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The conversion process then goes on in this imaginary
potential (Vp—Va+). Again the conversion comes as a
result of a small longitudinal kick in the pseudopotential
field. We assume that = mesons are coupled to bosons
of mass M* which represents a 3-meson intermediate
state through a term in the Hamiltonian of the form,

f N (M) bud M,

ouF=¢3 (ie., M*— 3r).

Using this interaction, we compute the following cross
section for m+nucleus— M*+nucleus.

do NI
dM* - 4 (M*Z_ M2)2

qO o (M*)o
(qi+go) (2m)”

where o= the cross section for diffraction scattering of
a “bare” = meson by the nucleus (assuming o> u+),
om+=the cross section for diffraction scattering of the
“bare” state of mass M* g¢;=(M*—M?)/2p, and
o(M*)=covariant density of states in the M* center-of-
mass system (i.e., between M* and M*+dM*).

In order to get an estimate of a cross section, one
must make an assumption at this point. We assume that
the cross section for “bare” and “dressed” states are
approximately the same. One sees that the process is
fairly likely until ¢>q¢o. Again this means that the
process is likely only as long as the intermediate state
of mass M* can live a distance the order of the radius
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of the nucleus, A}/m,. When ¢,>>m,/A?%, then so much
momentum must be transferred that the collision point
is localized well inside the nucleus and consequently
will very likely disrupt the nucleus.

Note added in proof. R. F. Sawyer has pointed out an
exception to our argument concerning quantum num-
bers. Nuclei are not in eigenstates of G conjugation,
since charge conjugation (which produces anti-nuclei)
is a part of the G operation. This means that the G
quantum number of the beam particle need not be
conserved in a diffraction production process.

In a similar way, in the diffraction production of 6y’s
from a beam of 6y’s, the PC quantum number of the
beam particle does change (from —1 to +1), as a conse-
quence of the fact that the nucleus is not in an eigen-
state of PC.

Then the diffraction production = — nr is allowed
regardless of whether # is even or odd (i.e., regard-
less of G conjugation), with the single exception that
7 — 27 is forbidden by angular momentum and parity
considerations.
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Pair production in high-energy electron-electron collisions is studied with special attention given to pion
pair production. A method of calculation is formulated which yields results with reasonable directness in the
relativistic limit. The orders of magnitude of counting rates for various experimental settings are ascertained.
A complete result is obtained for the case in which two pions emerge with equal energies and opposite

momenta.

I. INTRODUCTION

XPERIMENTS in which oppositely directed beams
of electrons clash and interact over long periods of
time are now in preparation.! These beams will permit

* Alfred P. Sloan Reseasch Fellow on leave from the University
of California, Berkeley, California.

1G. K. ONeill and E. J. Woods, Phys. Rev. 115, 659
(1959); Barber, Richter, Panofsky, O’Neill, and Gittelman,
High-Energy Physics Laboratory, Stanford University Report,
June, 1959 (unpublished). W. K. Panofsky, Fourth Annual Inter-

measurements of electron-electron (Mgller) scattering
at center-of-mass energies of 500 Mev or more. Cross
sections for pion and muon pair production are of the
order of (a/7)? relative to the Mgller cross section,
though they may be greatly enhanced in certain cases.
Such processes furnish the opportunity—albeit, a re-

national Conference on High-Energy Nuclear Physics, 1959 (un-
published). Similar projects have been undertaken at MURA
(Midwestern Universities Research Association).



PARTICLE CREATION
mote one at the present time—to study electromagnetic
form factors and Compton (two-photon) interactions
of the produced particles uncomplicated by the presence
of nucleons. This would be particularly interesting in
the case of pions, inasmuch as it would provide the
most direct means of studying some effects of the pion-
pion strong interaction recently proposed and discussed
by many authors.?

In this paper, we study the characteristics of pair
productions which accompany highly relativistic elec-
tron collisions with the following aims: (a) to formulate
a method of calculation which yields results with
reasonable directness in the relativistic limit; (b) to
appreciate the orders of magnitude of counting rates
for various experimental arrangements and so to deter-
mine which lines of investigation are most feasible.

As a result of such analysis, we can point to two
types of experiments which appear to be more prac-
ticable than others. One case is treated semiquantita-
tively; in the other, which corresponds to the most
obvious and simple experimental setting, the complete
result is obtained. The discussion cites only pion pro-
duction explicitly, but the qualitative considerations
apply equally well to muon or, for that matter, electron
production.

We remark first that the Mgller cross section is in-
finite in the forward direction because of the infinite
range of the Coulomb force, or equivalently stated, be-
cause of the singularity in the propagator for the ex-
changed photon. An echo of this feature is found in
pair creations where many of the beam electrons
are deviated less than about 1073 radian from their
original directions, at the relevant incident energies,
owing to the “nearly singular” nature of certain
photon propagators. These electrons move with con-
siderably reduced energy and incréased path curvature
in the magnetic field that guides the beam and hence
might be experimentally observable. In virtue of this
forward concentration of electrons, a measurement
which counts one meson of a produced pair and one
forwardly scattered electron in coincidence may be of
special interest. The counting rate is then proportional
to the meson phase-space factor, but is independent of
the electron detector’s angular resolution provided the
latter is somewhat larger than 10— radian and much
less than one radian. If all electron energies were
accepted in this hypothetical measurement,?® the prin-

2W. R. Frazer and J. R. Fulco, Phys. Rev. Letters 2, 365
(1959), and Phys. Rev. 117, 1609 (1960); F. Bonsignori and F.
Selleri, Nuovo cimento 15, 465 (1960); I. Derado, Nuovo cimento
15, 853 (1960); M. Gourdin and A. Martin, Nuovo cimento 16,
78 (1960); F. Cerulus, Nuovo cimento 14, 827 (1959). For in-
vestigation of pion-pion interaction through high-energy (‘“‘clash-
ing beams”) electron-electron and electron-positron collision ex-
periments: L. M. Brown and F. Calogero, Phys. Rev. Letters 4,
315 (1960), and Phys. Rev. (to be published); N. Cabibbo and
R. Gatto, Phys. Rev. Letters 4, 313 (1960).

3 Otherwise, in estimating the order of magnitude of the count-
ing rate, one should include another factor which accounts for the
fraction of electrons actually counted.

IN ELECTRON-ELECTRON COLLISIONS 1861
Ps3 Ps Ps P4
2 3
q1\\ ‘\‘ ," ’/q2
p1 p2 p‘l p2
g, (a) b a,
Q.. . ‘\\ Ps Pa P3 Pa ,"' Y
Py P> P P,
© (d

F16. 1. One-photon (‘“‘odd”) interactions for pair production
in electron-electron collisions.

cipal contribution to the cross section would differ from
the Mgller (wide-angle) cross section by a factor propor-
tional to the fractional energy resolution? of the pion
counter, a (small) factor of (a/7)?, and a (large) factor
which is the logarithm of a dimensionless ratio of the
order of 108, Besides, the cross section is multiplied by a
(possibly large) factor due to strong interaction between
the produced pions. The basis of this estimate is dis-
cussed more fully in Sec. 3.

Pair production in electron-electron collisions may be
considered, in the first perturbative approximation, to
take place through two distinct processes, namely
through one-photon interactions, Fig. 1, and two-
photon interactions, Fig. 2. These two modes of pro-
duction are physically distinguishable: In the first case
the two produced pions are in a pure J=1, T'=1 state;
in the second case the state of the produced pions is a
superposition of even angular momentum states. The
effect of strong pion-pion interaction will also intervene
differently in the two cases. In the first case it is com-
pletely described by the electromagnetic pion form
factor, which is supposed, according to recent sug-
gestions,? to have a resonant behavior just in the energy
region of present interest. In the second case the effect
of strong interactions intervenes through the modifica-
tion of the Compton (two-photon) pion process.

The experiment described above would count pions
arising from both modes of production, and would also
“integrate” over one pion. Therefore, one would measure
an admixture of both strong-interaction effects, inte-
grated over a whole energy region.

An experiment which is instead sensitive only to the
two-photon interaction and capable of giving informa-

4The cross section is also proportional to the angular resolution

of the pion counter but a corresponding factor appears in the
Mgller cross section.



1862

tion on strong-interaction effects not integrated over
energy is achieved by counting in coincidence a pro-
duced pair with zero total momentum. Such mesons
are mostly produced in collisions which rescatter both
of the electrons into their forward directions. We
find that the counting rate, although somewhat less
than that described above for the first experiment
(because of the smaller fraction of pion phase space
accepted) is much greater than the rate for a two-pion
coincidence experiment recording mesons at arbitrary
angles. The calculation for this case is given in full in
Sec. 4.

2. BASIC FORMULAS AND DISCUSSION
OF THE METHOD

We consider the creation of a pion pair with four-
momenta ¢i, g2 in a collision between electrons with
initial momenta p;, p» and final momenta ps, ps, re-
spectively. In the clashing beam experiment, the center-
of-mass and laboratory frames are the same. The
energies and three-momenta are labeled as follows:

Plz (Ey p)a ?22 (E) _p)a P3= (EI: p’)y P-i: (EN; _p”))
a=("54d), ¢=(0";—q"),
plP=pl=pl=pli=m? g =ql=pc

Let n, n’, n” be unit vectors in the directions of
p, ', p’. The components of any vector a parallel to
and transverse to n, the beam direction, will be called
a. and ay, respectively. We use ¢', ¢', and «’=cos#’ to
denote the spherical coordinates of n’ relative to n, and
8", ¢, &' =cos’’ for the coordinates of n’ relative to
n. When p, q', ¢”’, n’ are specified, all other variables are
determined by conservation laws and mass shell rela-
tions. Production probabilities are therefore propor-
tional to dq'dq” sin6'dd’d ¢’

Figures 1 and 2 picture the processes of interest.
In the rest system of the meson pair, reversal of the
sign of meson charge means interchange of mesons.
Matrix elements for Fig. 1 are linear in meson charge
while those for Fig. 2 are quadratic. Thus, the mesons
of Fig. 1 emerge in a relative odd angular momentum
state; we term these processes “odd.” The processes of
Fig. 2, for the analogous reason, will be called “‘even.”
In odd processes, pion-pion interactions are summarized
by a pion electromagnetic form factor eF (g1+¢2) at the

Ps 2 P4 Ps (}2 Q1 Pa
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F16. 2. Two-photon (“‘even’) interactions for pair production
in electron-electron collisions. The third diagram is present only
in boson production.
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creation vertex. We shall not attempt to indicate ex-
plicitly the role played by strong pion interactions in
even processes, though the possibility of large effects
should be kept in mind.

Interference between even and odd processes adds to
the cross section a term which is odd under change of
sign of meson charge. Hence, an experiment which does
not distinguish between positive and negative mesons
encounters no interference of this type.

Set k1= p1— ps, ka= p2— P4, q12=q1+¢s, for the mo-
mentum transfers of the ‘“first” electron, “second” elec-
tron, and meson line, respectively, and define ‘“‘polari-
zation” vectors

e/ =k X(pslvulp1)y €=k pa| vl p2),
=g (1= g2,

which are true polarization vectors supplemented by
photon propagator factors for notational convenience.
The matrix elements of v, between positive-energy
states of unspecified spin are two-dimensional spin
operators. With all four-spinors normalized to #*x=1,
we have, for the first electron (¢y is the Pauli spin
operator),

(ps|vo pry= {14+ (E4m)(E' +m)'p-p
+i(E+m)~ (E'+m)~ (o1-p' X p)}

(2.1)

X[4EE (E4m)"(E/4+m)7 T3, (2.2a)
(ps| Y| pr)={ (E'+m)"'p'+ (E+m)"'p
+iey X [(E'+m)~'p’ — (E+m)p]}
X[AEE (E4m)(E'+m)~ T+ (2.2b)

The formulas for (ps|v.|p2) are inferred from (2.2) by
replacing p, p/, E/, o1 with —p, —p”, E”, and ..

The matrix element M, for odd processes, exclusive
of factors of charge, 2w, i, is the sum of four parts as
illustrated in Fig. 1:

M= (M0+Mb+Mc+Md)F(ql+q2), (23)
where
Moo= (ps|ve'[v(ps— k) —m T | p1), (2.4a)
M= {ps|vf[v(p1—ko)—m ] ve'' | p1); (2.4b)
My, My=M,, M., respectively, but with p1<> ps,

The matrix element M, for even processes is

Mo=e,'e," {28+ (1= k)= ]
X (2(11‘*‘k1),,(2q2—|—k2),+[(q2_k1)2_ﬂ2]_l

X (2g2+ko)u(2q1tkr)} (2.5)
={e'e’"+4(c'q1) (" q2)[ (1 — Fr)*— 2]}
+{q1 e ¢},

since ¢'ky=¢""ky=0.

The cross section o(¢’,q”’) for pair production,
summed over final electron states, is determined by the
usual rules® (S denotes average over initial and sum

% See, for example, J. M. Jauch and F. Rohrlich, The Theory of

Photons and Electrons (Addison-Wesley Publishing Company,
Reading, Massachusetts, 1955), Chap. 8-6.
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over final electron spins):

dp’
dE
XS|Mo+M,|%dn’.

do(g',q") = (/2 E/p)dd'dg" f (/o)

(2.6)

In this description of the cross section, we have not
included any exchange terms. Later, we shall observe
that exchange terms do not contribute in the rela-
tivistic limit to the two types of experiments described
in the introduction.

The computational labor required to evaluate cross
sections such as (2.6) is often prohibitively great, unless
the work is arranged wisely. If, for example, the sums
over the spins described by ¢’, ¢’ were performed by
the trace method, the calculator would be disconcerted
to find most of his labor spent on terms which mutually
cancel at a late stage of the calculation. In fact, when
the contributions are ordered with respect to their
magnitude in the relativistic limit (all energies>>m),
S|M,|? vanishes to order m? and S|M.|? vanishes to
order m?.

These cancellations occur because, in the relativistic
limit, major parts of the polarizations (ps|v.|p1),
(ps|vu| p2) are proportional to (ps—p1)u, (pa— p2)u, Te-
spectively. In other words, the photons exchanged by
the electrons are largely “longitudinal.” We are then
forewarned of the cancellations by the principle of
gauge invariance which tells us that completely “longi-
tudinal” photons produce no physical effect.

In our approach the “longitudinal” parts of the
polarizations are identified and treated separately. The
leading contributions to the matrix elements and spin
sums in the relativistic limit may then be ascertained
with comparative ease. The “longitudinal” contribu-
tions, though of lesser magnitude than might have been
originally anticipated, are not ignorable and must be
taken into account in the calculation.

In the relativistic limit, the denominators of ¢/, ¢’/ are

kl = (Pl'—Pg)Z: _2EE’(1+ 6'—90,), (293)
k= (pa—pa)t=—2EE"(1+¢'—=x"), (2.9b)
where
1 m?(E—E')? 1 m2(E—E")?
€=- Mmoo (2.10)

2 EEr | 2 RE®
For £ 500 Mev, ¢ and €’ are typically of the order of
10~ and are of interest only for a’~1, 2'=~1.

We define auxiliary symbols 8/, 8:

p'=(E+E"/(E—E), B'=(E+E")/(E—E"). (2.11)

Let (2.2a), (2.2b), and k; be expanded in powers of m
and compared. Note that we can ignore m relative to
E, E/, but cannot ignore m relative to E sind’, E(1—#'),
etc., since the denominator dictates ’~1. We find

e'= e1’+L’+C’k1, (212)

1863

where

e/=—[4EE' T (14—«
X{6'n'+ie.X[n'—n(2¢) ]}, (2.13a)

L,=—[4E(E—E)TY{14+x'+i(er-n'Xn)},  (2.13b)

L=[4EE—-EYT{1+i(14+«)(e1-n'Xn)[n/|2}n/

—[4EE T YieXn, (2.13¢)
C'=[2k2(E—E) {144/ +i(er-n'Xn)}.  (2.13d)

The formula for ¢ is obtained by replacing n, n’, 8,
C’, oy with —n, —n", 8", C”, @s, etc. The vector
n/ contains a factor of sing’. Notice that sinf’
X (14 —a') and (¢)}(1+ ¢ —«') both attain maxi-
mum values of the order of (¢/)~%. Thus, whenever
divided by powers of (14+¢—=x'), a factor of sing’ is
essentially equivalent to a factor of (¢')* for purposes
of estimating magnitude.

Equation (2.12) expresses ¢’ as the sum of a “con-
centrated” part e, containing a denominator nearly
singular at «’=1, and a “diffuse” part without a de-
nominator. The concentrated part describes processes
in which the first electron is rescattered predominantly
without change of direction. For most of these elec-
trons, the angle of deviation ¢’ from their forward
direction is restricted by 1—cosf’ < ¢; that is,

'S (€)i=1073 (2.14)

The “longitudinal” term in (2.12), although it has a
denominator of k¢ buried in the definition of C’, must
be classified as diffuse because in working out the full
matrix element, a compensating factor of k:® emerges
in the numerator. Thus, if (2.12) and its counterpart
for ¢’ are used in (2.4), (2.5), the portion of M, de-
pendent on C’ and C"' is

(B2—kiq){—2C"k2(q" - &)+ 2C" k(¢ - €))

+C'C"Rk?}+ (1 ¢2),  (2.15)
and the pﬁrt of M,+M, dependent on C” is
(Ro*+2p1k2) 7 (Re?— 2pska)3C" k2 (vf)
X(P1+P3)u(91+‘12)u~ (2.16)

3. ORDERS OF MAGNITUDE OF COUNTING RATES FOR
VARIOUS EXPERIMENTAL ARRANGEMENTS

In view of the foregoing, it is natural to set

o(¢,4")=0p(d,q")toc(d,q")+occ(q’,q”), (2.17)

thus distinguishing between parts of o (q’,q"’) of type D
(diffuse), type C (one electron concentrated in forward
direction), and type CC (both electrons concentrated).

The D part of ¢(q’,q"’) is obtained by using only the
diffuse terms of ¢’,¢”. The final electrons have no
strongly preferred directions. This part is the most
laborious to calculate; exchange terms contribute and
the dependence of the matrix elements on ¢, ¢’ renders
the integration over dn’ in (2.6) complex. The D part is
also comparatively difficult to observe. The counting
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rate depends on the amount of phase space—dimension-
lessly expressed as (dg’/w’) (dq" /w'") (Y /47) (' /4w)—
that the counters envelop. The rate is then much less
than the rate for measurements alluded to in the intro-
duction and discussed below which depend on fewer
differential factors.

When calculating concentrated parts of o(q’,q""), we
observe that the integral over dn’ of (14¢—x')~2 is
much larger than the integral of (1+¢—x’)~! because
€< 1. Therefore, we select only the terms with the most
factors of the ‘“nearly’” singular denominator. One
consequence is that exchange terms are ignorable.

The C part of ¢(q’,q"") has the same order of magni-
tude as op(q’,q"”") from which it may be distinguished,
however, by using a counter to catch the forward elec-
tron, in coincidence with the meson counters. If the
aperture of the electron counter is larger than 6'= (¢')}
~1072 radian and much less than one radian, a negli-
gible amount of diffuse production is counted and a
negligible amount of concentrated production is omitted
by this triple coincidence experiment. If we omit the
second meson counter, thus integrating over (dg'’'/w’)
X (dQ"/4r) without losing control of the experiment, a
physically interesting quantity is obtained at a much
higher counting rate. The estimate given in the intro-
duction is easily obtained from the above formulas,
keeping also in mind the considerations given after
formula (2.13).

Finally, the CC part of ¢(q’,q"”’) is obtained by using
the concentrated parts e,” and e,”, and corresponds to
both electrons being rescattered in their forward direc-
tions. This also forces the meson pair to appear with
zero transverse momentum. The special case in which
the meson pair has zero total momentum is considered
in detail in the following section.

4. PRODUCTION OF PIONS WITH
OPPOSITE MOMENTA

Setting q'= q"" we obtain the special case in which the
pions possess equal energy and emerge in opposite
directions. The final electrons likewise have opposite
momenta, p’=p”. The notation can be simplified some-
what. Because doubly primed variables are now equal
to their singly primed counterparts, we put E=E'=E",
n’=n", and drop primes on other variables. (Excep-
tion: the space parts of ¢,¢” are opposite. Put
e=e’'=—e/.)

The total matrix element for odd processes vanishes
identically (not merely in the relativistic limit) in this
case. This can be proved as follows®: M, is a Lorentz
invariant function of gy, ps, ps, ps, and f which we
write M,=M (1234f). Then M,=M (2143f). Now, f,.
=(g1—¢2)u/ (q1-+¢2)? is a vector without a time com-
ponent, and M, depends linearly on f. Under a spatial
reflection, M, is invariant, but p; and p, are inter-
changed, ps; and p4 are interchanged, and f changes

¢ This proof is due to L. M. Brown.
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sign. Therefore,
M.,=—-M(2143f)= —M,.

Similarly, M,=—M,. Hence, Mo=M ,+My+M +M,
=0, as asserted.

Therefore the production in this case arises only from
even processes. The CC part of the cross section, in
virtue of its greater number of nearly singular de-
nominators dominates the C and D parts. Thus, we
replace ¢/, ¢” with e, —e,, respectively, in (2.5).
Furthermore, the meson propagator may be evaluated
at =0:

L(ki—q1)?*— ]| pmo= —20(0—q.);
then

Mo={el—[w(w—g.) "2(q-e)}+ (g —q)
=2{e’—[w—¢ 172(q &)’} (4.1)

When e;, taken from (2.13a), is inserted in (4.1), we
obtain an equation of the form

Mo=3(EE)2(14-e—x)

X{X+io1- Xi+io2- Xo—01- X0}, (4.2)
where X is a dyadic in three dimensions. Then
S|M,|*= & (EE)~*(1+e—x)

X{ X+ X2+ X2+ trace X XT},  (4.3)

where the superscript 7" denotes transpose. To calculate
the “X’s,” choose the azimuth ¢(=¢'=¢'") so that
n,/-q=q.| sinf cose. Use the abbreviations

s= qu2 (w2_ QZZ)-—I p— 2q12 (”2_.’_ ql2)—1y (4_4)

a=n’Xn, (4.5a)

b=n,"— (2¢)n, (4.5b)

c=bX(q./|q.]). (4.5¢)
Therefore, by (2.13a), (4.1), and (4.2),

X =p2sin?9(1—s cos?p), (4.6a)

X1=X,=p[ (2¢)*a—s sinf cospc ], (4.6b)

X=Ib2—aa—bb—scc (I is the unit dyadic). (4.6c)
Noting that a-b=c-b=0, we have

trace X XT= a*—2a?b?+2b*

+2s[ (a-¢)2— b2 ]+s%ct.  (4.7)
After a% b?, etc. are expressed in terms of 6, ¢, € and
the integration over ¢ is carried out, we have

(2m)1 f X?d o=t sint9(1—s+352), (4.82)
(o) [ (X4 X)ip=g? sint
X[4e(1—s5+3s2)+%s2sin?], (4.8b)
(2m)1 f tr X X7d o= (sin®0-}4e sin?6+8¢?)
X (1—s+3s2)—1s?sind. (4.8¢c)
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When (4.8) and (4.3) are used in (2.6) and the in-
tegration is performed, we obtain the final result, which
can be expressed in the form

do (4, — @) = (of/2mm?) (A /4me?) (A" /4e)Q,
where

0=[Fu(i+ad) et (B B) (u+0.)
HERP i+ ad). (410)

Consider now the cross section occ(q’,q"’) as a func-
tion of (q'—q"’). with ¢,/=¢.”. Equation (4.9) is its
value for (q'—q'"),=0. The cross section is strongly
peaked about this value and if (q'—q"’). differs only
slightly from zero, drops to a negligible value compared
with its peak value. This is because, when both elec-
trons are well concentrated in their forward directions,
the transverse component of the meson-pair momentum
must be concentrated about zero.

We are therefore led to consider the following type of
experiment. Let one counter record all mesons with
momentum between q and q+dq’. Let a second counter,
placed in coincidence, record mesons of momentum q”,
where ¢,” is between —g¢, and —g¢,+dg,”, and with
q.” such that

(4.9)

0< [ (a—q")u|/2E<p. (4.11)

Here, p should be large compared with 10~3 and small
compared with unity—say, p~10~2 The characteristics
(energy and angular resolution) of the counters will
imply some relations between dq’, dg.”’, and p, but for
simplicity in this discussion, we assume they can be
chosen independently. In any case (see below) the
cross section depends weakly on the resolution factor p.
Define

docc(q)= f
la—q”[<2Ep

With p>1073, essentially all pairs produced (with
g.'—¢."'=0) in CC processes will be counted with cross
section docc(q). The counting rate for C or D processes
will be supplied with an additional (very small) factor
of p. Thus the experiment really measures only docc q).
The evaluation of (4.12) is examined in the Appendix.
The result is

docc(a,q”)
T g (4.12)

124

dq,

@' =g

docc(q) = (/2w E?) (dq/4ne?) (dg."" /) f(9,E), (4.13)
where
f(q,B)= (w+q)[Ap*+B('+q], (4.14)
and
E—w\? m? 2p? 202\ %
a=(=7) 52+ ()|
(4.15)

E—w 2p? 2E—w\? 20%\2 =
B=A—( ) ln~—+( ) [(m—) -_].
E € 2E € 3
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Note that the cross section depends weakly on the
angle at which the pions are produced relative to the
beam direction. }

The ratio R of the counting rate of this experiment
to that of a 90° Mgller scattering experiment,” for
equal angular apertures of the counters, is given by

LOE G o

For p=3X 1072, E=500 Mev, w=300 and 400 Mev we
get R=5X10"%(dg/w)(dg.”"/w) and R=2X10"%(dg/w)
X (dq./w), respectively, for mesons emitted transverse
to the beam direction. The true rate of reaction might
turn out to be much larger, thereby revealing the effect
of strong pion-pion interactions.
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APPENDIX

The calculation of doce(q’,q”") in the neighborhood
of q¢'=¢q'’=q follows the line laid out in Sec. 4, but
with some attention to the distinction between singly
primed and doubly primed variables. To obtain (4.12),
we may, however, set ¢/=g¢,’. We define E=E
—1(w’+w'") which coincides, in the zero-momentum
case, with the definition of Sec. 4. Further, let A
= (2E)'(q'—q").. The conservation laws applied to
m? tell us that

p: (p'—p")=0, (A.1a)
E'—E'=2E—-E), (A.1b)
E'=(14+n"A)E(1—A)—[E(1—-A)T'm2. (A.lc)

The only point of difficulty in the calculation, and
the only one we discuss in detail, relates to the angular
integrals which are of the general type

f sin™@ cosP¢’ sin™d”’ cos?¢’ kitkstdn’.  (A.2)

The coefficient of a factor like (A.2) may be evaluated
at '=q"'=q, i.e., at the peak value of the cross section,
but the integrals (A.2), since they define the shape of
the peak, must be treated more carefully. We consider,
first of all, those integrals without a dependence on
¢', ¢'" in the numerator. These may be reduced to the

7 The comparison is here made with Born approximation Mgller
scattering, without taking into account radiative corrections.
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basic forms

In,m=fk1“2"k2‘2mdn'; n=1,2; m=1,2, (A.3a)

and

I= f sing’ sinf’'ky—4k;~dn’. (A.3b)

To arrive at (4.13), one must then compute the two-
dimensional integrals [A has only transverse compo-
nents and dA= (2E)~%dq,”],

]n,m: f In,mdA, J= f TdA. (A.4)
[Al<e [Al<e
We make use of the well-known formula
1
(ab)-= f [atz(b—a)T2dz,  (A.Sa)
0
and the related formulas
1
(ab®) 1= f [a+2(b—a)]?22dz, (A.5b)
0

(azbz)‘1=f [a+2z(b—a)]462(1—2)dz, (A.5c)

obtainable from (A.5a) by differentiation with respect
to a, b.

With the substitutions a=*%2, b=*k;* we infer, by
(A1),

a+z(b—a)
=2{EE'—p-p'—m+3[ E(E"—E)+p- ('—p") ]}
=2EE(1+n’- Ay [B—n’-A]+2m2C, (A.6)
where
=(1—A%)n—22A, (A.7a)
B=(1— A%)+23A2 (A.7b)
C=[2E(1—A>)En’- (A—2za+n)
+[2E(1+n"-A)TE(1—A2)—1. (A.7c)
Furthermore,
B2=A24-45(1—2) A2(1— A2). (A.8)

Because of (A.6), (A.7), the J’s are nearly singular
when n’ is in the direction A and A? is very small. As
the C term is significant only in this case, we evaluate
it for A=0, n’=n, obtaining

m?C=EEe.

Moreover, |A|<p<1 in (A.4), so A? is ignorable
relative to unity. We may also replace the factor
(14n’- A) by unity in (A.6) as it ultimately yields® A2

F. CALOGERO AND C.
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corrections only. Therefore, by (A.8),
B=[A2+4z(1—2) A2 = A+2z(1—2) A2
Therefore, by (A.5¢)

1
J2,2=f dAf dzfdn’
[Al<p 0

X[A—n'-A+23(1—35) A2 e
X 2EE)~6z(1—2)

1
=fdzf dA[2z(1—2) A% 3
0 JA|<p
X (EE)*m3(1—2)

(A.9)

=qle? (ZEE’)“‘.
Similarly, (A.5b) and (A.5a) lead to

(A.10)

J2,1=J1,2=

4(EE’)3€j; [2:(1—2)— 2] dz

o)
(A11)

f ( _;_—_) In[14-25(1—3)p%/ €]

T S(ER)e

Ji2

4(EE)?

]1,1=
-

Z(EE)2

ldz
f — In[14-22(1—2)p%/€].

Since €/p? is small,

14-25(1—2)p*/ e= (1+b12) (1+b2),

bi=(p*/ [ 1+ (142¢/p) ¥ = 20"/,
b= (p*/)[1— (142¢/p) ]~ — 1.
Consequently?

B
=2(EE)2[ ( 2p2) 2]

Using these methods, one may also demonstrate that
sinf’ sinf’’ in (A.3b) can be approximated by sin%), re-
ducing (A.3b) to integrals of type (A.3a), and that
occurrences of ¢’, ¢”’ in (A.2) may be averaged (with
¢'=¢'") as in Sec. 4, Eq. (4.8).

The only serious obstacles to the calculation of
docc(q) are now overcome. The result is given in (4.13)
of the text.

8 See, for example, H. B. Dwight, Tables of Integrals and Other

Mathematical Data (The Macmillan Company, New York, 1949),
pp. 137 and 201.

where

(A.12)



