reference which shows that
the necessity of using the ingoing wave modification is a general
property of the matrix method of calculating transition probabil-
ities employing modified plane waves and is applicable therefore
to the combined system consisting of photon and matter waves
even though the initial matter state is bound.

ni= (2) '(x-i —xi) I'«, (2.1)

q2= i(2)-b(~,+x,)I „, (2.2)

na=zo~oo, (2 3)

Here g, are the ground-state wave functions that
transform like g,. If the ground state is approximated
by the 'Si function the g; are of the form u(r)rt, /r. The
collision is thus described by saying that if the initial
state is g, a,g;, the final state is proportional to

—eS P„„xS;a;, (3.1)

where x is the spin function in the primed coordinate
system, and the quantity S; is given by

)I. IqS-= Z (—)'(2L+1)'I I p(&')
L,J I, O ttt&

In (3.2) 'JJ z~ is expressed in the primed coordinate
system while 8 and A; are expressed in the unprimed
system. However, the transformation of the latter two
quantities is very simple since the g; transform like
components of a vector as already noted, while 6,
transforms like a component of a vector for Ei and M1
transitions and like an element of a second order tensor
for E2 transitions.

The interaction Hamiltonian operator B'was taken to
have the usual static form, i.e.,

(4)

Q, =-,'(Ig r)+(i/8)(x r)(lg r)
+(k/m'e)L-, '(p,„—t „)(e„—e.)

+-,'(t,+t „——',)(o,+o„)+-',J) l~ (4.1)

for E1,E2, M1 to singlets and Mi to triplets transitions,
respectively. The term in (J lrr) of this operator
reproduces the ground-state function and causes
therefore no transitions. This form is readily obtained
by expanding exp(itt r)—1+i(tt r) in the expression
for the electric intensity and employing —e(8 r)—(ek/23fc)(tier„+p„rr ) for II'. When looked at from
this viewpoint the E2 part of H' is caused by taking
into account a retardation correction. The classification
into retarded and nonretarded terms used in the

and similarly for the D, part. The quantities (rt„rt2, rt3)
transform under rotations like (x,y,s). Using the above
equations the matrix elements from an initial state
ib; to a final state fr' ~ may be expressed as

Qx' ') I&'l0*)
tI.= (4~)' ~ (—i)'(2L+»'I I exp(i~'~)

I,J EO ttt)



PHOTODISINTEGRATION OF DEUTERON

introduction was meant, however, in the sense of
Appendix 8 in the book of Blatt and Weisskopf. ' In
the classification of the latter the term used is the static
part of the quadrupole interaction.

Introducing the transformation matrix 8;; by

one has
r=8r,

'gi —M2 ~iB 2r

(5)

(5.1)

The matrix elements playing the role of numerical
coefficients such as (5.2) are indeed seen to be the same
independently of the relative direction of the (8,3.')
i.e., (x,y,s) and the (x',y', s') axes. The equation just
written is for the special case of F along x. Equation
(5.2') and similar relations for other multipoles are also
useful in considerations of effects of the polarization
of incident gamma rays.

For transitions to singlet states one has instead of
S;a quantity sp; defined by

sp Qg (—i) (2L,+1)i exp(iKz)
&&(x ( ')F', o(~' v') "& (k )I@IS') (53)

so that the final amplitude in the primed system arising
from one initial state is

+i=2 m (xmSmi+xpspi) ai ~ (5.4)

where the convention

(x,y, s) = (x&,xp, x,)

has been used. The components of o transform similarly.
In the S; the whole dependence on orientation now
appears in the 8;; and there are, besides, numerical
coefficients such as

(p.-r-r~', (kr) I x. I g,), (5.2)

which arises as a result of substituting unprimed
quantities in terms of primed ones in (3.2). The coeffi-
cients appear then first with all integrals and sums
being over primed quantities which justifies dropping
all primes as in the last expression. Thus, for example,
for the Ei part one has explicitly

(L
(S-)et= 2 (—i)'(2L+1)'I I exp(~'s)

L,J &0 m)

o (H, y) =(:(k)a(H, q),

~(e, ~)=2' la'I'Lp. Is.;I'+ ls„lpj.
with the conventions

(8)

Q; la;I'=1 e(k)=2(pe'/hcv, (8.1)

which corresponds to the probability of the initial state
being unity. For unpolarized deuterons

Cy = C2 = Q3 (8.2)

The relation of the energy-dependent factor in
front of the summation sign in (8) to B(k) used by
Austern' may be seen by noting that

X' p2Me'
&(k) = (8.3)

4y' E3Acv)

where the quantity in parentheses is the factor in (8)
resulting on insertion of (8.1) and (8.2); the factor
iV'/y' arises on account of the convention of multiplying
radial integrals by p/X in Austern's notation and the
factor ~ has its origin in the convention introduced by
Rarita and Schwinger' and adopted by Austern' of
employing in the radial integrals those arising from 28,
rather than 6,.

From Eqs. (7.1)—P.3) it is seen that the results may
be considerably simplified by defining the elements of
another amplitude matrix S;& by

functions one obtains

~ .+.=La*/(2)']I Sr Si'(xo —xo)+So'(x +x- )
+S „(xp+xp)+sp, (x,—x,)g, (6.1)

„„e,= l.a./(2)-:jLS„«,—;,)yS„(x,—„)
—S-i'(xo+xo)+so'(x-i+xi) j, (6 2)

rive i aiLSlixl+Spixp S iix t+spixpf, (6.3)
so that in the primed coordinate system the components
of the proton polarization vector" defined by

P'=P; %,*o„%;/P,%,*%;,
are given by

g.'a=(2)lg, Ia, l'Re{(S„*+Si'*)Sp,
—(S„*—S „*)s„), (7.1)

~„'o= (2)l Q, I a, l' Im{(S,*—S,*)So;
—(Si;*+S r,*)sp,), (7.2)

~ 'a=2* la'I'{ ISi'I' —IS-i'I'+2 «(Sp *sp')) (& 3)
The differential cross section may be expressed as

cosg cosy
8= cos8 slny

—sine

—siny sino cosy
cosy sin8 siny .

0 cos8

The matrix 8 is easily shown to be

(5.5)

Spi ~pip
c

Si"= (2) '*(S-i —Si'),

Sp,&= —i(2)—'*(S i;+Sr;),

(9.2)

(9.3)

Expanding the triplet and singlet spin functions in
terms of single-particle functions and employing the
sign of yp defined in the list of notation, then using
Eq. (5.4) and the well-known properties of these

Ss;&=Sp,. (9 4)
' For discussion of the completeness of the description of the

polarization state of a particle of spin ~ by means of I", see
G. Breit and J.S. McIntosh, in Encyclopedia of Physics (Springer-
Verlag, Berlin, 1959), Vol. 41, Part I, p. 466.
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where
X.=Fr kP4' (10.1)

1 0
0 —(2) **

0 —I'(2) '
0 0

0 0
0 (2)-'*
0 —i(2)-l '

1 0

(10.2)

Here the columns correspond to pp, z&, xp, z & starting
on the left and the rows to j=0, 1, 2, 3 reading down.
The expression for the final state resulting from substate
g; is according to Eq. (5.4),

+~y 5;+xpsp, =p,
where the S& matrix is defined by

Sp' 1 0 0
Si;& 0 —(2)

—'* 0

0 0 1

est*'

0
(2) '*

—v(2) "'

0

(10.3)

~ps

Sg;
Sp;
S g;.

(2) ' (5-i'—Si')= -'(2)-: (5.,'+s.,
')

Sp;

which is just the definition used in Eqs. (9.1)—(9.4).

III. INTRODUCTION OF THE TENSOR COUPLING

As is well known, the inclusion of a tensor term S~2 in
the potential has the consequence that states of the
same total angular momentum and parity but different
orbital angular momentum become coupled to each
other, so that the expression for 5, given in Eq. (3.2)
has to be modified. Furthermore, independently of the
form of the interaction energy or the existence of a
static interaction potential, the real eigenphase shift
description is' the most general one in the nucleon-
nucleon problem below the meson production threshold.

The modification to Eq. (3.2) required by coupling

"G. Breit, University of Pennsylvania Bicentennial Conference
(University of Pennsylvania Press, Philadelphia, Pennsylvania,
1941).

In this case one gets for the polarizations

I','o =2 Q; I a, l'LRe((sp, &)*st,&)}

+Im( (5„&)*5„&}], (9.5)

&v'a=2 P'I a*l'I:Re((sp")*Sp"}+
+Im f (Sp;t)*sr,t}j, (9.6)

r, ;=2P, Ia, l LRe((S,, t)*S„t}
+Im((S„t)*S.,t}].

For the differential cross section one obtains

-(~,~) =~(~) 2„ la;I ls, «I' (9.g)

The SLmatrix form of the equations could have been
obtained directly by describing the final state in terms
of combinations of spin functions that transform like
the components of a vector. This may be done by
introducing spin functions P, (j=0,1,2,3) by means of

X [Hr, 'tJ z~ PUr, z ~'tJ„—z'~H*z ]. (11.2)
L'

This wave function together with its continuation into
the region of nuclear interaction forms the Pit ' in
the required generalization of Eq. (3). For a diagonal
V~, (11.2) is equivalent to the employment of (1.1)
in (1). The modification caused by the off-diagonal
elements of U is conveniently expressed in terms of
the Wigner2P parametrization of U in the form of Blatt
and Biedenharn. "This gives

c,' exp(2i8 )+'s, ' exp(2ibtt),

c,s,/exp(2ib ) exp(2ib—tt)j
,c,seLxp(2 bi) —exp(2ibtt)g,

s,' exp(2t'8 )+c,' exp(2ibtt),

c,=cose, s, =sine,

(11.3)

(11.4)

with 8, bp having the significance of eigenphase shifts.
The convention used in (11.3) is that the first row and
column refer to the smaller of the two coupled L. The

'OE. P. Wigner, Proc. Natl. Acad. Sci. U. S. 32, 302 (1946);
J. M. Blatt and L. C. Biedenharn, Phys. Rev. 86, 399 (1952).

of states with different L can be worked out employing
the expression for the wave function in the final state
taking the coupling into account. In the notation of
Breit, Ehrman, and Hull" the outgoing wave modifica-
tion of the triplet wave arising from the plane wave
e'~"y outside the nuclear interaction region is

(4ir)'
(e'"*'x.) ~ 2 (2L+1)'t'I

2' &0 m)

XP Hz*'—tJ ' + 2 &s,z 'tJ ' Hr:], (11)
L'

where
Hr, =Gr.+iFr, , p=kr.

For uncoupled states the matrix U~ consists of a
single element exp(2ibg) while for coupled states it is a
two by two unitary symmetric matrix. The first and
second terms in square brackets of (11) represent,
respectively, converging and diverging waves. The first
term in the brackets is the same as in the absence of
interaction. The matrix U in that case is a unit matrix
and the second term is then Hr, 'JJ ~~. For the ingoing
wave modification the Hr, 'tJ ~~ in the brackets must be
kept unchanged and the p-rt interaction affects the
first term. A consideration of the complex conjugate
of the solution of the wave equation determines the
form of the combination in the square bracket and hence
the ingoing wave modification of p multiplied by the
plane wave exp(iks')
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fact that the eigenvalues of V are exp (2i5 ), exp(2i6p)
shows after a short calculation that the linear combina-
tions

+),——[—exp( —iq), ) JJ„"'+&1.Vt, 1.

Xexp(iq1 ) 'JJ„"' ~]/r (11.5)

and consequently the part of Pi' ' containing waves
with angular momentum J is

(4 ):—
pL

Qr' ')s= (2L+1)'I
kr (0 tu)

t'X=J —1, J+1l
E&'=J—1, J+1)

lp&,
——kr l17—r/2

may be expressed as

(11.5')

X (c,e "1t.—s,e—"PiPP)

L Jq
+ (2L+1)'*I Iiz

EO ru)

X[s,e "f +c,e @PP). (12.3)

( 41, & (c, exp(ib ), —s, exp(imp)) (f y
I (»6)

(@x~2) (s, exp(i8, ), c, exp(imp)) (P)

us =c,[Fs I cosBa+Gg I]sln8ag,

Ilq = s,[Fq+I cosB +Gs+I sin6 ],
u J — s [F& 1 cosbp+G& 1 sinhp],

Ils =c [Fg+I cos8p+Gg+I sln8p],

(12.1)

which together with (12) identifies the functions when
the radial equation for the Ng, . eJt' following from
(12) are solved. Since the square bracket in (11) is
asymptotically r%z one has available through the
asymptotic forms of the +1 in (11.6) expressions in
terms of the eigensolutions f, P for the outgoing wave
modi6cation of a plane wave. Similarly introducing

e1*=[ exp(iq1)—g "'+P V'1, *

Xexp( —i~) J "' ]/r, (11.5')

one has available the negative of the square bracket
expression divided by r in the expansion for ffI ' in
(11.2) On the other hand, from (11.6) and (12) one has

( %'z*
& (c, exp( —ill ), —s, exp( imp))—

(%'z+.,*) Es,exp( —i8 ), c, exp( —
imp) )

XI I (12 2)
EP)

'

where

Pa= [C, Sin(yS 1+8 )'JJ

+s, sin(pg+I+ 8.) JJ„~+I s]/r,
(11.7)P=[ s»n(v»—I+~p)—J

+c, sin(ps~i+bp)'g„s+I ~ I/r.

The coefficients of the spin-angular functions in the
last equation are real and hence the continuation of

f, P by means of the wave equation to smaller
distances gives eigensolutions of the form

pa —(u ac) J—1,J+Il a(g J+I,J)/r
(12)

pp —(u peg
J—1,J+Il p(g s+I, J)/r

in which uJ, , Ilse are real. Comparison of (12) with
(11.7) shows that outside the interaction region

This quantity has to be used in the calculation of
5; by substitution of 8 in place of H' on the left side
of (3) and the replacement of

pL Jq
(4 )'i'(2L+1)'I

&0 m)
%zan (kr)

p( —~' )'JJ-"('), (12 4)
kr

the complex conjugate of which occurs in Eq. (3), by
the right-hand side of (12.3). According to Eq. (12)
the P and P each contain two terms with two different
angular-spin functions but both of them belong to the
same total angular momentum J and the same magnetic
quantum number m representing the projection of J.
According to the Wigner-Eckart theorem the ratio of
contributions of these terms to the matrix element S;
is therefore the same for different m and i,

It will be noted that according to (11.7) the functions
and P are normalized to unit radial density at large

r and may, therefore, be taken to be the eigenfunctions
corresponding to the eigenphases 8, 8p. The contribu-
tion to 5; from a coupled state consists accordingly
of four parts corresponding, respectively, to IJ, vJ,
usP, Ilse in (12). Each part contains contributions from
the 'S» and 'D& parts of the ground state. Since these
two parts have the same J the ratio of their matrix
elements is independent of m and the contribution to5; due to a pair of coupled states takes the form

$S ~]s=C,~(J 1)(c,e" )[L„~+—(RqL„~]
+C;~(J+1)(s,e' )[L„~/IR~+L„,~]
—C„,s (J—1)(s,e'P) [L„p~+N gL„p~]

+C,~(J+1)(c,e'P) [L„p~//Ins+L„ps]. (13)

The successive terms arise here from the four parts of
(12.3). The radial integrals are the L and the designa-
tions un, , Ilp indicate the origin in the functions
uq, of (12). The coefficients C,~(L) have arisen
from corresponding coeKcients in (12.2) combined
with those arising from angular integrations and sums
over spin coordinates.

Expressing quantities in the $ representation as in
Eqs. (9.1) to (9.4) or in Eq. (10.4) one has for F1
transitions to ('P2+'F&) states taking i=1 by analogy
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with Eq. (9.2)

I C~P(1) I&= i co—s8 sin8 cos'p,

LC~P(3)]&=ij3(2)~/5] cos8 sin8 cos'p. (13.1)

For M1 transitions to ('S~*+'D~*) states, taking i=1
and in analogy with Eq. (9.4)

LC~~'(1)]&= i cos8—, I C3q'(2)]&=i(2) '* cos8. (13.2)

Similarly for E2 transitions to ('Ds+'Ga) states,
taking i=2 and using Eq. (9.3)

I C22'(2)]&= &i sin28—cos2p,

LC22 (4)]&=—iL3(2) &/14] sin28 cos2y. (133)

The radial integrals L„~, , L,p~ as well as integrals
Ip, J& for 'P'p, 'E'» Mz, Mz for M1 leading to 'Sp, 'D»
M'n for M1 to 'D2 as well as Q~2 for E2 to 'D2 are used
in the same general convention as in the paper of
Austern' for coupled states the normalization of the
radial functions was such that

'D~ —+ 'P2/'S~ —+ 'P2. The other radial integrals in
Tables III and IV are similarly defined. The coefficients
multiplying the integrands in the uncoupled cases
arising through E1, Mi and E2 transitions are the
same as in their respective coupled cases. The coefFicient

p(h/Mc) (p~—u ) is used to multiply the integrand for
singlet transitions. The additional radial integrals
which occur in the text are defined as follows:

(yr) LU—v2 W]F'0 (kr) dr,

Il (7r)PU+ W/~&]P'& (kr) dr,
J,

M„,'=7f Uu;dr,
0

as implied by (12.1) and for the ground state

(U'+W')dr =1,

the wave function for the latter being

(13.5)

Q„,' =Yg (U W/K2) n~'r—'dr,
0

fI„'=
J (yr) fU W/5V2]u2 d—r,

p

(13.7)

Qg)„=(4m) '*I U+8 &Sg2W]x /r, (13.6)

and S~2 the usual tensor force operator. For L=J—1
and E1 transitions the convention is to have the coeN.-
cient of the product in the integrand containing U, N,

and a power of r equal to p where p is defined through
the asymptotic form of U at large r, viz U conste &";

for E2 the corresponding coeKcient is yes/(4c), for M1
the coeKcient is (yh/Mc) (p„+p„—-', ). For coupled
case integrals with L=I+1 the same coefficients are
used for the product of 8', v, and a power of r as just
mentioned for L=J—1 for the product of V, e, and a
power of r. In those cases for which the final state
reached by the U and 8' parts of the ground state
turn out to be the same, the radial integrals are com-
bined. For example, for E1 transition to ('P2+'F2)
states

Q„,'=7qJ Wuj'r'dr,

Q-'=~a
Jp

(U—V2 W/7) u3'r'dr,

Q„,'=yq I We3'r'dr,
dp

Ms ——7(A/Mc) (u„—p„)J
UF'o(kr)dr,

MD=y(h/Mc)(u„— p„) ~ WF'2(kr)dr,

I„s' "(yr)$U W/5&2]ug——dr, —
~o

I, '= ~ (yr)We, dr,
0

(13 g) where f= (5/Mc) (p„+p —2); q= (~/4c), and r= ((K p)
in all the equations defining the radial matrix elements.
In Eq. (13) there occurs the ratio

(13.9)

I„p'= t (yr)We/dr. (13.10)

The factor
I
—(2 '/5] is the ratio of the matrix elements

where 1=2 and l'=0 except for the E2 transition
('S~+'D~) ~ ('D,+'S~) for which /=0 and i'=2. (Rq

is independent of m and i according to the Kigner-
Eckart theorem. It has been found convenient to
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TABLE I. Values of (Rg for different transitions.

Multipole

E1
E2

Final state

(3p,+3P,)
(3g) +3G )
(3S,+SD,)
('Sr+'Di)

3&/5
3 (6)i//

introduce this ratio so as to have one rather than two
sets of coeKcients C,r. In (13) two terms contain (Rq

and two others contain (Rg '. The reason for this is
that the C;~(J—1) are standardized conveniently in
terms of the '51 part of the ground state while the
C,~(J+1) are more readily expressed in terms of the
sDi Part. Thus for E1 transitions the 'Ps+sFs couPled.
state has the 1.=J+1 part of the continuum state,
i.e., the 'Ii2 component, combining only with 'D1.
The (RJ have values as in Table I.

IV. ELLIPTICALLY POLARIZED GAMMA RAYS

The 5 matrix of Eq. (3.2) was worked out for a
state of polarization

(B„X„)= (B,B)e'"*

In the present discussion this matrix will be called 5").
By a similar procedure the elements of a matrix 5("
corresponding to the perpendicular polarization

(By,K,) = (h, —B)e'"' (15.2)

may be worked out and the relation of 5~') to 5(" will
be discussed presently. Since the only restriction on the
direction of the x axis necessary so far was that of
being perpendicular to x, there is no loss of generality
in arranging for it to be along one of the principal
axes of the polarization ellipse. Superposing (15.1) and
(15.2) with a 90' phase difference, an elliptically
polarized wave

(B„h„,h,) = (cosx, i sing, 0)Be'"',
(15.3)(R,R„,K.)= (—i sing, cosx, 0) Be'"',

results. Here g is a real angle which is 0 or + for linear
polarization along x, m/2, or 3 vr/2 for linear polarization
along y, m/4, and —x/4 for opposite directions of
circular polarization, etc.

In Eqs. (15.1), (15.2), (15.3) the usual convention is
followed of writing on the right-hand side only the
part of the Geld strength which matters for absorption,
the complex conjugate of the part written being omitted.
The time dependence, not explicitly indicated, is
e

' ' for the term written therefore. This time depend-
ence shows that for x=s./4 the electric vector rotation
is right handed around the positive s axis and that the
angular momentum projection available in the radiation
field is positive. Reference to Eq. (137) and Fig.. 2 of
an earlier paper" shows conditions for elliptic polariza-
tions somewhat more generally. The relation of wave

"G.Breit, Revs. Modern Phys. 5, 91 (1933).

o', &'& (y) = et'}(y—-'~) (15.5)

as is clear geometrically and readily veriGable by noting
that 6,&'& 8&'& have the forms (f,"&=A +B„=Acosy
+B siny, 8&'& =A„—B,=A siny —B cosy. In these
relations p is the azimuthal angle of a point in co-
ordinate space, while the vectors A, B are coordinate
space vectors coupled to 8 and $C in the Hamiltonian.
Therefore, if in the evaluation of (3) one arranges for
the points entering the integrals on the right side to
have values such that

~(1)—~(2) (15.6)

then the integrals will be the same except for such
changes as occur in the g, on account of (15.6). Here
y~i&, y&s& are azimuthal angles of two diferent vectors
referred to the x axis of the original coordinate system.
In order to secure (15.6) it suffices to have the azimuthal
angles of the proton emission line in the comparison of
5(') with 5'" correlated by a relation identical in form
with (15.6). This amounts in fact to rotating all vectors
with (8,R) so that the integrals would remain un-
changed if it were not for the changes in the g; which by
definition are referred to the original coordinate system.

Two points r"), r(') with azimuthal angles related as
in (15.6) have coordinates related by

g(1) —y(2) y(1) — g(2) g(1) —g(2) (16)

By means of these equations points r(') used in the
evaluation of 5(" are mapped into a duplicate of the
original space as points r(2) in the evaluation of 5~2).

For the latter evaluation there enter in Eq. (3) as
a result of the mapping g (x's& yes& s's&) On account of
the vector property of the functional form of the g;
it follows from (16) that

Quantities occurring in the right-ha, nd sides of these
equations occur directly in (3.2) in the evaluation of

intensity to
~ B~ is independent of x in this notation.

Taking B to be the same in (15.1), (15.2), and (15.3)
and denoting by S'") the S matrix for the state of
polarization described by (15.3) one has

g(x& —g(1& cos&r+ig(2} sjnX (15.4)

An obvious orthogonal transformation can be carried
out so as to have the principal axes at an arbitrary
angle with respect to the x axis.

The matrix S(') can be obtained from 5'" by the
following consideration. The quantity Q, needed for
(15.2) will be called 0',"& while the 8 corresponding to
(15.1) which was used mostly so far will be called CV'&.

The (8,K) vectors for case (2) are obtained from case
(1) by a rotation through 90' in the direction from x
to y. The quantity 8(2) considered as a function of the
azimuthal angle q is therefore obtainable as
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TABLE II. Values of coefFicients T1, T2, T&, T4 in Eq. (17}and
of symbols that will be used in place of Xg' as listed in the last
column.

Multipole Final state

Z1 (V,+V',}

('5'~+'»)

('Da+'G4)

('sg+'»)

c T1 or T3 T2or T4

1
1—1
1—1
1—1
1

—3(2)'/5
9(2) 4/5

2—
&

2k

9(2) 4/7
12(2} ~/7—2 ~/2—2 &

XJc

J s
a

Q1'
Q b

Q3'
Q b

M'1'
M1b

5;&') while those on the left give on account of (15.6)
components of 5;{').It follows that

i(i) (~(i))—5 2(2) (~(2)) 5 (i) (~(i)) — 5 (2) (~(2))

S~ ~') (p&')) =5 ~') (/&2)) (16 2)

The simplicity of the answer is seen to be due to the
vector nature of the A;. The same result is obtained by
expressing 5; for both cases in terms of components
of 8 as in (5.2') and the analogous case of M1 transi-
tions. A straightforward calculation gives the same
result as in (16.2). Since 5"& is what has previously
been called 5 both 5&') and 5'& are available for(15.4)
and all quantities are available for an arbitrary state of
polarization of incident gamma rays.

V. FORMULAS FOR THE AMPLITUDES IN THE
CARTESIAN VECTOR TOTAL SPIN

REPRESENTATION

In this section, the explicit expressions for the 5-
matrix elements for outgoing protons are given. For
transitions to coupled states it will be convenient to
use the following abbreviations:

X '= ig(T (X .+CRUX—..)c,e"
+T2(X„./(Rs+X, .)s,e*' T3(X„p+—tRsX p)s, e"P

+T4(X„p/tR J+X p) c,e"P], (17)

where the coefficients TI, T2, T3, T4 have values as in
Table II. In using (17) and Table II the values of (Rs
are understood to be inserted by means of Table I.
The designations a, b refer to the origin of the quantity
either in m= ~1 in the case of a or m=0 in the case of b.
The elements of the 5 matrix can now be expressed as

2soi&= f3(2) **/2]Mi)e(iE2) sin'8 sin2p, (» 1)

2s02~=Mpe(i%0)+3 (2) lMi&e(iK2)

)& (sin'8 sin'p ——',), (18.2)

2sp3t=(3(2) '/2]Mi)e(iE2) sin28 sing, (18.3)

25&it= sin8{I2 cos8 cos'y+ (2:/5)Q)~ —(i/6)QD~

&&e(iP2) cos2&p+Q3 ((1/3) cos'q
—cos'8 cos' p —(1/15)]+M,

+L3i(2) *'/2]Mg)'e(i822) cos2p), (18.4)

25)2&= (1/2) sing sin2rp{I2' cos8—(i/3)QD2e(i8'2)

+Q3~L(1/3) —cos 8]+3i(2):Mi)'e(iP )) (18.5)

25,3&= cosy{ (i/2)I&e(iÃi)+ (1/2)I2 cos28
—L(2)

—
&/5]Q) cos8+(i/6)Q»2e(iP2) cos8

—Q3 cos8L(4/15) —sin'8]+M) cos8

+(3i(2) '/2]Mn'e(i8'2) cos8), (18.6)

252)&= (1/2) sin8 sin2p{ —I2'+ (i/3)Q&)2e(iP, ) cos8

+(2/3)Q4~ cos8—3i(2) 1MD'e(iÃ2) cos8), (18.7)

2522&= sin8{ —(i/2)I, e(i8)i)+ (1/2)I2 cos2 y
—(i/3)QD2e(F2) cos8(1+cos'p)
+Q3 ((2/3) sin'q —(1/3)] cos8—3i(2) 1

)&MD'e(i822) cos8 sin'q ), (18.8)

25$ & = sin p{P
—(i/2) Iie (i8'i) —(1/2) I2 ]cos8

+L(2) '*/5]Q)' —(i/6)QD2e(iÃ2) cos28

+Q3 L(1/3) cos'8 —(1/15)]—Mi'
—L3i(2) '*/2]M'i)e(iP~) cos28), (18.9)

25„=—(i/3) Ioe (ib'0) +I,'(sin'8 cos'q ——,')
+t (2) '*/5]Qi' cos8+Q3~ cos8

)( (sin'8 cos'q —1/5)+Mi' cos8, (18.10)

25»&= (1/2) sin'8 sin2q {I24+Qi' cos8),

2543&= sin8 cosp{I2' cos8+L(2) &/5]Q&'

+Q4~(cos'8 —1/5) —M, ') (18.12)

(18.11)

where
e(i8~s) =exp(—i8~J) (18.13)

Equations (18.1)—(18.12) have been checked independ-
ently by using Racah coefficients. In order to obtain
the amplitudes and polarization for the outgoing
neutron, it is merely necessary to change the sign of
the E1 terms in Eqs. (18.4) to (18.12) and of the first
terms on the right side of Eqs. (9.5) to (9.7). The
change in sign in Eqs. (9.5) to (9.7) arises because the
singlet spin function is antisymmetric between neutron
and proton. The same results for angular distribution
and polarization of the outgoing neutron can, however,
be obtained simply by changing the sign of the E1 and
M1 spin-flip terms in Eqs. (18.1)—(18.12) and employing
the Eqs. (9.5) to (9."I) as they are.

UI. THE SEMIPHENOMENOLOGICAL
TWO-NUCLEON POTENTIAL

The basis of the two-nucleon potentials used in the
present work is the static potential derived by Garten-
haus" on the basis of meson theory in the form proposed
by Chew. "This potential gives a good fit to the low-

energy data. However, it was soon found by Gammel
and Thaler'4 that the fit at higher energies is very poor.
Signell and Marshakv showed that an apparent improve-
ment could be obtained by adding to the Gartenhaus
potential a short-range isotopic-spin-independent in-
trinsically attractive spin-orbit potential of a form

'2 S. Garthenhaus, Phys. Rev. 100, 900 (1955).' G. Chew, Phys. Rev. 95, 285 (1954); 95, 1669 (1954).
'4 J. Gammel and R. Thaler, Phys. Rev. 103, 1874 (1956}.
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TABLE III. Radial matrix elements in units of 10 "cm and phase shifts in degrees from Potential I.

E~ (Mev)'

Ip/E
II/X
I„'/II
I„p'/X
I, 2/N
I„p'/iV
QD2/N
o..'/~
Q.s'/&
Q. '/&
Q~s'/&
Q '/1v
0 ~'/&
Q '/&
Qvp'/Ã
M'g /Ã
M 1/E
M'„p'/3l
M', '/E
M„p'/Ã
ill, /E
Mn/1V
gl
gl
$a

62
$2

$a

gPI

61
$a
gP,

Ep
E2

22.2

0.4119
0.9168
0,6957
0.1468—0.04666
0.1778
0.1263

—0.009515—0.001016
0.005424
0.0971
0.08865
0.06334—0.01582
0,02344
0.01876—0.007066—0.01180
0.007214
0.01269
0.09462
0,05682
9.246—8.012
4.806—0,3603—11.49
5.968

69.16—5.373
3.294—0.9110
0.4105—35.74

40.99
1.578

32.2

0.2214
0.6842
0.4765
0.1350—0.06042
0.1765
0.1090—0.01008—0.001636
0.007031
0.0842
0.07131
0.06158—0.02299
0.02825
0.02170—0.007005—0.01318
0.007033
0.01379
0.06569
0.06420

11.37—11.32
6.738—0.8021—15.06

11.61
58.18—9.059
2.911—1.977
1.297—41.91

33.64
2.952

62.2

0.06376
0.3894
0.1784
0.09468—0.06825
0.1503
0.05861—0.009650—0.003518
0.01039
0.06643
0.05013
0.04568—0.03613
0.03459
0.02252

-0.006470—0.01460
0.006467
0.01453
0.03330
0.06899

10.57—17.96
9.031—2.111—20.31

26.45
38.05—17.71
2.044—5.307
4.749—50.75

18.20
6.873

102.2

0.01900
0.2377
0.06934
0.06429—0.06402
0.1172
0.02349—0.009809—0.004953
0.01078
0.05520
0.04095
0.02656—0.04333
0.03536
0.01865—0.005742—0.01436
0.005728
0.01417
0.01927
0.06420
5.633—23.77
7.602—3.571—24.56

38.52
21.85—25.69
1.328—8.239
8.010—56.96
4.385

11.42

152.2

0.008030
0.1501
0.02298
0.04680—0.06627
0.08606
0.003131—0.01148—0.005652
0.01008
0.04414
0.03564
0.01041—0.04623
0.03360
0.01386—0.004845—0.01337
0.005020
0.01340
0.01236
0.05439—1.614—29.39
3.790—5.916—33.48

45.28
8.096—32.84
0.8368—10.86

10,69—61.45—7.901
15.42

177.2

0.007800
0.1229
0.01271
0.04040—0.06865
0.07980—0.002791—0.01159—0.005781
0.00976
0.03962
0.03412
0.00532—0.04769
0.03301
0.01194—0.004693—0.01288
0.004706
0.01296
0.01054
0.04924—5.239—31.87
1.793—7.342—39.78

46.84
2.670—35.66
0.6629—11.89

11.46—63.22—12.81
16.72

& The number N is the normalization constant defined as in the paper by Austern. It is such that in the present notation lim(U'/N) =e && for r ~ eo.
The value of N' needed for the calculation of cross section and polarization for Potential I is 7.491 X10'2 cm '. The numbers tabulated refer to the
quantities Lo, L1, ~ ~ ~ by Austern except for the additional ones listed here.

where
d exp (—r/rp)

VLS
(r/r p) d (r/r p) r/r p

Core radius xi=0.408 (triplet-odd). (20.1)
rp=1.07)&10 " cm, (19.1)

The repulsive core is necessary in these states as
otherwise the 'P2 state would be bound. For the
singlet even states the values

and Vc (x), Vr (x) are dimensionless functions of
pc= pr, p= pp ——m c/ls, r=

~

r„'—r„~. The original Signell-
Marshak' values correspond essentially to

A/(Mc') =0.78875, p= 0.84pp,

no core (singlet-even) (20.2)M/'c=1.0 56385, 8/3fc'=1.065835, p= pp,

C= 30 Mev. (19.2)
were employed. The Chstiectioe between Potentials I
and II entered -in the treatment of triplet ever& states. -

Since there is no direct evidence for the existence of
The work referred to previously' has shown that

improvements in the fit to experimental data may be
obtained by adjusting the depth parameters A, 8,
and C and the range 1/y of the Signell-Marshak
potential and including infinite repulsive cores for
certain states without changing the shape of the

2' Actually there was a slight change in the shape of the spin-orbit
potential since a rounded cutoff was used for r &r„r,=A/Wc =0.21
)(10 " cm, instead of the straight cutoff used by Signell and
Marshak. However, the effect of this change is negligible since the
spin-orbit force is important only in the triplet odd states and in
these states an infinite repulsive core was used out to x=0.408."K.M. Case and A. Pais, Phys. Rev. 80, 203 (1950l.

first used by Case and Pais." The potential thus central, tensor, and spin-orbit potentials. " Two such
obtained may be written in the form improved potentials were used in the present work;

V=XV { )+BV ( ) +CV ( )L S (1 )
they will b«ef««d to as Potentials I and II.

The following parameters were used for both poten-
tials.

For triplet-odd s'tates the Signell-Marshak values
as in (19.2) were used with
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TABLE IV. Radial matrix elements in units of 10 "cm and additional phase shifts in degrees from Potential II.

E„(Mev)'

IQ/N
Ig/NI '/X
I p'/E
I. '/E
I.p'/N
Qam/N
0 '/&
Q p'/N
Q„'/X
Q,p'/N
Q 3/N
Q„p'/N
Q. '/N
Q.p'/N
M'D/N
3II '/N
3/I„p'/N
M, '/lV
M,p'/X
3E,/N
M&/N
822

$a

/PI

$CL

gP,

22.2

0.4163
0.9076
0.6924
0.1462—0.04244
0.1593
0.1276—0.008687—0.001076
0.007283
0.09887
0.06230
0.08938—0.01985
0.01471
0.01750—0.006292—0.01135
0.008512
0.01155
0.09113
0.05313
5.964

67.52—6.263
3.938—0.7140
0.9041—55.38

32.2

0.2174
0.6785
0.4719
0.1339—0.05595
0.1613
0.1079—0.009948—0.001694
0.006859
0.08601
0.05615
0.07457—0.02504
0.02040
0.02056—0.006077—0.01280
0.006001
0.01283
0.06247
0.06120

11.52
56.22—10.54

2.284—1.504
2.137—54.22

62.2

0.06210
0.3852
0.1745
0.09312—0.06641
0.1458
0.05935—0.01126—0.003601
0.01016
0.06414
0.03902
0.05000—0.03869
0.02545
0.02148—0.005335—0.01410
0.005278
0.01376
0.03056
0.06722

25.45
35.46—20.70
0.6551—4.876
7.745—61.85

102.2

0.02606
0.2303
0.06755
0.06321—0.06358
0.1175
0.02344—0.01048—0.005181
0.01054
0.05808
0.03259
0.02674—0.04928
0.02548
0.01733—0.004482—0.01383
0.004485
0.01383
0.01681
0.06133

36.03
18.75—30.25—0.9242—8.072
13.74—68.83

152.2

0.01395
0.1422
0.02156
0.04557—0.06396
0.08400
0.003673—0.009270—0.006095
0.009526
0.04895
0.03017
0.008868—0.05403
0.02256
0.01198—0.003687—0.01291
0.003673
0.01304
0.01006
0.05014

41.43
4.560—39.03—2.426—11.21

19.19—74.23

177.2

0.01138
0.1159
0.00931
0.03895—0.06504
0.07658—0.001460—0.008877—0.006302
0.009067
0.04762
0.02932
0.003142—0.05483
0.02074
0.01087—0.003329—0.01240
0.003327
0.01240
0.008313
0.04490

42.51—1.032—42.54—3.067—12.59
21.10—76.41

a The value of ¹ needed for the calculation of cross section and polari2:ation for Potential II is 7.681 X10» cm 1.

the spin-orbit potential for these states the spin-orbit
potential depth parameter was given the value C=O
for Potential I and the value 30 Mev as in (19.2) for
Potential II. The central and tensor depth parameters
were adjusted to give correct binding energy and
scattering length in both cases. This resulted' in

A/Mc'= B/cVc'= 1.0801 7, C=0, p, =pp,

no core (Potential I) (20.3)

A/3f c'= B/Mc'= 1.17723) C=30 Mev,
Ip= ape, no core (Potential II). (20.4)

The amount of D wave in the ground-state wave
function predicted by these two potentials is 6.8% for
Potential I and 6.1% for Potential II. Numerical
values of the radial integrals are given in Tables III
and IV. The radial matrix elements are de6ned essen-
tially in accordance with the convention used by
Austern, ' i.e., as in Eqs. (13.7) to (13.10) of the text
above. The values entered in the tables are not directly
the matrix elements of Eqs. (13.7) to (13.10) but these
quantities divided by a number N de6ned in the
footnote to Tables III and IV. In the zero-range
approximation N' =2y.

VII. NUMERICAL CALCULATIONS

As mentioned in the Introduction, five approxima-
tions as listed in Table U were used in order to investi-
gate the relative importance of the various transitions.
The calculations were carried out using the amplitudes

given in Sec. V. Two procedures were followed. In the
first, numerical values of the matrix elements and
phase-shifts were substituted into the amplitudes and
formulas for (8o, y) and oI"(8, &p) obtai. ned in terms of
8 and q. In the second procedure, the amplitudes were
reduced completely to complex numbers by substituting
values for 8 and y and o(8, y) and oI"(8, y) obtained
numerically. The values of 8 and p used in the second
procedure were always chosen so as to provide a
complete numerical check on the formulas.

The components of polarization were computed
along the directions of the axes of the primed coordinate
system shown in Fig. 1.

In approximation 3 and 8,
o = ag+b~ sin'8(1+cos2q),

o-P,'= B~ sin0 sin2p,

oP„'=Bg sin8 cos8(1+cos2 y),

(21.1)

(21.2)

(21.3)

TABLE V. Transitions added in successive approximations.

Transitions

I'1:('S +'D ) 'P0, 'P1, ('P +'J )
351:('SI+'DI) ~ 'SP 'D2
M'1: ('S1+'D1) ~ ('S1+'D1), 'D2
I'-'2: ('R+'Di) ~ ('&i+'&i), 'Dp, ('&p+'Gm)

Approximations

A'and 8
C
D

a For A the 3P2 —3F2 coupling is neglected. This approximation uses
radial functions calculated with coupling and substitutes the P and F
parts of eigenstates originating adiabatically from pure P and F functions
for these functions.
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TAnLz VI. Angular distribution and pojarization parameters in microbarns/steradian for protons in
approximations A and B. Sures 1 and 2 correspond to Potentials I and II.

E„(Mev) oq@
Approximation A

b1g B1g u2g ~2g Gag b1g
Approximation 8

B1g a2g b2g B2g

22.2 4.68
32.2 5.06
62.2 4.46

102.2 3.09
152.2 1.90
177.2 1.58

50.7
28.1
6.40
1.40
0.170
0.000

5.55 4.30
5.28 4.81
3.00 4.42
1.50 3.01
0.715 1.77
0.546 1.47

51..6
28.4
6.34
1.42
0.190
0.000

5.46
5.19
2.96
1.48
0.675
0.489

4.92
5.42
5.31
3.95
2.69
2.27

51.0
28.3
6.74
1.79
0.639
0.672

5.25 4.52
4.87 5.15
2.87 5.28
1.60 3.86
0.942 2.51
0.811 2.13

51.9 5.18
28.6 4.80
6.67 2.84
1.85 1.58
o.696 0.887
0.665 0.748

The s' component of P vanishes in these approximations.
The quantities uz, bz, and Bz are tabulated for protons
in Table VI for both the potentials. The subscripts on
the coefFicients indicate their origin in electric and
magnetic transitions. In some of the latter improved
approximations these designations are omitted in view
of the complexity of the origin of the coe%cients.

In approximation C,

which gives for the total cross section

Sm See
o r 4rra+—— b+—

3 15
(24 2)

The + sign (—sign) refers to protons (neutrons).

o =a~+b~ sin'8(1+cos2q)+asr+bsr sin'8

&& (1—cos2 q ), ('22. 1)

o P '= Brr sing sin'ip+E~sr sin8 cosg sin2&p, (22.2)

oP„'=8~ sing cosg(1+cos2q)+Assr sing

+Ee~ sing cos2 y, (22.3)

gI', '=G g~ sin'8 sin2y, (22.4)

with additional parameters for protons as in Table VII.
In approximation D

o.=a+b sin'8+c cosg+f sin'8 cos'p. (23.1)

These parameters are given for protons in Table VIII.
The three components of polarization in approximation
D can be expressed as

40—

~ 30—
~~
a 20

lp
Eh

0
O
m 60—
C3

tJ
~—50—

40

E&=32.2 Mev

o I','= (F sing+E sing cos8) sin2q, (23.2)
20

o I'„'=3 sing+8 sing cosg+ (E sing+8 sing cosg)
&&cos2 rp, (23.3)

cd', '=6 sin'0 sin2q, (23.4)

with the parameters for protons given in Table IX.
In approximation E,

o =a+ b sin'8+c cosg+d cosg sin'8+e sin'8 cos'8

+cos2p( f sin'8+d cos8 sin'8+e sin'8 cos'8) (24.1)

IO

0 I

60 )20

ecM '" g

)80

FIG. 2. Differential cross section for the D(y,n)p reaction with
unpolarized gamma rays of energy 22.2 and 32.2 Mev in the
laboratory system for Potential I. The experimental points are
due to L. Allen, Jr.'

TABLE VII. Additional angular distribution and polarization parameters in microbarns/steradian for
proton in approximation C. SuKxes 1 and 2 correspond to Potentials I and II.

B~ Mev

22.2
32.2
62.2

102.2
152.2
177.2

0.308
0.0969
0.0210
0.0939
0.124
0.12i

0.737
0.838
0.886
0.769
0.579
0.492

A 1gM

—4.69—2.99—1.40—0.853—0.618—0.533

—1.22
0.330
1.38
1.33
1.03
0.874

RgM

—3.48—1.87—0.762—0.565—0.486—0.473

0.297
0.0896
0.0375
0.0990
0.118
0.112

0.676
0.779
0.834
0.690
0.483
0.399

—4.57—2.89—1.33—0.791—0.547—0.469

—1.29
0.290
1.36
1.26
0.929
0.776

GggM

—3.32—1.75—0.715—0.547—0.460—0.438
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TAnLE VIII. Angular distribution parameters in microbarns/
steradian for protons in approximation D. SufIIjxes 1 and 2 corre-
spond to Potentials I and II.

Mev a1 b1 a2 b2 C2 f2

22.2 5.35 51.7 1.49
32.2 5.68 29.1 1.85
62.2 5.58 7.56 2.04

102.2 4.29 2.51 1.63
152.2 3.04 1.16 1.21
177.2 2.62 1.11 1.09

50.2
27.6
5.89
1.06
0.105
0,231

4.93 52.5
5.40 29.3
5.54 7.44
4.18 2.50
2.84 1.13
2.44 1.01

1.36 51.2
1,72 27 9
1.94 5.87
1.54 1.20
1.08 0.262
0.960 0.315

These parameters and the total cross section are shown
in Table X.

The three components of the polarization in approxi-
mation E can be expressed as

o P ' = (i.sin8+M sin8 cos8+E sin8 cos'8) sin2 q, (24.3)

oI'„'=A sin8+B sin8 cos8+C sin8 cos'8

+D sin8 cos'8+cos2p(E sin8+F sin8 cos8

+C sin8 cos'8+D sin8 cos'8), (24.4)

C

~~'a
D

~ l5

Q
~Cl j3O

Cl

IIE
~~ 9

7
b

3
0

I I

60 I 20

ec„~n degrees
I 80

o I', ' = (G sin'8+H cos8 sin'8) sin2q. (24.5)

These coefFicients are shown in Table XI. Since there
is a difference between the proton and neutron coef5-
cients for polarization, they have been distinguished by
the designations (p) or (n). These parameters are not
all independent since E+C=M. The results for
unpolarized y rays are obtained by integrating over p.
In this case I' ' and I',' vanish as is required by parity
conservation.

The different approximations for o.(8) for the case of
unpolarized p rays using Potential I are shown for
E~=22.2 and 32.2 Mev in Fig. 2, for 62.2 and 102.2 in
Fig. 3, and for 152.2 and 177.2 Mev in Fig. 4 together
with some available experimental values. ' The corre-
sponding results for E(8) are shown in Figs. 5, 6, and 7.
No experimental values are available in this case.

"The published values in Allen's paper are raised by 9% in
accordance with advice from Professor A. O. Hanson of the
University of Illinois, based on his correspondence with Dr. L.
Allen and J. E. Leiss and employment of a new National Bureau
of Standards photon Qux calibration. Thanks are due to the three
gentlemen just mentioned for looking up old records and ascertain-
ing the best absolute intensity calibration. The possibility of such
an error in the calibration has already been noted in Allen's paper
(reference 3).

FIG. 3. Differential cross section for the D(y,e)p reaction with
unpolarized gamma rays of energy 62.2 and 102.2 Mev in the
laboratory system for Potential I. The experimental points of
various investigators are represented as follows'. Circles for those
of L. Allen, Jr., at 66 Mev; squares for those of E. A. Whalin,
B.D. Schriever, and A. O. Hanson at 65 and 105 Mev; Triangles
for those of J. C. Keck and A. V. Tollestrup at 105 Mev; open and
solid inverted triangles for those of J. A. Galey at 60 and 65 Mev,
respectively.

Although graphs of the results for the two intermediate
energies, 62.2 and 102.2 Mev, have been published
previously, ' the inadvertent omission of E2 (sDt -+ 'Dz),
1=1, 2, 3 transitions together with an incorrect sign
of M1('Dt~'Ds) matrix element combined with a
9% increase" in Allen's cross sections produces a
nonnegligible difference in the graphs which are being,
therefore, published in revised form.

The calculations using Potential II, as is evident
from the tables, give essentially the same results as
those for Potential I. It is found that most of the
difference enters in approximation E and that this
difference increases with increasing energy. In Figs. 8
and 9 the results for angular distribution and polariza-
tion of the two potentials at 152 and 177 Mev y-ray
energies in approximation E are compared.

TAsI.K Ix. Polarization parameters in microbarns/steradian for protons in approximation D.
Sures 1 and 2 correspond to Potentials I and II.

E~ Mev

22.2
32.2
62.2

102.2
152.2
177.2

A1

—3.85—2.56—1.55—1.11—0.778—0.658

Bi

5.01
4.64
2.66
1.39
0.738
0.615

—0.076
1.19
1.80
1.62
1.31
1.15

5.59
5.10
3.07
1.80
1.15
1.01

—2.13—0.446
0.493
0.222—0.130—0.243

—3.73—2.55—1.54—1.05—0.670—0.571

4.95
4.59
2.65
1.38
0.693
0.565

—0.157
1.01
1.68
1.50
1.18
1.02

5.41
5.01
3.03
1.78
1.08
0.930

—1.98—0.393
0.474
0.155—0.179—0.252
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TABLE X. Angular distribution parameters and total cross section for protons and neutrons in approximation Lf,". The parameters are
in microbarns/steradian and ar is in microbarns. Suffixes I and 2 correspond to Potentials I and II.

(Mev)

22.2
32.2
62.2

102.2
152.2
177.2

5.44
5.81
5.73
4.40
3.13
2.70

51.5 1.93
29.0 2.38
7.37 2.52
2.37 1.98
1.06 1.49
1.01 1.37

15.8 1.22
11.1 1.08
4.45 0.680
2.00 0.403
1.02 0.219
0.880 0.174

50.2
27.5
5.84
1.02
0.0823
0.210

502
318
135

75.9
48.6
42.7

ci d& e& f& 0'r (1)

5.01 52.4 1.75 16.2
5.51 29.2 2.19 11.2
5.66 7.28 2.42 4.23
4.27 2.39 1.93 1.76
2.89 1.07 1.41 0.821
2.48 0.974 1.28 0.706

8g fj
1.27 51.2
1.10 27.8
0,630 5.83
0.340 1.18
0.173 0.258
0.140 0.317

0.z (2)

504
316
133
74.3
4.56
39.6

VIII. DISCUSSION OF THE RESULTS

The results for 0- in approximation 3 are reasonably
consistent with those of de Swart and Marshak for a
slightly different potential. ' The values of P with
unpolarized 62-Mev gamma rays are qualitatively
similar to those of Czyz and Sawicki from a less accurate
calculation. " The results reported on here compare
very well with those of de Swart, Czyz, and Sawicki"
if the 3fi to triplet transitions are not included and
certain other interference terms also not considered by
them are removed from results reported on here.

Comparison of approximations C and D for 0 shows
appreciable effects of the inclusion of Mi transitions to
triplet states above 60 Mev and for P these effects are
seen to be major. Similarly the effect of including E2 is

appreciable for 0- even at 32 Mev and is non-negligible
for P at 62 Mev.

With regard to the comparison of 0- with experimental
values, the calculated results at the lower energies
appear to be somewhat too large. It may be relevant to
note that for some of the experimental data the results
of the various investigators do not always agree within
the limits of the claimed experimental error.

At 152 Mev the results agree rather well with
experiment while at 177 Mev the calculated values are
too small. However, it is felt that comparison with
experiment at these high energies is not very significant
since the semiphenomenological potentials give very
poor values for scattering at these energies and the form
of the electromagnetic interaction used is probably not

TABLE XI. Polarization parameters in microbarns/steradian
for protons and neutrons in approximation E. SuKxes 1 and 2
correspond to Potentials I and II. E), = 177.2 Mey

(Mev)

»(P)
AI(n)
»(P)
BI(n)
CI {p)
CI (n)» (P)
DI (n)
&I(P)
ZI (n)
»(P)
FI(n)
GI (P)
GI(n)
HI(P)
HI (n)
LI(P)
LI (n)
M, (p)
MI (n)
»(P)
NI(n)
»(P)
A2(n)
»(P)
B2(n)
Cg(p)
C2(n)
»(P)
Dg(n)
&2(P)
B2(n)
F2(P)
Fg(n)
G2(p)
G2(n)
»(P)
H2(n)
L2(P)I,(n) .
M2 (p)
M2 (n)
N2 {P)
N2(n)

22, 2

—3.87—5.50
4.66
6.03
0.738—0.738—0.0103—0.0103—0.170—2.28
5.22
5.57
2,21—4.74—0.477
0.789
5.46
5.07
0.567—3.02—0.252
0.490—3.82—5.33
4.59
5.95
0.874—0.874
0.0123
0.0123—3.14—2.26
5.12
5.50—2.05—4.60—0.428
0.751
5.34
5.02
0.560—3.14—0.232
0,493

32.2

—2.55—3.44
4.48
5.35
0.819—0.819—0.0241—0.0241
1.07—0.411
4.95
5.02—0.561—3.19—0.295
0.636
5.10
4.71
1.89—1.23—0.170
0,288—2.62—3.17
4.40
5.23
0.966—0.966
0.0076
0.0076
0.816-0.236
4.83
4.91—0.492—3.01—2.64
0.597
4.97
4.66
1.77—1.20—0.164
0.261

62.2

—1.58—1.22
2.60
2,92
0.845—0.845—0.0027—0.0027
1.60
1.16
2.96
2.85
0,409—1.93—0.106
0.434
3.07
2.83
2.45
0.311—0.111
0.0186—1.65—1.03
2.52
2.88
0.938—0.938
0.0409
0.0409
1.42
1.30
2.90
2.76
0.414—1.85—0.112
0.395
3.02
2.83
2.36
0.359—0.0790—0.0227

102.2

—1.21—0.492
1.24
1.54
0.753—0.753
0.055
0.055
1.41
1.24
1 ~ 72
1.51
0.220—1.35—0.119
0.349
1.75
1 ~ 65
2.17
0.490
0.027 .—0.092
1.22—0.365
1.16
1.56
0.789—0.789
0.0967
0.0967
1.24
1.28
1.69
1.41
0.181—1.28—0.143
0.341
1.70
1.66
2.03
0.495
0.0871—0.155

152.2

—0.915—0.321
0.560
0.912
0.590—0.590
0.085
0.085
1.13
0.934
1.14
0.823—0.0821—0.889—0.157
0.274
1.05
1.01
1.72
0.343
0.174—0.101—0.834—0.260
0.484
0.947
0.535

- —0.535
0.0930
0,0930
0.973
0.885
1.08
0.723—0.115—0.805—0.230
0.292
0.970
0.971
1.51
0.350
0.207—0.155

177.2

—0.809—0.257
0.441
0.802
0.553—0.553
0.0897
0.0897
0.984
0.763
1.03
0.699—0.186—0.760—0.162
0.233
0,897
0.874
1.54
0.211
0.222—0.086—0.730—0.209
0.370
0.825
0.443—0 4434
0.0837
0.0837
0.839
0,712
0.955
0,601—0.185—0.693—0.262
0.281
0.812
0.835
1.28
0.269
0.227—0.151
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Fro. 4. Differential cross section for the D(y, n) p reaction with
unpolarized gamma rays of energy 152.2 and 177.2 Mev in the
laboratory system for Potential I. The experimental points of the
various investigators are represented as follows': squares for
those of E. A. Whalin, B. D. Schriever and A. 0. Hanson at 149
Mev; triangles for those of J. C. Keck and A. V. Tollestrup at
155 Mev; circles for those of D. R. Dixon and K. C. Bandtel at
182 Mev.
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valid so close to or above the meson threshold. "
Furthermore, the effect of including retardation terms
may produce appreciable effects at the higher energies. '"
Agreement with experiment appears to be better than
could be expected considering uncertainties in the
theory.

The relatively small difference between values
calculated by means of Potentials I and II appears
noteworthy in corroborating the view that the spin-orbit
potential in triplet-even states may be absent. These
6ndings are in agreement with the fact that the two
potentials agree about equally well with scattering
data. ' It may be noted that at 22 and 32 Mev the
results for 0- depend almost entirely on E1 transitions,
so that experiments on the polarization at these energies
would be most useful in order to investigate the form
of the M1 interaction.
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Fro. 5. Percentage polarization of protons from the D(y,a)p
reaction with unpolarized gamma rays of energy 22.2 and 32.2
Mev in the laboratory system for Potential I.
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FrG. 6. Percentage polarization of protons from the D(y,n)p
reaction with unpolarized gamma rays of energy 62.2 and 102.2
Mev in the laboratory system for Potential I.

FIG. 7. Percentage polarization of protons from the D (r,n)p
reaction with unpolarized gamma rays of energy 152.2 and 177.2
Mev in the laboratory system for Potential I.
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tion E for Potentials I and II. The energies of the unpolarized
gamma rays are 152.2 and 177.2 Mev in the laboratory system

Fischer for providing the program used in the computa-
tion of the radial wave functions by means of the IBM
704 machine and to Dr. C. R. Fischer and Dr. K. D.
Pyatt, Jr., for making the machine runs, to Dr. Loyal
Durand for his participation in the early phases of this
problem, to Miss J. Gibson for help in part of the
numerical work, and to Mr. T. C. Degges for occasional
computational assistance. A grant of IBM-704 machine
time by the International Business Machine Corpora-
tion is gratefully acknowledged.

APPENDIX. RELATION BETW'EEN n-P SCATTERING
ENERGY AND EQUIVALENT GAMMA-

RAY ENERGY

The e-P radial functions used in this work were
computed for specified neutron kinetic energies in the
laboratory scattering system. In this appendix a brief
outline is given of the transformation to equivalent
p-ray energies in the laboratory photodisintegration
system.

The photodisintegration will first be considered.
Primed symbols refer to the center-of-mass (zero total
momentum) system (E'), unprimed symbols to the
laboratory system. The relative velocity of E and E'
is cp, the system E' moving in the direction of the
incident p ray with respect to E.

For the p-ray frequency one 6nds

-So—
Ey

i i t

60 I 20

8&M in degrees

-40
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FIG. 9. Comparison of proton polarization in approximation E
for Potentials I and II. The ordinates for the two unpolarized
gamma-ray energies 152.2 and 177.2 Mev have been displaced to
prevent overlapping of the graphs. The scale on the left- and
right-hand sides belong to 155.2- and 177.2-Mev gamma-ray
energies, respectively.

Ti,b "/Mc'= 2((E~'/Mc')' —1j. (AS)

By kinetic energy is here meant the difference between
the total and rest mass energies. Using Eq. (A4) one
Ands

hi = e(1—e/4Mc')/(1 —c/2Mc')

+ (1/2) Ti,b"/(1 —e/2Mc2). (A6)

and MD is the deuteron mass

Mr) 2M (e/——c'). — (A3)

If one keeps only the first order term in P in Eq. (A1)
one obtains the expression for the classical Doppler
shift. However, p is of the order w'/c' as seen from (A2)
so that a consistent approximation is not obtained
unless the particles are treated relativistically. A
straightforward calculation shows that the energies
of the nucleons in the center-of-mass system are
given by

E,„'=E„'=(1/2)MDc'(1+2n) &. (A4)

Considering the scattering, the relation between the
neutron kinetic energy in the laboratory system of the
scattering experiment and its total energy in the
center-of-mass system turns out to be

where

'= (1—P)-:(1+P)-',

p =n/(1+n); n =hv/Mac',

(Ai)

(A2) hi'= ~+Ti.b"/2. (A7)

Since e/2Mc' —1/850, the eRects of this parameter are
negligible and for practical purposes one may write


