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A detailed investigation is made of the way in which parity-nonconserving (PNC) internucleon potentials
lead to parity impurities in nuclear states and hence to pseudoscalar asymmetries in the emission of gamma,
radiation. Explicit expressions are obtained for the angular distribution of unpolarized radiation (a) in
emission from nuclei polarized by non-nuclear methods, (b) in 8-y angular correlations, (c) in polarized
thermal neutron capture radiation and also for the magnitude of the circular polarization of radiation from
an arbitrarily oriented nuclear system. The magnitudes of these effects are then estimated for the case of a
transition between low-lying nuclear states and also for a ground-state transition following neutron capture.
Finally a critique of the y-ray transitions so far used in experimental investigations of PNC effects is given.
It is concluded that many transitions in particularly simple nuclei are insensitive to PNC effects and that at
present all that can be stated with any confidence is that §<10~4—1075,

I. INTRODUCTION

N an earlier paper! a discussion is given of the form
a parity-nonconserving (PNC) internucleon poten-
tial might be expected to take because of invariance
requirements. Further, the form of the specific PNC
potentials arising in lowest order from the conserved
self-interacting current description of weak interactions
is deduced. A velocity-dependent and a static potential
are obtained having the following forms:
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where u, 1, p, ¢, and « have their usual meanings and G
and f are, respectively, the weak four-fermion and pion-
nucleon pseudovector coupling constants.

Wilkinson? has classified those experiments in low-
energy nuclear physics suitable for the detection of
parity-nonconserving effects resulting from potentials of
this type, and it would seem from his analysis that the
apparently most sensitive are those involving the meas-
urement of asymmetries, circular polarizations, etc., in
gamma transitions between nuclear states. Such experi-
ments are the most promising because, in general, they
are sensitive to the amplitudes of parity impurities in
nuclear states. The object of the present paper is to
investigate in more detail the way in which PNC po-
tentials will lead to such parity impurities and how they
will manifest themselves in electromagnetic transitions.
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In Secs. II-IV the geometrical problem of angular dis-
tributions, etc., is discussed, in Sec. V the magnitude of
the parity nonconserving effects is investigated and in
Sec. VI the suitability of the electromagnetic transitions
so far used in experiments is commented on.

II. ASYMMETRY EFFECTS IN GAMMA-
TRANSITIONS. GENERAL RESULTS

Consider a gamma transition between the nuclear
substates | j'm’) and | jm), both of which may contain
components having opposite parity to the predominant
parity of the state. The appropriate matrix element? for
the transition can be written ’

(j'm' |3C(A)| jmy
=7 % (2L+1)f(P)DypP (k)
X[(j'm'|5C(A L™ (m)) | jm)
+(=P)j'm' |3(4M(e))| jm)], (3)

where f(P)(P=+1 or —1 corresponding to left or right
circular polarization) determines the polarization of the
photon emitted in the direction k and 3¢ (4 ¥ (m)) and
3C(AM(e)) are the usual magnetic and electric multi-
pole operators but with additional phase factorst % and
1L+ respectively.?

In such a transition interference effects will arise be-
tween multipoles of opposite parity because of parity
impurities in the states | jm) and | j’m’) and will mani-
fest themselves as pseudoscalar quantities in the angular
distribution of the emitted radiation. The angular
distribution Im,m—ar of the radiation emitted in the
transition | jm)—|j' m— M) taking into account the
contribution from all multipoles and for arbitrary
polarization of the radiation is obtained by taking the
square modulus of the matrix element (3). The calcula-

(1; ‘%)C. Biedenharn and M. E. Rose, Revs. Modern Phys. 25, 729
4 Such a choice of phase factors ensures that the nuclear reduced
matrix elements are relative real. See reference 3.
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tion is straightforward using the techniques of reference
3 and the following expression is obtained:

Lnma= [(f'm—M|5C(A)] jm)|?
=Y [(2L41) QL+1)TC(7'Lj;m—MM)

XC('Lj;m—MM)FM(k), (4)
where the C’s are Clebsch-Gordan coefficients, and

FroM (k)= (=) S (C(LLv; —11)C(LL'y; — MM)
XP,(cost)[Grr”(mr¥*mp~er*er)
FHypr(er*mp+mi*ers)]

L C(LL'y; 11)C(LLv; — MM)
XL[(r—2)!/ (v+2) 1 ]2P,® (cosh)
X[ Lo (mr*mp —er*er)
+J oot (er*mp—mr*er) ]}, (5)

Here

Gro=| f(0) |24+ (=) 2= | f(= 1),
Hyp=|f()|'= (=) 5= f(= D, ©
Tou=FH(= 1) fD+ (=) == PH(1) f(= 1),
Tr= (=D = (=) = (1) f(=1),

and m 1, and ez, are the reduced matrix elements
mr={j'll5c(Ar(m)||7); er=(7'llseArle)]s). ()

To proceed further it is necessary to specify both the
orientation of the initial nuclear system, that is, the
distribution of the nuclear substates | jm), and also the
polarization of the emitted radiation. We consider two
cases which are likely to be most useful from the point
of view of detection of parity nonconservation.

III. ANGULAR DISTRIBUTION OF UNPOLARIZED
RADIATION FROM AN ORIENTED
NUCLEAR SYSTEM

Suppose that the initial nuclear state has been
polarized by some mechanism and that the probability®
of finding the nucleus in the substate | jm) is p(m). The
resulting angular distribution of the emitted radiation is
then given by

W= ZA:{ D) L mr ©)

Nows* for a plane wave with electric field polarized at an
angle x to the direction defined by the intersection of the
plane normal to & and the plane of % and the axis of
quantization:

f(P)=(1/V2) exp(—iPx).

8 The assumed noncoherence of the substates m is valid for all
the cases considered in this paper. See reference 3 for a discussion
of this point.

6 M. E. Rose, Multipole Fields (John Wiley & Sons, Inc., New
York, 1955).
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Thus,

GLL’V= 5L+L'+V,even,

Hi"=0ry14v,0ad, ©)
I5,1:"=cOS2X0 14 L'4v,even— 15 SIN2XO Ly L7 4,044,
Jrop?r= C052X5L+L’+v,odd_'i sin2x6,;+p+,,even.

However, if polarization insensitive detectors are used
for the detection of the radiation, then an average has to
be taken over x, giving

(IL 52 V) average — (]L L v) average — 0.

The resulting angular distribution can then be simplified
to the following form:

W(@)==* 2 B,(j)F,(LL'j'j)

LL'» ]

X[t Lrtv,even(mL¥*mp~+er*er)

+0rn14v0aa(mr¥er4er*mp) 1P, (cosh), (10)
where B,(j) is given by
B,(5) =2 n(2v+1)3C(jvj; m0)p(m), (11)

and is a parameter introduced by various authors”? to
describe the nature of the orientation of a nucleus. Its
properties in some specific cases will be discussed a little
later. The factor F,(LL'j'4) is defined by

PALL'} )= (=)7#-{Qj+D) QLA @L+DT!
XC(LL'v; 1—=OW(LL jj; vi). (12)

It has been used frequently in the discussion of angular
distributions and has been tabulated by Biedenharn and
Rose®? and Alder et al.X

Inspection of the expression (10) shows that the terms
indicating breakdown of parity conservation, namely
those with » odd, can occur in two ways. Firstly there
can be interference between multipoles of like character
(i.e., electric or magnetic) but whose orders differ by an
odd number (e.g., E1-E2 interference). Secondly there
can be interference between multipoles of unlike charac-
ter but which have the same multipolarity (e.g.,
E1-M1) or multipolarity differing by an even number
(e.g., E2-M4). In practice the most likely possibility is
interference between electric and magnetic multipoles of
the same order; however, it is possible that in some ex-
ceptional cases, the other types of interference may be
important. In any case, it is clear that a breakdown in
parity conservation will manifest itself in a forward
backward asymmetry of the emitted radiation relative

7S. R. DeGroot and H. A. Tolhoek, Beta- and Gamma-Ray
Spectroscopy, edited by K. Siegbahn (Interscience Publishers Inc.,
New York, 1955).

8 T. P. Gray and G. R. Satchler, Proc. Phys. Soc. (London)
A68, 349 (1955).

9 Note that in the notation of reference 3 F,(Lj’j)=F,(LLj’j)
of the present paper and reference 10.
(11" 17() Alder, B. Stech, and A. Winther, Phys. Rev. 107, 728
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to the orientation axis of the initial nuclei. Such an
asymmetry depends not only on a breakdown of parity
conservation, but also on the nonvanishing of the B,(y)
with » odd, and for the effect to be large this requires
that these terms be as large as possible. Three types of
method for producing large B,(7) (v odd) are discussed
in the following sections.

A. The Orientation Parameter B,(J)

The following explicit forms for the B,(j) are to be
noticed

Bo(j)= 17
Bl(j)zng’

CiG+D ] (13)
Balj)= (5)%27,‘ [m?—3j(j+1)1p(m)

LG+ 25— 1)(25+3)]F

Apart from a normalization factor, B1(J) represents the
polarization and Bs(j) represents the alinement of the
initial nuclear system. At the present time it seems
unlikely that higher values of B,(7) would be important
and in all probability the main forward-backward
asymmetry is expected to arise from the term Bi(7).

We now consider three ways of polarizing the initial
nuclear state, all of which have been used experi-
mentally.

B. Polarization by Non-Nuclear Methods

Two groups of methods for orienting nuclei have been
proposed which depend essentially on the interaction of
the nuclear electromagnetic moments with electromag-
netic fields. On the one hand there are the methods
which depend on the separation in energy of the nuclear
magnetic substates and then ensure that these are
unequally populated by reducing the temperature of the
system so far that the low-lying states become prefer-
entially populated, i.e., the p(m) are not equal to one
another. On the other hand, there are the optical and
microwave methods which depend on the atomic ab-
sorption and emission of radiation; in these preferential
nuclear magnetic state populations may be obtained by
emission of atomic radiation through different channels
from those by which it was absorbed. These methods are
reviewed and the orientation parameters quoted by
Blin-Stoyle and Grace' and will not be further con-
sidered here.

C. 8-y Angular Correlations

It is now well established that in beta decay, parity is
not conserved and it therefore follows that the final
nuclear state following a beta transition will be highly

1 R. J. Blin-Stoyle and M. A. Grace, Handbuch der Physik,
edited by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. XLII.
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polarized in the direction of the emitted beta ray. Thus,
if parity is not conserved in the succeeding v emission, a
forward-backward asymmetry is to be expected in the
B-y angular correlation.??

We now restrict ourselves to the case of an allowed
B decay js—> j, where jg is the spin of the S-emitting
state and j that of the daughter (y emitting) nucleus.
In such a decay, the angular momentum restrictions are
such that only Bo(7) and B:(j) are nonvanishing. Now
Bo(4)=1 and B;(j) can easily be deduced from the ex-
pression for the angular distribution of 8 particles from
a polarized nucleus by applying time reversal argu-
ments. A discussion of the relation between the asym-
metry factor in such a process and the polarization of the
nucleus following the time reversed process is given for
the general case by Satchler.®® Taking the expression for
the asymmetry in 3 decay from a polarized nucleus from
the work of Jackson et al* and comparing with
Satchler’s' results, it follows that in the allowed 8 decay
Js—> j with jg unpolarized, the polarization of j along
the axis of emission of the 8 particles is

i+1 pe
AP

P= ,
3j E,

(14)

where p, and E, are the momentum and energy of the
emitted 8 particles and 4 is given by the two equations,

AE= I MGT| 2%;’;9]’[:&2 RC(CTCT,*—CACA/*)

alm
De

+

2 Im(CTCA’*—{—CT’CA*)]

J
Jjt+1

+5j,ngFMGT( ) [2 Re(CsCr'*+C4'Cr*

aZm
—CVcA'*-Cv’CA*):b'—**2 Im(CsCA’*

Pe

+CS'CA*—CVCT'*—CV'CT*)], (15)

£=|Me|’[|Cs|*+|Cv[*+[Cs'[*+]Cv'|%]
+|Mer|’[|Cr[*+[Ca|*+[C2'|>+|C4'|], (16)
with
Nigi=1 for jg=j—1,
=1/(j+1)  for js=j,
=—j/(j+1) for js=j+1.

The remaining symbols in (15) refer to the nature of the

2 F, Boehm and U. Hauser (to be published).

13 G. R. Satchler, Nuclear Phys. 8, 65 (1958).

14 J. D. Jackson, S. B. Treiman, and H. W. Wyld, Jr., Nuclear
Phys. 4, 206 (1957).
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B-decay interaction and have their usual significance
“and the 4 signs correspond to electron or positron
emission.

Now the polarization P is defined by

1
P=',Z mP(m)’ (17)
J
so that, comparing (13), (14), and (17)
i+1
('7 (18)

There is considerable evidence at the present time
that in B decay Cs=Cr=Cgs'=Cr'=0, C4=C,'=real,
Cy=Cy'=real. We therefore spec1ahze the precedlng
results to this case and also approximate Z=0. Thus

Bl(])—_(J+1)
x[:l:)\jaﬁzajﬂry(]_—]_l;i)%] / [1+~7], (19)

where y=CyM5/CaMar.

Now in the most likely case of practical interest the
interference term indicative of parity nonconservation
in the angular distribution of the following v radiation
will be between electric and magnetic multipoles of the
same order L (say). Thus, remembering »=0, 1 only,
(10) can be written

W©O)=n*{(|mz|*+|eL]?)
+B1(j)F1(LLj'j)(mr*er+er*my1) cos}, (20)
« (14-a cosf), (21)

where, using (18) and (19) the asymmetry factor « is
given by

a—gg-[[ikjﬁrf‘zamﬁ( ) J/[Hvﬂ}

*

mr7eL
XF 1(LLJ"J')“———+—“—- (22)

[mi|*+]es]?

Here, the fact, referred to earlier, has been used that m 1,
and ey, are relatively real. It is now a straightforward
matter to use formula (22) for any particular B-y
angular correlation.'s

D. Capture of Polarized Thermal Neutrons

Haas et al.'6 have suggested that parity-nonconserving
effects might show up as a forward-backward asymmetry

16 A formula essentially identical with this has also been ob-
tained by L. Kruger [Z. Physik 157, 369 (1959)].

16 R. Haas, L. B. Leipuner, and R. K. Adair, Phys. Rev. 116,
1221 (1959).
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in the angular distribution of v rays emitted by a com-
pound nuclear state formed by the capture of polarized
S-wave neutrons. Since neutrons have spin % it follows
that in describing the orientation properties of the state
resulting from the capture process, only Bo(7) and B;(7)
are nonvanishing.

Let the spin of the initial nuclear state (before cap-
ture) be j; and let the spin of the compound (y-
emitting) state be j. If €,(u==3) is the probability of a
neutron having a zcomponent u, the orientation weighing
factor p(m) for the compound state j is given by

2
1>(m)=§jr1 % e C(jgj;m—u)|®  (23)

J

Inserting this expression into Eq. (11), Bo(7) and B;(4)
can then be calculated. We obtain

Bo(j)=1,
ji(jt1)—(+1)— %
Bl(j)=] (4 ) .](] ) ~
[35G+D7]

where P, is the polarization of the captured neutrons,
given by

(24)

Po=(eg—e1)/(g+ey). (25)

Substitution of By(j) and Bi(j) into (10) at once
gives the angular distribution of the emitted v rays in
the transition j — j' relative to the polarization direc-
tion of the neutrons. For the special case of interference
between two multipoles m 1, and ey, of the same order, the
expression for the angular distribution simplifies to

W(e)=r {<1mm+JeL12>

D)= (i 1)—3
PJ(J )—j(j+1)—%

1 (LLj"))
BiG+D]
X (mp*er+er*my) cosff, (26)
« (14-a cosb), 27
where the asymmetry factor a is given by
Jijit ) —j(G+1)—%
a=2P —
[37(+1D]
KELLY — o (28)
1 i s
[me|*+]er]|?
as been quoted for the particular case j;=0, j=1%,

a
i'=3, L=1 by Haas et al.'®
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IV. EMISSION OF CIRCULARLY POLARIZED
RADIATION

If detectors sensitive to circular polarization are used
for the detection of emitted « rays, then, even if the
initial nuclear system is unpolarized, there will be a
resultant circular polarization if parity is not conserved.
This corresponds, for example, to the longitudinal
polarization of electrons observed in the B8 decay of
unpolarized nuclei. For generality we consider the case
of an arbitrarily oriented nuclear system and then
specialize to the case of unpolarized nuclei. The former

,_WiO=Ws0)
WO+ (0)
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case might, in fact, be of interest since an orientation
may be produced in forming a suitable y-emitting state.?

The distribution of left circularly polarized radiation
W () from an oriented nucleus is given by taking
f)=1and f(—1)=0in (4) and (5), multiplying by
p(m), and summing over m and M. Similarly the
distribution of right circularly polarized radiation Wz (6)
is given by following the same procedure but with
f(1)=0 and f(—1)=1. Using the methods already
described, the following expression is obtained for the
degree & of circular polarization:

2. Bu()F.(LL' § [ (mr*mp~+er*er)d L4y oaat (mr*er e mp )8 Ly 14y even Py (cOSH)

LL'y

Z Bv(j)Fv (LL,j,])[ (mL*mL’+ CL*eL’)BL—I-L'—H ,even+ (mL*e L'+eL*mL’)aL+L’+y‘odd:]Pp (COSO) '
LL'y

In the particularly simple case that the initial nucleus is
unpolarized, the degree of circular polarization reduces
to

6=2 ZLML*eL/ZL(ImLI2+IeLI2)- (30)

In this case an effect is only obtained if there is inter-
ference between electric and magnetic multipoles of the
same order.

V. EXPECTED MAGNITUDE OF THE EFFECTS

All the effects discussed in the preceding sections de-
pend for their observation on the nonvanishing of
interference terms between multipoles having opposite
parity. We now have to make some estimate of the
magnitude of these interference terms.

Let the nuclear wave function for a state ¢ be written

Y, =y i+ne;, (31)

where ¢; and ¢; have opposite parity but the same
angular momentum properties and 7, the amplitude of
admixture of ¢;, is taken to be very small. In general 5
will be of the order &, where & is qualitatively defined to
be the ratio of the strengths of the parity-nonconserving
and parity-conserving internucleon potentials.!''7 ¢, is
referred to as the regular part and ¢; as the irregular
part of the wave function.

Now ¢; is one of the complete set of nuclear states for
the nucleus under consideration and is an eigenfunction
of a Hamiltonian H which includes the strong (assumed
parity conserving) interactions and commutes with the
parity operator. Thus

HYy=Ey: (32)

The irregular part of the wave function ¢; can then be
computed using perturbation theory and treating U, the

17T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).

(29)

PNC internucleon potential, as a perturbation. Thus

\I/i=¢,~+2<]wm §

=i A

(33)

where A;;j=E;—E;.

In order to proceed further it is now necessary to be
more specific. There are essentially two cases to consider
according as the electromagnetic transition is between
low-lying nuclear states, as is usually the case in emis-
sion from oriented nuclei and in a B~y sequence, or
between a state of relatively high energy (=8 Mev) and
a low-lying state as in radiative neutron capture. In the
former case it is a fair approximation to treat the ¥ as
essentially shell-model states whereas in the latter the
capture state will be highly complicated. We consider
these two cases separately. Further we restrict our
considerations to the most usual case, namely that in
which the regular part of the v transition goes via the
magnetic multipole s and the irregular part goes via
the electric multipole ez. In this case an enhancement
effect is to be expected because of the fact that normally
the strength of an electric multipole transition is greater
than that of a magnetic multipole transition of the same
order.?

A. Electromagnetic Transition Between
Low-Lying States

Let the transition be between the nuclear states ¥,
and ¥, which have relative parity (—)%*. By (33)

@01
‘1’1=¢1+ Z -‘—‘1/@,

il Ay

(jlv]2
Vo=y»r+ ZM%

#2 Ag;

(34)
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The matrix element of the magnetic multipole operator
between these two states is

(Wa|mz|¥1)=(2|mz|1), 35)
and that of the electric multipole operator is
Walen]gy= 3 CleHEI0ID

il As;
2 iles
+ Z< [0l 4)ile |1>. (36)
72 Az_,'

Now diagonal matrix elements of U between states ¢
which have a well-defined parity are zero. This means
that the 7 and j summations in (36) can be extended
over all 7 and j. Further, since ey, is a sum of single-
particle operators, |7) differs by at most one-particle
excitation from |2) and similarly | 7) from |1). Also if an
oscillator description is used for the shell model states,
then selection rules require that this particle is excited
through L-oscillator levels. Thus Ay;=As;=—Lhw,
where %w is the oscillator spacing. This means that
closure can now be performed in the two summations to
give

<218L’U+‘06L' 1>

Volen| V)= —
(Fafex ¥ Lhw

(37

This result is exact for an oscillator model and might be
expected to be approximately true in general.

Equation (37) is a formula which can be used as a
basis for calculations in any specific case. We now con-
sider, as an example, the particular case common to
many experiments so far performed in which L=1 and
we have M1-E1 interference in light nuclei.

B. M1-E1 Interference in Light Nuclei

Consider the situation of a regular magnetic dipole
transition and an irregular electric dipole transition be-
tween nuclear states that are adequately described in
terms of a configuration of equivalent particles (either in
LS or jj-coupling). This will be the approximate situa-
tion when considering transitions in light nuclei (e.g.,
A<16). Taking e;=%e >_;(147.9)r;, where 7.(9 is the
z component of the isotopic spin operator for the ith
nucleon and writing V=2 3_ j«x Uj, we have from (37)

e .
(2| 61!‘1’0:;{0)(2] Zak{ A47.9)r 0

+°0jk(1+7'z(i))l',;} I 1>

But in the summation if ¢ j or %, then the above
matrix element will vanish since it would reduce to the
product of matrix elements of two odd-parity operators
(r; and U;z) with respect to particle states having the
same parity (since |1) and |2) are equivalent particle

(38)
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wave functions). Thus, considering only those terms for
which =4 or 1=k, (38) reduces to

(s 1| Wp)= —Z—hjo(Zl gk{ (1+7.9)r, V5

+0 (1471} [1). (39)
Now take ;i to have the form (1). The isotopic spin
dependence can be written (7,97,®47,@7, () and
7.\ anticommutes with U;x. The isotopic spin depend-
ence of (39) therefore disappears to give

Wy 1| W1)=— (e/2h)(2| ;k (ri+76)Vje[1).  (40)

But in LS coupling for a nucleus having <4 equiva-
lent particles, the low-lying states are spatially sym-
metric under interchange of two particles, whereas the
operator in the above matrix element is spatially anti-
symmetric. The matrix element therefore vanishes. This
would be the situation, for example in the — — §—
transition in Li7 which has been used in this way.

In an equivalent-particle jj-description, the matrix
element reduces to a sum of two-particle matrix
elements

Waler| )~ 2 Cniruars

J1T1J2T2
X{(FT 2Tz | (11 12) V| (7T T1),

where the (real) coefficients Cy7r1797; are combinations
of fractional parentage coefficients and J and T are the
total angular momentum and total isotopic spins of two
particles. For reasons of antisymmetry, when 7'=0,
J=1,35---and when I'=1,J=0, 2, 4- - -. Thus, since
(r1+12)Vyp transforms as D@+ D® in isotopic spin
space and D® in ordinary space, it follows that only
diagonal matrix elements can contribute to the sum
(41). The matrix element is therefore real since the
operator is Hermitian. However, because of the choice
of phase of the multipole operators (see section IT) this
matrix element must be imaginary (it is real relative to
(V1 |mq|¥y) with my~iu, where u is the magnetic mo-
ment operator, which is clearly imaginary). Thus this
matrix element vanishes.

The point of the foregoing discussion is to illustrate
that care must be taken in selecting nuclei in which
electromagnetic transitions between low-lying nuclear
states are to be used to investigate the breakdown of
parity conservation. In particular, nuclei which are well
described by a simple few-particles LS or jj wave
functions are likely to be unsatisfactory in that the
irregular multipole matrix element may vanish or be
very small for reasons of the type just described thus
making the experiment insensitive for the detection of
at least certain types of PNC internucleon potential.

We now consider the situation for a neutron-capture
gamma-ray transition.

(41)
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C. Neutron Capture y-Ray Transition

This case has been discussed to some extent by Haas
et al.® A rather different treatment of the problem is
given here.

The situation differs from that holding in the case of
a  transition between low-lying states in that very near
the capture state ¥, is likely to be a state ¥/, having
the same angular momentum but opposite parity. The
admixture of this state into ¥, will then be the domi-
nant contribution to the sum in expression (33). Thus,
we approximate (33) by

Nu[0[Ag)

¢X’u' (42)

Y=g
ANNY

The problem then resolves itself into estimating the
magnitude of the admixture parameter «, where

NulONg) M
Ay Ay .

(43)

o

Unfortunately, the situation is too complicated to ob-
tain anything but some average estimate of a. In the
following an upper limit is obtained for the average
value of o using the same model as Haas ef al.'% In this
model it is assumed that y», whose corresponding
eigenvalue is )y 4, can be expanded as

"p)\g=2i A Uig,

where the set #;, is approximately equal to the set of NV
almost degenerate oscillator states belonging to the
oscillator level » with energy #fiw near E,,. Thus
approximately :

(44)

Hyr g=nlicrhyg,
(Ho+V)¥rg=Exgro,

where H, is the oscillator Hamiltonian and V is a strong
parity-conserving internucleon potential representing
the difference between the oscillator potential and the
true internucleon potential. The opposite-parity state
¥ can be described in a similar fashion as belonging to
the oscillator level m (of opposite parity to #) with
energy mhw and degeneracy M.

We now want to obtain some idea of the average
values of 9 and Axn. Consider X _u |9 |2 By
closure

(45)

S [ 2= (hg | T Ag). (46)

If U only had matrix elements between ¥, and states
¥ belonging to the oscillator level m, then

2o | 9w [2= M [ L.,

(47)

where [9M,2],v is the mean square average of matrix
elements between ¥y, and states of the type ¥.,. How-
ever, U will have matrix elements between ¢, and other
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states, so that
(M2 ey < (1/20) X0 | 90 |2 (48)

Finally, averaging over the IV states ¥, belonging to the
oscillator level #, we have for the mean square average
of matrix elements of U between states of the type y¥a,
and Y,

1 1
M e K — 3 [TMans [2=—— 3 (rg| V[
[ ]ee S—— 2 [0 NM§<gI I\

NM
SA/M)LAg [T [Ag)Tav  (49)
Now consider the quantity
[ V2 [Ag) Jav=(1/N)Zarg| V2|Ag),  (50)

where the A sum is over the V states belonging to the
oscillator level #z. By Egs. (45) and (50)

[ V2 [Ag) Jav= (1/N)Zx(Ng | (Exo— Ho)?[Ng)
=~ (1/N) Mg | (B, —nhic)?| Ng)
~ (1/N) 20 (Exg—nliw)?. (51)
But this quantity is the mean square deviation of the
energy of the states ¥, from the oscillator level » and
if the level spacing for the states ¥, is A its value must

be less than (NVA)? if the states are distributed in the
vicinity of z. Conversely

L(VA)ev2 [O\g| Ve I Ag) Jav. (52)

But the mean value of Ay will also be of the order
([A?]av)? where by (52)

([A%Jan)t2 (/) (CNg| V2 Ag)Jaw) . (53)
Now write [0 |.v=[9].v/[A%].s to give on using (49)
and (53)
N [V N Jav) F
) Ss—=———) -
. M *( KN Ag)]w)
But ([(\g| V2| Ag)Jav/[Ag| V2| Ag)av)? is a very suitable

definition of & the ratio of the strengths of the PNC and
PC potentials. Further N~ M, so that

(l:a2]av)%§ EFN%. (55)

This upper limit on ([o?],+)? is to be compared with the
result of Haas ef al.,'® who obtain essentially [see their
equation (2)]

(54)

([a¥]av)i= AN H,/ /fiw,

where A is the mass number of the nucleus under con-
sideration, 7w the oscillator spacing and ,H,' is an
effective one-particle matrix element of the PNC po-
tential. This latter quantity is difficult to interpret in
view of the fact pointed out in I that, at least in the
static approximation, it is impossible to construct a one-
particle PNC potential. For &, Haas et al.'¢ take the
ratio of ,H.' to the depth V, of the single particle shell

(56)
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model potential. Thus, their result can be written -
([*Jev) =N} (AW o/hw), 7

where (4%Vo/hw) =40 for A =100, V=40 Mev, fiw=10
Mev. Now the inequality in (55) is quite a strong one!8
so that comparison of (55) and (57) would imply that
([e?Jav)? is at least a factor 102— 102 smaller than that
taken by Haas et al.

VL. CRITIQUE OF vy TRANSITIONS USED
IN EXPERIMENTS

In the following, brief remarks are made, in the light
of the foregoing discussion, about the + transitions so far
used by experimenters in investigations of parity non-
conservation in electromagnetic transitions.

B(3—, T=4) >BUG3—, T=})©

The regular transition here is M1 and M1-E1 inter-
ference is to be expected. Since there are 7 equivalent
particles in the p shell there is no obvious reason why the
interference term should vanish. Furthermore, isotopic
spin considerations impose no restrictions and the transi-
tion seems to be a useful one to use. Wilkinson'
obtains $2< 1X1077.

01 (1—, T=0) — 0'%(0+, T=0) '

Here the regular transition is £1 but is much inhibited
by the AT=0 selection rule for electric dipole emission.
M1-E1 interference therefore might be expected to be
large. However, with either of the PNC potentials (1)
or (2) (even including higher order contributions which
will have essentially the same D©-4D® symmetry in
isotopic spin space) only parity impurities having 7’=0
or 2 can be admixed. However AT'=2 is forbidden in an
electromagnetic transition and a AT=0 M1 transition
matrix element is inhibited® by a factor =~10. Wilkin-
son’s!? result (52K 3X1078) should therefore be modified
to §2<3X 1076 if it is supposed that the PNC potential
stems from the self interacting current description of
weak interactions.

Li"(3—, T=4) > LiG—, T=H ®

Again the regular transition is E1 and we have M1-E1
interference. However, Li’ is a nucleus in which an LS or
jj description gives a vanishing effect for the potential
(1). In intermediate coupling there would be a finite
effect, but since it vanishes at the two extremes of
coupling it is expected to be small in the intermediate
case.

18 E.g., for a uniform distribution of levels distributed sym-
metrically about #/w the inequality in (53) alone corresponds to a
factor 12.

¥ D. H. Wilkinson, Phys. Rev. 109, 1610 (1958).

# G. Morpurgo, Phys, Rev. 110, 721 (1958).

# D. H. Wilkinson, Phys, Rev. 109, 1614 (1958).
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K (3—) > K4 (34); Cs9 (34) — Cs@(34);
Hf"™(9/24) — Hf"(3—) 22

The regular parts of these transitions, which are be-
tween low-lying states, are respectively M2, M1, and
E1l and any interference is expected to be with the
multipole of the same multipolarity but opposite parity.
Each of these transitions follows a 8 decay and has been
used by Boehm and Hauser™ in searching for a forward-
backward asymmetry in the B-y angular correlation.
From the point of view of the investigations of this
paper, all that can be said is that the transitions are
between complicated many particle states of mixed
isotopic spin. Thus, there is no a priori reason why any
selection rule or principle should vitiate the significance
of the experimental results, although an accidental
vanishing of any effect cannot be ruled out. After
making various theoretical assumptions, Boehm and
Hauser'? came to the conclusion that

FL2.8X 10~ - - 7.5 10,

Cd114*(1+) — Cd114 (0+) 16

This transition, following the capture of polarized
thermal neutrons, has been used by Haas et al.!® and an
experimental upper limit obtained for the forward-back-
ward asymmetry of the radiation relative to the polari-
zation direction of the neutrons. The regular transition
is M1 and M1-El interference is expected as in the
discussion of section V(c). Using (57), Haas et al. obtain
F< 1079 and quote < 1078 after allowing a factor 10 for
the uncertainties of their calculation. However, in view
of the conclusions of section V(c), probably the most
that can be stated with any confidence is that $< 1078,
here allowing a factor 100 for the inequalities which
appear in the calculations of that section.

VII. DISCUSSION

The foregoing calculations and the comments on the
7 transitions so far used in experiments indicate that the
nature of the nucleus selected for an experiment is ex-
tremely important. Thus, if it is assumed that the PNC
internucleon potential arises from the self-interacting
current theory of weak interactions, then because of the
isotopic spin character of the current and the charge
independent nature of strong interactions, it follows that
the PNC potential must always transform as a combi-
nation of D©® and D® in isotopic spin space. This means
that an experiment which depends on admixing isotopic
spin states by a D® admixing agent is of no value for
the detection of such a potential. This stricture would
only apply, of course, to light nuclei where isotopic spin
is a good quantum number.

Furthermore, if the isotopic spin dependence is that of
the potential (1), then the analysis of section V(b) sug-
gests that it is unwise to chose a v transition in a nucleus
having a one-particle, or particularly simple LS or jj
equivalent-particle structure.
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It is therefore to be expected that v transitions in
rather complicated nuclei have more chance of showing
an effect. If one is observed in such a nucleus, well and
good. However, if no effect is observed, then because of
the very complexity of the nucleus, the negative result
is difficult to interpret. As pointed out by Wilkinson,?
the significance of such negative results only increases in
proportion to the number of cases investigated. So far
only a few experiments have been carried out and it is

189

probably only safe to say that §<1074—1075 with any
confidence. This is still two orders of magnitude larger
than the value of § expected from the potential (1).
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Studies were made on the Pb*? (ThB) active deposit by means of gamma singles and beta-gamma,
gamma-gamma, gamma-alpha, and gamma-gamma-alpha coincidence measurements. The singles and
coincidence gamma-ray spectra were recorded on an RCL 256-channel analyzer, and an intermediate-image
beta-ray spectrometer was used in the beta-gamma work. Beta intensities of 4.640.2, 23.9+0.8, 22.7+0.7,
48.842.7, and <0.5% were obtained for the 1.04-, 1.29-, 1.52-, 1.80-, and 2.38-Mev groups, respectively,
of the TI?® — Pb%8 decay. Existence of the 1.800-Mev gamma ray in Po?? was established and 11.24-0.7%,
of the Bi*2 — Po?? disintegrations were determined to go by way of the 0.727-Mev transition. Relative
intensities of 11.12:0.7, 1.740.3, 0.66-0.07, 0.162=0.04, 0.99-£0.08, 0.49--0.05, 2.8+-0.2, and 0.174-0.03
were found for the 0.727-, 0.786-, 0.893-, 0.953-, 1.073-, 1.513-, 1.620-, and 1.800-Mev gamma rays, respec-
tively, in Po*2 The ratio of alpha to total disintegrations for the Bi?? decay was measured to be 0.3596

=+0.0006.

I. INTRODUCTION

HE nuclei Bi?2 (ThC) and T128 (ThC”) are mem-
bers of the naturally radioactive thorium (4#)
series. Figure 1 shows the generic relations between the
last members of this family. Most of the details of the
TI8 decay were already known!=3 before the beginning
of the present work while knowledge of the Bi*? beta
decay was incomplete.!*:3
Reported values for the intensities of the transitions
occurring in the beta decay of these nuclei show con-
siderable disagreement. It was the purpose of this in-
vestigation to further clarify the scheme of the beta
decay of Bi*? and to examine the intensities of the

* Contribution No. 871. Work was performed in the Ames’

Laboratory of the U. S. Atomic Energy Commission.

T On leave from Max Planck Institute for Nuclear Physics,
Heidelberg, Germany.

1H. Daniel, Ergeb. exakt. Naturw. 32, 118 (1959). Reviews
older work.

2 E. M. Kirisiuk, A. G. Sergeev, G. D. Latyshev, K. I. II'in, and
V. I. Fadeev, J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 1144 (1958)
[translation: Soviet Phys.—JETP 6, 880 (1958)].

3 Nuclear Data Sheets, edited by C. L. McGinnis (National
Academy of Science, Washington, D. C., 1958).

4A. G. Sergeev, E. M. Krisiuk, G. D. Latyshev, Yu. N.
Trofimov, and A. S. Remmennyi, J. Exptl. Theoret. Phys.
(U.S.S.R.) 33, 1140 (1958) [translation: Soviet Phys.—JETP 6,
878 (1958)].

5 J. Burde and B. Rozner, Phys. Rev. 107, 531 (1957).

radiations resulting from the decay of T128, The level
schemes of P02 (ThC’) and Pb?® (ThD) are interesting
because sPb126®® has a doubly magic nucleus and
84P012?? has only four nucleons outside the doubly
magic core.

The following types of measurements were performed
by means of magnetic and scintillation spectrometers:
beta- and gamma-ray singles; beta-gamma, gamma-
gamma, gamma-alpha, and gamma-gamma-alpha co-
incidences. The beta-gamma and gamma-gamma co-
incidences were performed for both decays while the
alpha coincidences were used to isolate the Po?? gamma
rays. :

II. EXPERIMENTAL TECHNIQUES

Sources of Pb*2 (ThB) in equilibrium with its decay
products were used in all of the measurements. The
magnetic beta-ray spectrometer sources were collected
on Al foil of 1.8 mg/cm? and 1-mm diameter whereas
those used for the scintillation spectrometers were col-
lected on Pt foil of 50 mg/cm? and 5-mm diameter.

Figure 2 shows the experimental arrangement for the
beta-gamma coincidence measurements. The magnetic
spectrometer is of the Slitis-Siegbahn type modified®

6 To be described in a later publication.



