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The imaginary part of the fourth order matrix element for the electromagnetic scattering of two fermions
gives rise to a small dependence of the cross section on the quantity s- p&)&k&, where s and p& are the spin
and momenta of one of the initial particles, and k~ the momentum of the same particle after scattering.
The resulting angular asymmetry can probably be measured. The e6ect does not occur in the lowest order
of scattering.

'HE spin-momentum correlations in nucleon-
nucleon scattering (the double scattering experi-

ment), or in Mott scattering, are well known. No such
effects seem to have been studied, however, either
theoretically or experimentally, in the scattering of
electrons, p mesons, or positrons by atomic electrons.
We have calculated the inhuence of the polarization of
one of the initial particles on the total differential cross
section for p —e and e —e scattering. '

The lowest order of scattering does not give any
spin-momentum correlation, as will be shown. A fourth
order calculation is therefore necessary, but only the
imaginary part of the fourth order matrix element
contributes to the lowest nonvanishing order of the
spin dependence. In fourth order pure p, —e and e —e

scattering, only the diagrams of Fig. 1 have imaginary
parts. We calculate the spin dependence of the inter-
ference of these diagrams with the second order scat-
tering diagrams. The contribution to the cross section
is of order e', while the main part of the cross section
is of order e4.

In the calculation of the imaginary part of the fourth

order diagrams of Fig. 1, the intermediate fermion lines

represent real particles. Hence only angular integrals
are involved, and no ultraviolet divergences appear.
That the result must also be free of infrared divergences,
follows from the following argument. In the calculation
of the sixth order scattering cross section, diagrams of
the type of Fig. 2 serve to eliminate the infrared
divergences. However, these diagrams have no imagi-
nary parts, and hence do not contribute to the spin
dependence of the cross section.

The inAuence of the field of the nucleus has not been
considered quantitatively, and our results do not
therefore apply directly to the case of scattering of an
unpolarized beam by magnetized iron. For the scat-
tering of a polarized beam by hydrogen, however, the
effect of the Coulomb field is negligible. The argument
for neglecting the rescattering by the nucleus, such as
in the diagram of Fig. 3, is as follows. The matrix
element is of order e4, and the contribution to the cross
section will therefore be of order e', except for inter-
ference with the lowest order scattering diagram.
Clearly such interference takes place only for vanishing
momentum transfer to the nucleus. In this case,
however, the scattering by the nucleus is completely
spin independent.

We shall sketch the calculation for the case of
distinguishable particles, using unitarity to calculate
the imaginary part of the fourth order scattering

P2

(b)

FIG. 1. For distinguishable particles the graph 1 {a) is the
only one that contributes to the spin-orbit force. For identical
particles graph 1(b) must be taken into account as well. Notation:
P~=(iE~, pj.), P2=(iE~, —pl). The other two pairs of momenta
have the same energies, but space parts q&,

—
q& and k&, —k&,

respectively. The particle whose spin is analyzed is that with
momentum p~. For identical particles we write ED =I~2=E.
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'Results for Bhabha scattering will soon be reported by C.
Fronsdal and B. Jaksic,

FIG. 2. Graphs of this kind are
important for the sixth order cross
section, as they help eliminate the
infrared divergences. The corre-
sponding amplitudes are real,
however, and do not contribute to
the spin-orbit correlations.

FIG. 3. Rescattering by the
nucleus is important for heavy
nuclei, but has no bearings on our
results in the case of hydrogen.
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amplitude. ' For definiteness we shall compute the
correction to the scattering cross section due to the
polarization of one of the initial particles.

The second and fourth order matrix elements are
defined as follows:

5= 1+iM2+iM4+

where M2 and M4 are of orders e' and e4, respectively.
The "polarization" is defined by

trPMte sM)P=
trLMtM]

Here e and s are the spin matrices and spin direction
of one of the particles. The meaning of the matrix
multiplication and the relation of P to the cross section
will be explained below. It is well known that P vanishes
when M is Hermitian or anti-Hermitian. Hence

trPReMto s ImMj
P=2i

trLMtMj

The unitarity of the S matrix, i.e., the condition

StS=SSt= 1,

being an identity in e, gives

MQ Mmt= 0, M2tM2+i(M4 —M4t) =0.

Hence, to lowest nonvanishing order,

trt M~te s ImM4j
P=2i

Summing over intermediate momenta means applying
the operator

PR&2
tPq 5(Zing —Zi —E2) = dQ.++a ~

(6)

Here E;„t,is the total energy of the intermediate state.
The calculation is carried out in the center-of-mass
system (for notation see Fig. 1). The angular integral
is over the directions of q, with q'=p'. For identical
particles, (6) is modified by an extra factor of r2since
in that case the intermediate states of momentum q
and —q are identical. Equations (2) to (6) give

P(k~)P(k;) (ft;+ m, ),
25$y

z
4(pi)k(Pi) ~ ives (Pi+imi),

2m]

mim2 p
ImM4= —e'(27r) 4

+1+2 g(+1++2)

dQ
X ~ P(ki)y„(qi+imi)" (qi —Pi)'(qi —ki)'

Xv 4(pi)4(k2)v. (q2+~m~)v 4(P2) (7)

The operation indicated in the numerator of (1)
consists of multiplying M2 by (7), making the substi-
tutions

trLM, tM,)
Im3f 4= ~M2tM2. (2)

4(P2)k(P2) ~ (p2+im~),
2m2

In order to evaluate the matrix product in (2), we need
M2 between the initial state and some intermediate
state and 3f2t between the intermediate state and the
final state. Referring to Fig. 1(a) for the notation: The result is

s'=1, s pi=0.

and taking the trace. Here s„ is a four-vector describing
the spin of particle 1 in a covariant way. ' lt satis6es

my5$2
M2= (2s.)

—' (pi —qi)
'

Xk(qi)eve (Pi)k(qm)ev. f (P2) (3)

mym2
Mmt ——(2m) ' (qi —ki) '

jv~jv2

xy(k ).~,p(q, )g(k,).7,&(q,). (4)

Multiplying (3) by (4), the sum over intermediate spins
is effected by means of the substitutions (j=1,2)

trPM2te s ImM47= —e'(2m)-'
8&i'&2'(%+&2)

x I'

" (pi-ki)'(qi —pi)'(qi-ki)'

—,
' tri ——-', trgiyes(Pi+im, )

Xy p (4+imi)7„(qi+imi)y„),

tr2 g trp(p2 +im2)r, (k2+im2)

Xy„(q +im )y.j.

(10)

4 (q')0(q ) (q +im: (~)
2m;

'

~An alternative method, by which the imaginary part was
extracted from the complete fourth order matrix element, was
used for checking. In reference 1 an example of an application of
this method is given in detail.

The trace calculations are conveniently carried out
before the integration. Dropping terms that integrate

' See, e.g. , C. Fronsdal and H. Uberall, Phys. Rev. 111, 580
(1958), and ~further references given there.
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to zero, we obtain
—4img

—mP(2Er+Es)[(p' —y, q)

—; trr —,
' trp ———,

' tr[iysskrkspr)
(Er+Ep)(p'+pr kr)

jv2
X —(P'+I r kr)(P' —kr q)(P' —ir. q)

2

p
1 1 (Er+Es)' 1+cos8

tr[MstMp)=e'(2pr) ' —+
ErsEss 2 2P' (1—cos8)'

(mrms/ps)'
+ . (14)

(1—cos8)'

The denominator in (1) is (for distinguishable
articles)

+ (ps k .q) (pp ~ .k )) (1.1) Thus I is given by (1), (12), (13), and (14). If s is
perpendicular to the scattering plane s.prXkr= p' sin+,
then

The three last terms each gives an infrared divergence.
These cancel when a careful integration, using a small
photon mass, is carried out. There is no contribution
from the longitudual vector mesons thus introduced,
because the intermediate states are real states. The
result of the integration is

tr[Mste s ImM4)

ztsr& 4 tr[i'yssklksp1)
es(2s.)

—'
Er'EP (Er+Ep) p' sin'8

E2
(1+cos8)

Er+Ep

mrs 2Er+Es
in(1-cos8)/2 , (12)

p' Er+Es

where 6 is the angle between yr and kr, and everything
is expressed in the center-of-mass system. If the spin
is transverse, i.e., if in addition to s'=1, s pr=O we
have s. y~=o, then s„ is purely spacelike and of unit
length. Moreover, in this case s„ is the same in the
center-of-mass system as in the rest system of pr (which
in the case of a polarized target is the laboratory
system) or that of ps. Hence we may write

s tr[iypskrkppr) = —(Er+Es) s p, Xkr, (13)

and interpret s as the rest system spin direction of
particle 1.

1 8$y

137 2p sin8

E2 ms' 2Er+Es 1—cos8
(1+cos8)+ ln

Er+Es p Er+Es 2
X

1 (Er+Ep)' 1+cos8 (mrs, /p')'
—+
2 (1—cos8)' (1—cos8)'2p'

The corresponding formula for identical particles is
found to be

137 2p sin8

2 cos6+3 sin (0/2) (3+m'/p' —cos8) ln cos(8/2)

—3 cos '(8/2) (3+m'/p'+cos8) ln sin(8/2)

1+4(ts'/p'+2)' sin %+[4—3(tll'/p'+2)') sin '6

The relation of I' to the differential cross section 0- is,
for complete polarization, 4

o =ap(i+I'). .

If the spin is with probability g parallel to s, then the
degree of polarization is $=2g —1 and the cross section
is4

o = o p(1+/I').

1.0—
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30 60 =g 90
FIG. 4. The fractional asymmetry P for Mgller scattering, when

the direction of polarization is normal to the scattering plane,
as a function of the center-of-mass scattering angle, for a labora-
tory kinetic energy of 1.0 Mev.

FrG. 5. Same as Fig. 4, showing P versus the laboratory kinetic
energy for a center-of-mass scattering angle of 60'.

4 See, e.g., J. Hamilton, The Theory of Elementary Particles
(Clarendon Press, Oxford, England, 1959), p. 482.
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The fractional asymmetry given by (16), for Mpller
scattering, is plotted in Figs. 4 and 5. An absolute
maximum in P(pp) occurs near p/m=1. 0 (i.e., Et,b ~;„
=1.0 Mev), and 6=60'. Figure 4 shows the angular
dependence of P at the maximal value of p/m and
Fig. 5 shows the energy dependence at the maximal
value of 8.

If (15) is applied to the scattering of p, mesons on a
polarized electron target, we obtain numbers of the
same order of magnitude as in the case of Mp1ler
scattering. In the more realistic case (since hydrogen
electrons are not easily polarized) of the scattering of

transversally polarized p mesons on unpolarized elec-

trons, the value of P is more than an order of magnitude
smaller.
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Positive Pion Production in p-p Collisions at 420 Mev with Polarized Protons*f

ROBERT H. MARCH))

(Received July 25, 1960)

The asymmetry in the production of positive m mesons in p-p collisions has been studied, using a 420-Mev,
62/o polarized proton beam from the Chicago synchrocyclotron, with nuclear emulsions as the pion detector.
The asymmetry at 65' in the laboratory for the entire spectrum above 20 Mev in the center-of-mass system
is found to be 0.151&0.021, in the direction opposite the elastic scattering that produced the polarized beam.
In the region of the spectrum above 40 Mev, results are consistent with those found by other authors for
the reaction p+p ~ ~++4; at lower energies where pions associated with 6nal nucleon p states become
predominant, the asymmetry decreases rapidly and may possibly reverse.

I. INTRODUCTION

p+p m++e+p (2)

seemed to indicate an opposite asymmetry for this
reaction, though recent results by McIlwain et al. ' on
about 250 events seem to indicate that this result was

spurious. A reversed asymmetry in reaction (2) would

be surprising in view of the fact that the angular mo-

mentum states that account for reaction (1) are also

*A thesis submitted to the Department of Physics, the Uni-
versity of Chicago, in partial fulfillment of the requirements for
the Ph.D. degree.

'Research supported by a joint program of the Office of Naval
Research and the U. S. Atomic Energy Commission.

f. Shell Oil Company Fellow, 1957—1958.
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' R. E. Marshak and A. M. I . Messiah, Nuovo cimento 11, 337

(1954). See also reference 17.
2 K. M. Watson and K. A. Brueckner, Phys. Rev. 83, 1 (1951).
T. H. Fields, J. G. Fox, J.A. Kane, R. A. Stallwood, and R. B.

Sutton, Phys. Rev. 109, 1704 (1958); F. S. Crawford and M. I.
Stevenson, Phys. Rev. 97, 1305 (1955).

4 H. G. de Carvalho, E. Heiberg, J. Marshall, and I . Marshall,
Phys. Rev. 94, 1796 (1954).

'R. McIlwain, J. Deahl, M. Derrick, J, Fetkovich, and T.
Fields, Bull. Am. Phys. Soc. 4, 23 (1959).

HE asymmetry of positive pion production in the
reaction

p+ p ~ 7r++d, (1)

with polarized protons, predicted by 3larshak and
i&Iessiah' from the phenomenological theory of Brueck-
ner and %atson, ' has been studied by a number of
authors. ' Until recently the only resul. ts available4 on
the asymmetry of pions from the reaction

responsible for the bulk of the spectrum of reaction (2),
and this experiment was undertaken to resolve this
conQict with the phenomenological theory.

Because of the low cross section for reaction (2), the
pion detector must be stable over long periods of time,
of high efficiency and solid angle, view the entire spec-
trum simultaneously, and have a high rejection of
spurious background events, with certain identification
of positive pions and reasonable energy resolution.
Nuclear emulsions insensitive to minimum ionizing
particles (Ilford GB)s possess these features and, in
addition, permit internal checks on the beam polariza-
tion and the geometric alignment of the apparatus.
The emulsions may be area-scanned for pion endings,
the pion being identified by its decay and its energy
determined from its range. It was felt that results ob-
tained by this technique, though limited in statistical
accuracy, might be more convincing than those ob-
tained with the relatively intricate counter telescope
that would be required to perform this experiment with
counters.

II. APPARATUS AND PROCEDURE

A. The Polarized Proton Beam

The beam was produced by scattering the internal
beam of the Chicago synchrocyclotron 13' to the left
in a beryllium target, emerged through a magnetic
channel, and entered the exit system used with the
external proton beam, ' as shown in Fig. 1. Target

A. H. Rosenfeld, Phys. Rev. 96, 130 (1954).' A. V. Crewe and U. E. Kruse, Rev. Sci. Instr. 27, 5 (1956}.


