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assume that the ratio of the second maximum to the
primary maximum is approximately the same as in
Fe"(d,t)Fe". The shapes of the angular distributions
for all 1=1 groups, including those from the Fe" target,
are very similar. Estimating the intensity of the primary
maximum on the basis of that of the secondary maxi-
mum is believed to introduce a possible error of no more
than 10/o into the resulting reduced width.

Another possible source of error in the reduced widths
results from the choice of the value of A. The value of A

is obtained from comparison of (d,P), (P,d), and (d, f)
reactions which proceed between the same two levels.
On the basis of data which extend up to A = 25,
Macfarlane' finds A=195~35. This is the value used
in the present calculations. There may be a large devia-
tion from this value of A in the region of 2 investigated
in the present work, but in the absence of any additional
information no better estimate can be made. The re-
duced widths given in Table I may be simply corrected
for any improved value of A by keeping the product
A8' constant.

Apart from the errors involved in determining A, all
possible sources of experimental error introduce less
than 20% error into the reduced widths obtained here.
The reduced widths for the various levels and groups
are given in Table I, where 0'(1) refers to angular dis-
tributions corresponding to /=1 transitions and 8s(3)
refers to angular distributions corresponding to 1=3
angular distributions. The groups are listed according
to residual nuclides and excitation energy in the nucleus.
The "less than" symbol indicates the absence of an
observed 1=3 transition when one is possible, the listed
value for the reduced width then being an upper limit
on the 1=3 contribution as set by the cross section at
the minimum of the observed 3= 1 angular distribution.
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The following work illustrates the use of experimentally determined reduced widths from (d, t) reactions
in analyzing the structure of the ground state of the target nuclei. The (d, tl reaction is an especially sensitive
and almost unique experimental technique for measuring small components of nuclear wave functions. In
this role it becomes a valuable tool in investigating the presence of strong pairing forces in nuclei. This
analysis demonstrates the strong mixture of the 2P3&2 and 1f»& neutron states in the region around A =60.
In contrast to this, nuclei with 28 neutrons show no observable mixing of states. Special attention is given
to Fe" and a shell-model wave function is derived that gives the observed magnetic moment as well as the
observed (d, t) reduced widths. In this connection a simple general formula is presented for the magnetic
moment of any shell-model wave function.

I. INTRODUCTION

HE Butler theory of nuclear reactions' has been
a most productive theory in the fields of (a) the

mechanism of nuclear reactions, and (b) nuclear
structure and spectroscopy. In this paper the primary
interest is in area b. The Butler theory is used as an
empirical tool in analyzing (d, t) pickup experiments in
order to extract information about nuclear wave
functions.

*This work was performed under the auspices of the U. S,
Atomic Energy Commission.

' S. T. Butler, Proc. Roy. Soc. (London) A208, 559 (1951).See
also S.T.Butler, Nlclear Stripping Reactions (John Wiley 8z Sons,
Inc. , New York, 1957) for a complete list of references to the early
work in this Geld.

l'his application of Butler theory was first used by
Bethe and Butler' to estimate the l value admixtures
in certain nuclear wave functions. Since that time
several authors' have extended this technique and
demonstra, ted its usefulness in determining nuclea, r
structure. The most recent work in this field is that of
Macfarlane and French, 4 who have made a complete

' H. A. Bethe and S. T. Butler, Phys. Rev. 85, 1045 (1952).' See, for example, J.B.French and B.J. Raz, Phys. Rev. 104,
1411 (1956);T. Auerbach and J. B. French, Phys. Rev. 98, 1276
(1955);A. M. Lane, Proc. Phys. Soc. (London) A66, 977 (1953);
and S. Okai and M. Sano, Progr. Theoret. Phys. (Kyoto) 14, 399
(1955), and 15, 203 (1956).

4 M. H. Macfarlane and J. B. French, Revs. Modern Phys. 32,
567 (1960).



STRUCTURE OF NUCI. .E I FROM (d, t) REACTIOliIS

survey of all relevant stripping and pickup experiments
and have analyzed this data in terms of nuclear wave
functions. The techniques used in much of the present
paper follows the formalism developed by Macfarlane
and French and the real justihcation for the procedure
rests on the consistent picture that emerges from their
analysis of the experimental information.

The Butler formula for, the differential cross section
for neutron pickup via a (d, t) reaction may be expressed
as

da A(A+1) Ei R—&P8'(l),
d(o (A+3)' Eg yi2

where: (1) A is an empirically determined constant
that gives the normalization of (d, t) experiments
relative to (d,p) experiments. ''' Theoretically this
constant is a measure of the overlap of the deuteron
and triton wave functions. (2) A is the mass of the
residual nucleus. (3) E, is the wave number of the
triton in the center-of-mass system of the residual
nucleus after emission of the triton. (4) Ed is the wave
number of the deuteron in the center-of-mass system
of the target nucleus before it was struck by the
deuteron. (5) R is the appropriate stripping radius for
this process. (6) yi is equal to hi(ikR)/Likhi+i(ikR)],
in which (a) hi is the spherical Hankel function of
order t, and (b) k is related to the binding energy of
the picked-up neutron and is de6ned by

2M A
k'= (Q value of reaction+6. 258 Mev).

O2 A+1

(7) Gis is a function defined by

Gi'= Lji(QR) —viQji+i(QR)]'
(Q2+k2)2

in which (a) Q is the momentum transferred by the
reaction and is given by

Q=K,— Kd,
A

(b) ji is the spherical Bessel function of order l, (c) Gis

is related to the tabulated values of Lubitz' by the
expression

G 2 (R~)2L1+0 p08(~2+y2)]2~ (8)Lubitz

where x=QR and y= kR. Hence, Gis may also be written

1 2

Q2-
L

ikhi~i(ikR)

Lji(Qr)8hi(ikr)/8r —hi(ikr) 8j~(Qr)/ar]„z '

Q'+k-"

s A. I. Hamburger, Phys. Rev. 118, 1271 (1960).
C. R. Iubitz, University of Michigan Report, 1957 (un-

published) .

(8) 82(t) is the dimensionless reduced width to be
extracted from the experimental data.

By use of the above relationships and formula (1),
the reduced width may be determined from the absolute
cross section of any (d, t) experiment.

The reduced width 8 (t), is the basic piece of in-
formation that is obtained from the analysis of the
(d, t) reaction work. This constant, 82(l) is related to
the structure of the nuclear levels involved, by the
relationship 82(t) =$(l)822(t) He.re 822(l) is the pure
single-particle reduced width that is determined from
experiments involving single-particle states in a variety
of nuclei. Examples of these levels would be the ground
states and some of the excited states in 0" and Ca".
lf the single-particle states are considered as states in
some static potential, then 822(t) is just equal to
-';Ris(rs)res where Ri(rs) is the value of the radial part
of the wave function, evaluated at the nuclear surface

fo ~

In practice formula (1) is used to extract values of
82(t) and thus S(l) for the various levels seen in the
(d, t) reaction. This procedure, at first glance, seems to
imply that the Butler theory gives the correct relation-
ship of cross section to the variables of the problem:
incident energy, excitation energy of the final nucleus
and charge of the particles involved. However, it is
clearly unwise to assume that such a simple theory as
the Butler theory gives the exact dependence of cross
section. Detailed calculations' including distorted
waves, Coulomb corrections, and other refinements
indicate the limitations of the Butler theory, but these
limitations do not destroy the usefulness of the pro-
cedure. These variations of cross section may be in-
corporated into a dependence of the single-particle
reduced width 82(l) and the normalizing constant A on
the Q value of the reaction, on the value of Z, and on
the incident energy. This dependence has been investi-
gated4 ' in the region of the atomic weight less than
30, and is under investigation' experimentally in the
region around A =50—60. The results4 ' indicate that
both these paramet, ers, A and 822(t), vary only slowly
with the parameters of the problem, so that this
procedure is practical and the absolute value of the
cross section given by Butler theory is easily nor-
malized correctly by performing the necessary experi-
ments in the region of interest.

For definiteness, the following values were taken
from reference 4: A. =200& 822(2p)=2. 2&(10' and
822(1f) = 1.1)&10 '. These values have uncertainties in
them but relevant experiments are under way' to
reduce this ambiguity in the region of the periodic
table about A =50. Future more accurate values of
these parameters may easily be incorporated into the
present results. The over-all consistency of the results

7 W. Tobocman, Phys. Rev. 115, .98 (1959).' M. Macfarlane (private communication).
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Pro. 1.The representation of a nuclear wave function
in terms of a vector diagram.

presented here' suggests that the values of the parame-
ters taken are valid choices,

II. DETERMINATION OF SPECTROSCOPIC
FACTORS

The spectroscopic factor S(l) measures the degree of
overlap between the wave functions of the target
nucleus and the final state. " In particular, if the wave
functions are described in terms of a jj coupling shell
model, the S factor is proportional to the square of the
overlap integral between the target state and a wave
function described by the total angular momentum
vector of the picked-up neutron coupled to that vector
of the final state to yield a total spin equal to that of
the target state.

To be more precise, the nuclear wave functions may
be described in the representation in Fig. 1, where the
symbol represents a shell-model state formed by three
groups of n; nucleons having j value j; and total
angular momentum o,;, where i= 1, 2, or 3. In addition,
ni+ns=P and /+us= J, where J is the spin of the
entire state. The arc between the ends of J is to sym-
bolize that the entire wave function is to be anti-
symmetric under interchange of either two protons or
two neutrons. Isotopic spin is ignored in this particular
use although the generalization is trivial and is given
in complete detail in Macfarlane and French. '

For pure nuclear states of the above type, S(l)
becomes S(j) for each j value since different j values
do not interfere. Then S (js) is displayed in Fig. 2, where

the last symbol in the overlap integral represents the
vector coupling of the picked-up nucleon to the final

state.

where U is a normalized Racah" coefficient, and

'All the experimental (d, t) reaction data used in this paper is
from B.Zeidman, J. L. Yntema, and B.J. Raz, preceding paper
fPhys. Rev. 120, 1723 (1960)j.' This factor S is the same as the factor S in Eqs. (1) and (2) in
French and Raz, reference 3. Equation (2) in that work should
read:

S=n Zl Z IC (n)Ep(n —1)(rP (n)lPs(n 1)Xj„)l'. —
7'~ aP"See, for example, G. Racah and U. Fano, Irreducible Tensorial

Sets (Academic Press, New York, New York, 1959); A. R.
Edmonds, Angular 3fomentum in Quantum Mechanics (Princeton
University Press, Princeton, New Jersey, 1957).

J (Js)= ns X J

FIG. 2. The spectroscopic factor S de6ned in terms of
the representation in Fig. 1.

(j,"&&s
l j,"3—'cx, ') is the coefficient of fractional parentage

between the states n3 and n3'.
In the (d, t) reactions it is often most convenient to

look at the sum of S(js) over ns and Jr rather than
S(j&) for each individual level. The value of S fall off
rapidly with excitation since, in general, highly excited
states of the final nucleus do not contain large parts
of the ground-state wave function of the target. This
eBect is seen quite clearly in the experimental results
which show that 0' decreases rapidly with the excitation
energy of the final nucleus.

The sum of all S values associated with a given j in
the nucleus simplifies both the theoretical and experi-
mental situation. Experimentally it is not necessary
to resolve individual levels but only to And the total
contribution of a given j for all levels. Theoretically,
the value of the sum of S(js) becomes just ns by making
use of the orthonormality of both the coefficients of
fractional parentage and the normalized Racah
coefficients. 4

Even if the wave functions are described by a linear
superposition of the states of the above representation,
the above sum rule is still very useful. In particular,
if the target is represented as

+z ——Q, K,~pz(n&j i,nsjs,nsj s,y),

where P, indicates a sum over all possible variations
in ni, ns, ns, ni, ns, ns, and P that is consistent with the
properties of fg, and y stands for'all other quantum
numbers that are not explicitly stated.

The final state is represented by

C'r=P. K„rg(r),

where I' stands for all identifying quantum numbers
of the final state and r stands for all the quantum
numbers necessary to characterize the g(r).

When the general sum over r is performed, the result
obtained for the S factor is

Qr Sr(js) =Q, nslK, (n&nsnsy) l',

or, in general,

Qr Sr(j.-) =Q, n, l
K. (ninsnsy)l'. (7)

This result is based on normalization of E,~ and
E~'s as well as the orthonormality of the coefficients
of fractional parentage and the normalized Racah
coefficients. With this general sum rule the composition
of the wave functions that describe the ground state
of the target nucleus may easily be investigated.

A simple example will illustrate the procedure. In
the reaction Fess(d, t)Fe", five distinct triton groups
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TABLE I. Reduced widths, 0, and spectroscopic factors $(l) for strong groups. The groups are listed according to excitation in the
final nucleus. The symbols 0'(1) and e'(3) designate reduced widths and S(1) and $(3) designate spectroscopic factors for (=1 and t 3,
respectively. The "less than ' symbol indicates an upper limit for an unobserved l 3 contribution. In the use of Kq. (1) for these results
A was set equal to 200, 8o'(1) was set equal to 2.2X10 ' and Ho'(3) was set equal to 1.1X10 '.

Target
nucleus

Final
nucleus

Level in
anal

nucleus 8'(1)X 10' $ (I) i/i (3)X10' s (3) Comments

23~2361

24Cr23"

26Mn3p66

pe3p66

26Fe31

27Co32I
29Cu34

29cu 36

3pZn34

3pZn36

3pZn37

3pZn33

+6p

Cr61

Mn64

It'e66

Pe66

Co68
Cu~

Cu'4
Zn63

Zn

0.3
1.1
3.1
0
0.75
0
1.1
27
40
0
0.42

2.0
2.5
0
0.85
2.9
4.0
0.3
0.4
1.4
0.4
0
0.64
1.1
0
0.86
0
1.0
2.7
3.7
0.3

2.9
0.5
0.5

1.6
0.4
0.2
0.1

0.38
0.76
1.82

5.3
3.8
0.7
6.4
3.3
0.9
0.4
3.85
0.75

0.35
0.64
1.5
4.5

1.32
0.23
0.23

0.73
0.18
0.09
0.04

0.17
0.35
0.83

2.41
1.73
0.32
2.92
1.50
0.41
0.18
1.75
0.34

0.16
0.29
0.68
2.04

1.8
1.6
1.3
2.9
0.4

1.0

0.2

1.4

0.1

0.70

0.93
&2.2
&2.0
&04
&4.0
&1.5
&0.3
&0.2
&2.35
&0.50

0.29
0.20
0.91
1.0
3.7

1.63
1.46
1.18
2.64
0.36

0.91

1.27

0.09

0.63

0.84
&2.0
&1.8
&0.4
&3.6

&0.3
&0.2
&2.1
&0.5

0.26
0.18
0.83
0.91
3.4

Z S(3)=4.27
No P3/2 excitation seen

of the (f3/23) closed shell.
Z S(3)=3.00
No P3/2 excitation seen.

5 g(fo/g) =1.47
Z $(P3i2) =1.18
Z g(Pi/o) =0.17

Z S(1)=1.13
2 S(3)=2.18

a See reference 9.

are observed and the reduced widths and the S factors
for each are displayed in Table I. The ground state of
Fe" is composed of 26 protons and 30 neutrons; and
in terms of a shell-model picture, the configuration
may be represented by (fr/s ')o, (ps/s')o or (fr/s ')o,
(fo/s')o where the first parenthesis indicates the proton
configuration and the second parenthesis, the neutron
configuration. For simplicity in this example the 1=3
transitions are assumed to come only from f, /s pick up
rather than f7/s pick up from the closed neutron shell.
The wave function may be described by

iP=n(f7/2 )o(Po/s')o+P(fr/s )o(fo/s )o

From Eq. (7) and the observed values of S(l= 1) and
S(l=3), it follows that

2n'= Q S(l= 1)=0.73+0.18+0.09+0.04= 1.04

2p'= Q S(l=3)= 1.27+0.09= 1.36.

Since the wave functions are assumed to be nor-
malized, n'+p' should be equal to one so 2n'+2p'=2;
but use of the above data leads to a value of 2n'+2p'
that is 20% too high. This merely reflects the possible
errors in absolute normalization. The sources of these
errors include (a) the measurement of the absolute

I

cross section, (b) the extraction of the reduced width
from the data, (c) the normalization factor A relating
(d,p) and (/l, t) cross sections, and (d) the precise value
of the single-particle cross sections for 2p and 1f states.
In view of these experimental and theoretical problems,
the 20% difference in normalization is not disturbing.

The above relations lead to n'/P'=1. 04/1.36=0.76,
a value which suggests that the fs/s state has a higher
probability than the ps/s state. This same type of
analysis is applied to all the nuclei, with special atten-
tion given to Fe".

III. DISCUSSION OF OBSERVED S FACTORS FOR
EVEN GROUPS OF NEUTRONS

The experimental results and the corresponding S
values are displayed in Table I. Several general com-
ments are necessary before discussing each individual
case.

A. If the target has a spin of 0, then conservation of
parity and angular momentum insure that each state
of the final nucleus is formed by pickup of a nucleon
having a unique j value. Thus any triton group that
has both /=3 and l=1 must go to at least two un-
resolved levels of different spin in the final state.
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B. If the ground state of the final nucleus has zero
spin a similar type of limitation occurs. A neutron
having a j value equal to the spin of the target must
be picked up in the reaction to the final ground state.
An example of this occurs in Fe" for which a pi/s
neutron is picked up in the (d, f) reaction to the ground
state of Fe".

C. Weak 1=3 levels are hard to locate experimentally
and are often masked by 1= 1 pickup.

D. As the number of particles outside a closed shell
increases, P S increases but often large contributions
to this sum occur at excitation energies higher than
the energies investigated in these experiments. For
example in Cr" with 8fr/s particles, the value of
P $(1=3) is 8 while experimentally this turns out to
be only 3.0 up to 0.75 Mev. The remaining 1=3 con-
tributions should be found in levels at higher excitation
energy in Cr".

Some features of Table I will now be examined, with
the above four comments in mind. In V" and Cr", the
28 neutrons are in a closed-shell configuration of (fr/~ ).
Any trace of (f7/s ')(Ps/ss) would show uP as an l=1
transition which could not be missed. Judging from
the weakest I= 1 that was observed in the other nuclei,
it is quite plain that the admixture of two-particle
excitation configuration (f7/s ) (ps/Q ) in 28-neutron
ground states of V" and Cr" has less t,han a 4%%u~

probability.
This technique is a very sensitive one for detecting

two-particle excitation in an even group of nucleons.
The presence of a strong pairing force between pairs of
particles coupled to give spin zero" could be detected
by observing two-particle excitation in the ground
states of nuclei having an even neutron number. If the
(d, t) experiment were performed on a target nucleus
containing 22, 24, or 26 neutrons, any ps/s admixture
could be easily detected and would indicate two-
particle excitation of the f7/9 particles to the p3/Q level.
The isotopes. Ca", Ca~, Sc", Ti", and Cr" are targets
that might show this effect. Preliminary results on
Sc4' did not show this effect.

The neutron number for the rest of the targets is
above 29 so that the fr/s shell is closed in. these cases.
The next shells to be filled are the ps/s and fs/s shells,
which are observed to be almost degenerate in many
odd-neutron nuclei in this region. An unambiguous
example of this near degeneracy is Cr", whose ps/s and

fs/s levels are separated by only 0.97 Mev. Therefore,
these two levels are expected to mix strongly and all
l=3 reduced widths are assumed to come from fs/s
pickup rather than a breaking of the closed fr/s shell.

Note added ie proof. This assumption is probably not
valid in the case of the 1.4 Mev group in I'e" (d,f)Fe".
Therefore the value of P given for Fe" is to be regarded

'2 See, for example, S. T. Belyaev, Kgl. Danske Videnskab
Selskab, Mat-fys. Medd. 31, no. 11 (1959).

as an upper limit. A more detailed discussion of this
point will be given in a future paper.

The results for the remaining targets with even
numbers of neutrons are quite similar and they are
discussed as a group. The ratio of P $(3=3) to
P $(1=1) measures the probability of picking up a
fs/s or a ps/s particle from the target nucleus, and this
probability in turn is a direct measure of the relative
amount of each j value in the wave function of the
target.

In Table II the values of P $(l=1), P $(l=3), and
the ratio of P $(l=3) to P $(/=1) are tabulated for
the targets with an even number of neutrons in this
region of the periodic table. The gradual filling of both
the ps/s and the fs/s shell is observed in the values of
P $(/=1) and P $(l=3).

TABLE II. Sums of spectroscopic factors for nuclei with even
number of neutrons in the P&/r fi/& region. The ratio Z S(3)/Z S(1)
is equal to the ratio of the probability of picking up a 1f neutron
to the probability of picking up a 2P neutron. Ho (1) and Ho (3)
were set equal to 2.2)&10 and 1.1X10, respectively, and A.

was set equal to 200.

Number of
neutrons

Outside
closed

Total shell Elements Z S(1) 2 S(3) 2 S(l=3)/S(l=1)
30 2
30 2
32 4
34 6
34 6
36 8
36 8
38 10

Mn"
Fe56
Co"
Cu68

Zn
Cu65
Zn66
Zn68

1.78
1.04
2.41
2.05
2.09
2.92
2.09
2.04

1.09
1.36

&2.0
&2.2
&1.9
&3.6
&2.6

3.4

0.61
1.31

&0.8
&1.1
&0.9
&1.2
&1.2

1.67

'3 J. P. Schiffer and W. Marshall, Phys. Rev. Letters 3, 556
(1959);R. V. Pound and G. A. Rebka, Jr., Phys. Rev. Letters 3,
554 (1959).

"M. G. Mayer and J. H. D. Jensen, E/enzentary Theory of
nuclear Structure (John Wiley R Sons, Inc. , New York, 1955).

IV. Fe57 WAVE FUNCTION

The Fe"(d, t)Fess reaction can be analyzed in more
detail since the pi/s contribution may be identified in
this reaction. The investigation of the ground state of
Fe" is of current interest because of the present use of
the 14-kev gamma ray in Fe" for precise measurements
of frequency shifts. " This Fe" ground state does not
fit the conventional shell model. ' Its spin and magnetic
moment are both anomalous and are therefore the first
features to be discussed. Next the analysis of the (d, /)

reduced widths is discussed to provide the necessary
information to determine the wave function. Finally,
for completeness, the properties of the —,

' 14-kev level
are discussed.

The general formula for the magnetic moment of any
state described by jj-coupling wave functions may be
evaluated immediately either by using a semiclassical
vector-model picture or the more general tensor algebra
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of Racah. ""The general formula" is found to be TABLE III. The shell-model configurations used to describe
the ground state of Fe" and the corresponding contributions to
the magnetic moment.

J(J+1)+I(I+1) J'(—J'+1)
(U) "I l(j) "&

J'(J'+ 1)+I (I+1) J(J—+1)
2J'(I+1)

where

Coefficient Protons

(fv/~ ')o
(fv/2 ') o

(fv/2 ')o
(fv/2 ')o
(fv/2 ')2
(fv/2 ')2
(fv/2 ')2
(fv/2 ')2

Neutrons

(P8/2') OP1/2

(f5/2') OPI/2

(ps/2') 2f5/2
(f5/2') 2p3/2

(p3/2') 3/~

(p8/~') of5/2
(fM23) 5/2

(fs/2') op3/2

Magnetic moment

—(7/9)y—(13/22)8,„
(2/7) (&+p.) —2p-—(4/21) (3+ps) —

2 p—(4/21) (3+@„)——',p,

(2/7) (3+p„)—-',p„

1
&jlpl j&=j gi~ (g.—e),

2l+1
(9)

where

g, =2@„and g~=1 nm for protons,

g, =2@ and g~=0 for neutrons,

p,~= 2.792 nm and p„=—1.913 nm.

By using Eqs. (8) and (9), the magnetic moment for
any shell-model configuration may be easily calculated.

If core excitation is neglected, the possible config-
urations for the three last neutrons in Fe" are

L(ps/2')ep»2)»2 L(fs/2')oPi/27»2 L(ps/2')2fs/27»2

L(fs/2 )2ps/2)1/2.

(Only particles in the same oscillator level are included
in this discussion. )

Unfortunately, each of these configurations has a
large positive magnetic moment w'hen coupled to a
proton group having zero spin so that there is no way
to ht the very small value of the magnetic moment"

"G, Racah, Phys. Rev. 62, 438 (1942)."See also V. W. Hughes in Recent Researchin MolecuLar Beams,
edited by I. Kstermann (Academic Press, New York, 1959),p. 69."See reference 14, p. 246.

' Contrary to common usage the g factors in this formula are
given in units of the nuclear magneton. It turns out to be very
convenient to express all values in terms of p„and p„, the magnetic
moment of the neutron and proton, and this is the reason for this
unusual choice of units for g factors.

"G. W. Ludwig and H. H. Woodbury, Phys. Rev. 117, 1286
(1960).

l(j) J (j') 'J'I)

represents the wave function formed by vector coupling
the wave function of N equivalent particles of spin j
and total spin J to the wave function of N' equivalent
particles of spin j' and total spin J' to give the final

spin I. Since the magnetic moment operator is a sym-
metric one-particle operator, it is unnecessary to
explicitly antisymmetrize wave functions in this matrix
element.

One finds immediately (see, for example, Mayer and
Jensen" ) that

&U)~" lpl(j)~ )=(J/j)&jlpl j&,

where (j I
p, l j) is the single-particle (Schmidt) value of

the magnetic moment, '8 given by

by use of these states alone. This is no longer true if
proton excitation is included. Table III gives a list of
configurations for Fe57 and the magnetic moment
associated with each. The Greek letter associated with
each coeKcient represents the amplitude of this part
of the wave function. Only proton excitation to spin 2

with neutron states in the ps/2 f2/2 subshell with lowest
seniority are included. All the listed levels should be
quite comparable in energy and represent a reasonable
selection of shell-model states.

There are only two states in Table III that have a
negative magnetic moment, so the final answer must
contain a considerable fraction of these two states in
order to form a wave function that will match the small
observed magnetic moment. This may be seen by the
formula for the magnetic moment. The magnetic
moment operator for neutrons connects only states of
the same l value so that there are no cross terms that
contribute to the magnetic moment and the equation
for this magnetic moment in terms of the amplitudes
for the wave function from Table III is

', (&+P ye'+-q'+p'+~)+(7/9)q'+(13/21)P/( p)—
+ I (2/7) (e2+/t2) —(4/21) (2)2+p')] (p +3)

=+0.090 nm= p, (Fe"),
where

—p„=—+1.913 nm, (p„+3)= 5.792 nm.

Because of the normalization of the wave function,
this becomes

(-'+ (4/9) y2+ (6/21) P) 1.91

+L2 (2'+/t') —4 (2P+p') $0.826=+0.090.

Now the results of the Fe'2(d, t)Fe" experiment may
be used to supply additional information about the
composition of this wave function. The S values for
Fe"(d, t)Fe'2 are given in Table I. Of special interest is
the transition to the ground state of Fe". This tran-
sition is a pure Pi/2 transition and immediately gives a
measure of the amount of pi/2 admixture in the Fe'7

ground state.
The levels" in Fe"at 0.840 Mev, 2.65 Mev, and 2.98

Mev all have a spin of 2 and thus cannot be reached by
p»2 pickup. Therefore the total S(p»2) contribution
observed is found in the ground-state reaction.

2' R. W. Bauer and M. Deutsch, Phys. Rev. 117, 519 (1960).
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In this analysis, no f7/2 pickup is included. While it
is perfectly possible that some of the P S(l= 3) observed
is contributed by picking up an f7/2 neutron from the
closed f7/2 shell in Fe", there seem to be good theoretical
reasons for excluding this possibility from the analysis.
These are:

(1) The lowest group of core-excitation levels in
Fe" would be levels described by (P3/23) 3/2f7/2

(P3/2 ) Of5/2f7/2 (f5/2 )OP3/2f7/2 and (f5/2 )5/2f7/2
—'.

The excitation energy of these levels would be expected
to exceed the sum of the single-particle splitting between
the P3/2 and f7/2 states (about 2 Mev) and the pairing
energy necessary to break the (f7/2 )o core (more than
1 Mev). A level from this group might be the 4.10-Mev
4+ level in Fe".

(2) The next group of core-excitation levels would be
described by

(P3/2') 2f5/2f7/2
' (f5/2') 2P3/2f7/2

' and (f5/2') ~f7/2
'

(where J=3/2 or 9/2), and perhaps proton core-
excitation levels such as (f7/2 ')2 for protons and
(P3/23) f7/2

' for neutrons. These levels are expected to
be at even higher excitations than the first group and
are most likely above 5 Mev.

(3) The (d, t) reaction. from the -'2+ ground state of
Fe" could go only to some of the levels in group 2
since adding an f7/2 neutron to the states in group 1
will not give a spin of —,+ for Fe".With this in mind, it
seems unlikely that any f7/2 pickup is seen in this
experiment.

By using the assumption of no core excitation, the
sum rules for the different j values may be applied to
the wave function in Table III. This results in the
following relationships:

o/'+O'=Z S(pi/2)»

2n2+ 2P2+ P+352+ 27P+ 3 2 =P s (P / )

2P2+V2+ 2~2+n2+3/52+ 2&'= E S(f5/2)
where

Z S(P„,)=0.», Z S(P/.)=1», Z S(f./.)=147
The total P S should equal 3 (the number of neutrons

outside the closed shell of 28 neutrons). In this analysis
this sum is 2.81, in close agreement with the value 3
predicted for this total. Therefore, only very small
contributions to the various S sums have been missed
in this experiment. To compensate for this, the values
of P S are all increased by 7% for the actual
calculations.

The equation for the magnetic moment and these
three equations do not supply enough information to
give a unique solution for this eight-component wave
function. Two assumptions, however, do seem rea-
sonable and these will be used in order to get a solution.
These assumptions are:

(a) The ratio of (P3/2') opi/2 to (f5/2') opi/2 in the Fe"
ground-state wave function is the same as the ratio of
(P3/2')o to (f5/2')o in the Fe" ground-state wave func-

TABLE IV. Deduced values for the coefficients of these con-
figurations. The use of three significant figures is a matter of
arithmetical consistency and should not be taken to imply
reliability to this accuracy.

cP=0.078
P2=0.102
y'=0. 176
8'= 0.009

e'= 0
q'= 0.364
p,'= 0.270
~'= 0

a Assumed to be equal to zero.

"S.S. Hanna, J. Heberle, C. Littlejohn, G. J. Perlow, R. S.
Preston, and D. H. Vincent, Phys. Rev. Letters 4, 179 (1960).

2' H. R. Lemmer, 0.J.A. Segaert, and M. A. Grace, Proc. Phys.
Soc. (London) A68, 701 (1955).

tion. With this assumption the contribution to the
p S(pi/2) from the higher state of zero spin would not.
be observable.

(b) 52+32=0. This is assumed in order to minimize
the two-proton excitation states in the wave function.

These two assumptions coupled with the normali-
zation of the wave function, the expression for the
magnetic moment, and the three relationships from the
(d, t) results are sufficient to uniquely determine the
magnitude of the six remaining coefficients. The values
obtained for these coefficients are listed in Table IV.

The first excited state of Fe" will now be examined
because the measured transition probability for the
transition to the ground state offers a check on the wave
functions of the ground state. The magnetic moment
of the excited state has recently been measured" and
this gives information about the composition of the
wave function for this level. The three simplest neutron
configurations for this 3/2 level are (p3/23);. /2, (f5/22) op3/2
and (f5/2')3/2, in which the protons are in the (f7/2 )o
state. The contribution to the observed magnetic
moment of —(0.153&0.005) nm are»t3„ /3„, and
—(3/7)/3„, respectively, for these states. If the wave
function for this state is given by

$3/2 A (P3/2 )3/2+B (f5/2 )3/2+C(f 5/2 )op3/2»

then the equation for the magnetic moment is

L (A2+C2) —(3/7) B25p„=//» (Fe5")= —0.153 nm

thus
A'+C' —(3/7) B'=0.080.

This equation coupled with the normalization leads
immediately to B'=0.644 and A'+C'=0. 356.

The M1 p-ray transition may now be investigated.
The theoretical relationship for the reduced transition
probability B(M1) is determined in terms of the
coefficients describing the two states involved. It is

B(M1)= L(2/3„)2/47r j(nA+pC)2.

The mean life of this 14.4-kev state has been measured
to be 1,7&10 sec." The conversion coefficient" has
been measured to be about 15 so that the mean life 7.

for y emission is about 27&(10 ' sec. With this value
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of r, the term (nA+PC)' in the expression for B(M1)
is about 0.006.

By use of the relationships A'+C'= 0.356, (nA+PC)'
=0.006, and the values of n' and P' from Table IV,
values for A and C are obtained. If n and P are assumed
to have the same sign, then there are two sets of solu-
tions: A = —0.308, C= 10.511; and A =+0.547,
C= —0.236. This leads to two sets of solutions for the
14-kev level: Set (1), A'=0.095& 8'=0 644, and
C'=0.261; and Set (2)& A'=0 300 8'=0.644, and
C'= 0.056.

These results give a consistent picture of the —,
' and

levels in Fe" that fits all the observed experimental
results. Results for Fe"(d,p) and Fe' (d,p) would
provide independent checks on these results.

The quadrupole moment predicted by these co-
efficients is essentially zero since no proton excitation
is involved. Hence, even small collective eGects would
contribute greatly to this quadrupole moment and
therefore could be investigated by a measurement of
the quadrupole moment of the —,

' state.
As is demonstrated above, the (d, t) experiment

provided the major information in determining the
wave functions for the —,

' and ~ levels in Fe'~. This is
a clear illustration of the power of this experimental
method of determining nuclear properties.

V. ZINC-6'7

In Zn" (d, t)Zn66, the ground-state transition is pure
l=3, which is consistent with the measured —,

—spin for
Zn". The transitions to the higher levels show both
/=1 and l=3. The values P S(l=3)=2.18 and

P S(3=1)=1.13 for all the levels lead to the ratio

The total of all the S values should equal the number
of neutrons (9 in this case) in the f~/2, p3/2, and P~/2

shells. The actual value is only 3.31. This may be due
to the existence of large S values for levels with ex-
citation energies above those in the region explored.

Because of this uncertainty, an analysis similar to
that of Fe" cannot be performed and only a few com-
ments will be given concerning the data.

(a) The value of $(l=3) is 0.26 for the ground state.
A pure (f5/2')5/2 level would have a value of 3 for this

quantity. Thus the results for the ground-state reaction
seems to be quite reasonable.

(b) The magnetic moment for the ground state if
+0.874 nm. A pure (fq/P)q/2 level has a magnetic
moment of —(5/7)pe=1. 36 nm. Thus the qualitative
gross features of the ground state of Zn" are under-
standable with a neutron wave function composed
mainly of (p3/2')o(f5/2')s/2. Further experimental in-

formation is needed before a more detailed analysis is
possible.

VI. CONCLUSIONS

The above work demonstrates the use of experi-
mentally determined reduced widths from (d, t) re-
actions in analyzing the structure of the target nuclei.
This is an especially sensitive method of detecting
individual components of nuclear wave functions and
indicates clearly the mixing of the p3/2 and f~/2 neutron
shells in the ground states of the nuclei having more
than 28 neutrons. This also clearly indicates the lack
of core excitation in the ground states having a closed
shell of 28 neutrons. A study of the situation with 22,
24, and 26 neutrons in the target nucleus would be
most valuable in determining the amount of two-par-
ticle excitation in an even group of neutrons and thereby
indicating the strength of the pairing force between
pairs of neutrons coupled to give zero spin.

The analysis of the experimental information on
Fe" demonstrates how reduced widths may be used
with other experimental data to provide nuclear wave
functions that fit the observed results. In fact, with the
use of two quite reasonable assumptions, a unique wave
function was determined for the ground state of Fe".
It would be most interesting to determine the nuclear
interactions that could reproduce this wave function
but this is beyond the scope of the present work.

This paper clearly indicates the usefulness of more
detailed stripping and pickup experiments (both
angular distributions and absolute cross sections)
throughout the periodic table.
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