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It is shown that “repulsion of energy levels” of the same symmetry type occurs in complex atomic spectra.
Thus, for the elements Hf, Ta, W, Re, Os, and Ir, for which the spin-dependent forces are relatively strong,
the spacings between neighboring odd-parity levels of the same J value follow the Wigner distribution
(approximately). For the elements Sc, Ti, V, Cr, Mn, Fe, Co, and Ni, for which the spin-dependent forces
are relatively weak, a similar distribution is obtained for the odd-parity levels having fixed values for S, L,
and J. (When the quantum numbers S and L are disregarded, the same levels give rise to a distribution of
spacings which is approximated by a random superposition of a number of appropriately weighted Wigner
distributions.) For the elements Y, Zr, Nb, Mo, Ru, Rh, and Pd, for which the spin-dependent forces are of
intermediate strength, the empirical distribution of spacings between the odd levels of the same J value has
a character which is intermediate between the Wigner and exponential distributions. All of these observations
are explained in terms of a statistical model for the Hamiltonian matrix in the S, L, J, = representation.
Quantitative results are obtained for a relatively simple form of the model which depends on only two
parameters, viz., the dimensionality V and the ratio u of the dispersions of the normal distributions for the
off-diagonal and diagonal matrix elements. The transition from the exponential to the Wigner distribution
occurs, roughly speaking, in the range of Nu?from 0 to 1. The results of this work suggest that an empirical
study of the distribution of the spacing between the energy levels of a complex quantum system may be
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capable of pointing to the existence of constants of the motion beyond those which are already known.

I. INTRODUCTION

HE purpose of this paper is to present the experi-
mental evidence for, and the theoretical interpre-
tation of, the “repulsion” of energy levels in complex
atomic spectra. This study is a direct outgrowth of the
discovery, made in recent years, that the distribution
of the spacing between the adjacent levels of a highly
excited nucleus follows definite laws, the existence of
which were first surmised by Wigner!? and by Landau
and Smorodinsky? on the basis of a statistical hypothesis
for the many-body Hamiltonian. The consequences of
that hypothesis, which we have developed quantita-
tively and reported previously,*® are in good agreement
with the results obtained in the scattering of slow
neutrons.” ! The rule, as proposed by Wigner for highly
excited nuclei, may be stated in two parts as follows.

* Work performed under the auspices of the U. S. Atomic
Energy Commission.
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1. The spacing between adjacent levels having the
same spin and parity is distributed (relative to the
mean spacing) according to a frequency function which
is given to a good approximation by the distribution

S spacing
x =———

D mean spacing

(1)

p(x)=gmx exp(—ima?),

The function (1) is plotted as curve ¢ in Fig. 1. The most
characteristic features of this distribution are that the
probability of a zero spacing vanishes, that the maxi-
mum occurs in the neighborhood of the mean, and that
the tail is relatively short. This should be compared with
what one gets on the basis of the incorrect supposition
that the levels occur in a completely random way
(Poisson process on the energy axis). That assumption
leads to an exponential, also shown in Fig. 1 (curve b),
which has its greatest value at x=0. The deficiency of
small spacings in the Wigner distribution, as compared
with the exponential distribution, is the phenomenon
of the “repulsion of levels.”

2. The second part of the rule states that levels of
different spin or parity are not in any way correlated in
position. This has the consequence that if one is dealing
with a sequence of levels which is a superposition of
sets of different spin (or parity), the resulting distribu-

8 J. A. Harvey and D. J. Hughes, Phys. Rev. 109, 471 (1958).

9 J. L. Rosen, Ph.D. thesis, Columbia University, New York,
New York, 1959 (unpublished) ; also J. L. Rosen et al., Phys. Rev.
118, 687 (1960).

105, Desjardins, Ph.D. thesis, Columbia University, New York,
New York, 1959 (unpublished).

1P, A. Moldauer, Bull. Am. Phys. Soc. 4, 319 (1959).
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tion of spacings has a character which is intermediate
between the Wigner distribution and the exponential
distribution. For example, the broken line in Fig. 1
(curve ¢) gives the calculated result for the random
superposition of two independent systems of levels
which have the same mean spacing.’? If a large number
of unrelated systems of levels are superposed, the
exponential will be approached, under certain condi-
tions. (The problem of superposing any number of
sequences is considered in the Appendix.)

We have previously reported in a preliminary way'?
that a similar repulsion phenomenon occurs in the
spectra of many complex atoms. In this paper, we
present the empirical evidence in detail for the different
regions of the periodic table and we also attempt to
interpret the results in terms of the theoretical ideas
given in reference 6. In this connection it will be neces-
sary to modify the random matrix hypothesis to take
account of the enormous range in strength of the spin-
dependent forces in atomic spectra.

It seems worthwhile to summarize at this point some
of the differences, which are relevant in this work,
between the typical atomic spectrum in the range of
excitation energy of a few ev and the spectrum of a
heavy nucleus excited to about 7 Mev. (1) Even the
most complex atomic spectrum is so simple compared
with the nuclear spectrum, that it is by no means a
foregone conclusion that the atomic spectra are suffi-
ciently complex for the statistical properties to show
up. In fact, we seem to have the interesting situation
that the statistical properties begin to appear only in
the more complex spectra. (2) Related to the first point
is the fact that the density of energy levels in a highly
excited nucleus is virtually constant over an energy

1.0, T T T

o] ! 2 3 4
X=S/D

F1c. 1. Tllustration of the “repulsion of energy levels.” The
Wigner distribution of nearest-neighbor spacings, curve e, for
which the frequency of a small spacing is relatively low, represents
a high degree of repulsion. This should be compared with the
exponential distribution, curve &, which is obtained if the energy
levels occur completely at random. Curve ¢, which results from
the random superposition of two sequences, each governed by
the Wigner distribution of the same density, is characterized by a
degree of repulsion which is intermediate between the extremes
of ¢ and b.

2 A. M. Lane, Oak Ridge National Laboratory Report ORNL-
2309, 1957 (unpublished), p. 121. The problem of superposing two
independent sequences was first considered in reference 7.

13 N. Rosenzweig and C. E. Porter, Bull. Am. Phys. Soc. 4, 353
(1959). Reference 6 contains a preliminary report for some of the
elements of the third long period.
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interval which contains hundreds of levels. In the
atomic case the density of levels typically changes by
a factor of 2 or 3 in the interval which contains two or
three hundred levels. It therefore is necessary to con-
sider the problem of defining a “local” mean spacing.
(3) It is well known that in many cases the spin-
dependent forces are relatively small compared to the
central forces (Russel-Saunders case). This results in
the spin and orbital angular momenta being constants
of the motion to a good approximation. One is therefore
led to consider the role which these additional (approxi-
mate) quantum numbers play in the phenomenon of
repulsion of energy levels.

This paper is divided into four major sections as
follows. Sections I, ITI, and IV are devoted mainly to
an examination of the voluminous experimental mate-
rial. In Sec. IT we shall treat one example, viz., the
spectrum Hf 1, in greater detail than will be practical
for the other elements. By means of the example we
shall define the method of analysis to be used through-
out the paper. In Sec. IIT we take up a comparative
survey of the odd-parity levels in three regions of the
periodic table. In Sec. IV a similar study is made of the
even-parity levels. In Sec. V we discuss the results of
the preceding sections in terms of a statistical model for
the Hamiltonian matrix.

II. STATISTICAL PROPERTIES OF THE
ENERGY LEVELS OF HfI

1. General Remarks about Atomic Energy Levels

It is natural to ask to what extent the statistical rules
observed for the quasi-stationary states of compound
nuclei are applicable to the discrete states of other
quantum systems. In this connection it will be remem-
bered that the experimental data on atomic energy
levels, having been assiduously deduced from the
analysis of optical spectra by many workers over a
period of decades, are very extensive and of very high
quality.** For virtually all of the known atomic energy
levels, parity and total angular momentum are given
with almost complete reliability. In many of the cases
in which it is meaningful to do so, assignments of the
spin and orbital angular momentum (S and L, respec-
tively) have also been made. It is therefore a relatively
straightforward matter to make an empirical study of
the distribution of the spacing between neighboring
energy levels of the same symmetry type.

In deciding what spectra to examine first, we were
guided by two considerations. On the one hand, one
expects that the repulsion phenomenon, if it occurs at
all in the atomic domain, will be characteristic of the
‘“‘complex’ spectra arising from the interaction of many,

14 Charlotte E. Moore, Atomic Energy Levels, National Bureau
of Standards Circular No.467 (U. S. Government Printing Office,
Washington, D. C.), Vol. I, June 15, 1949; Vol. II, August 15,
1952; Vol. III, May 1, 1958. This admirable compilation of ex-
perimental data, without which our task would have been very
much more difficult, will hereafter be referred to as AEL.
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TasLE 1. Positions of energy levels of Hf 1 (expressed in cm™)
which are not listed in AEL, grouped according to parity and J
value. The even-parity levels are entered in the top section, the
odd-parity levels in the bottom section of the table.

0 1 2 3 4 5 6
25444 46101 45666 47112 31575 27019 26944
47309 47345 47897 45388 47769
51091 47955 48746 46678 49181

48459 49347 48221 51930
48 552 49 660
48906 50680
48991 51847
49 404
49 999
51 508
27232 47092 10509 42396 41175 44537 25462
48985 48259 42076 44049 42454
44504 44464 43795
45848 45522 46290
47345 46218 48236
50084 48648 523581
50355 53064
50 584

or at least a few, electrons. On the other hand, the only
spectra useful for studying the distribution of spacing
between nearest neighbors are those for which a reason-
ably complete and sufficiently large set of levels is
available. It seems that both requirements are fulfilled
to an adequate extent in the regions of the periodic
table in which the outermost s and d orbits compete
energetically in the formation of the ground state and
the low-lying excited states.!® This results in the par-
ticularly rich, and yet in many cases thoroughly ana-
lyzed, structure of odd-parity levels arising mainly from
the overlapping configurations d*p and d"'sp. Spectra
of this type occur in three periods,'® namely between
215¢ and 23Ni, between 3Y and 4Rh, and between 7,Hf
and 77Ir. We shall focus our attention in this paper
entirely on the spectra of these three groups of elements.
We shall begin our survey by describing the distribu-
tions of interest and the methods of obtaining them,
using the spectrum of Hf 1 as an example.

2. The Energy Levels of Neutral Hf

In addition to the 217 levels of Hf 1 which are listed
in AEL, 57 additional levels are known from a prelimin-
ary unpublished analysis by Meggers.!” For the purpose
of fully documenting the basis of our computation we
have listed these additional levels of Hf 1 in Table I.
Thus, there are altogether 274 known levels of Hf 1
ranging in energy from O to about 52 000 cm™ above
the ground state. The ionization potential of Hf1 is
estimated to be approximately 56 500 cm™. The distri-

15 The spectra of the elements in the rare earth region are even
more complex, but they are not known to an extent which would
make them useful in our study.

16 Presumably some of the recently discovered, or still to be
discovered, elements of atomic number greater than 100 have
spectra that are similar to those considered in this work.

17 This was kindly drawn to our attention by Dr. R. E. Trees.
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bution of these 274 levels with respect to parity and J
value is shown in Table II.

Before attempting to find out what are the rules (if
any) which govern the fluctuation of individual spacings
about their mean value—which is the principal objective
of the empirical part of this work—it is necessary to
show that it is possible to define the mean spacing as a
function of excitation energy. For this purpose we
define the monotonically increasing step function 7'(X)
as being equal to the number of observed energy levels
having energy < E. Figure 2 is a plot of T'(E) for the
levels of Hf 1. It is seen that the variation of T'(£) with
energy is sufficiently regular that it is possible to define
an increasing continuous function 7*(E) which will
represent 7'(F) fairly accurately. Therefore, it makes
sense to speak of the density of levels at energy £, it
being given by dT*(E)/dE evaluated at energy /2. The
“local” mean spacing D(E) is given by the reciprocal
of the density, i.e.,

! -*dT*E 2
D_(B—EJ—E (E). (2

In the formation of the empirical distribution of
spacings relative to the mean, it is evidently necessary
to determine the value of D which is appropriate for
each individual spacing. We shall circumvent the
complicated step of obtaining an analytical form for
D(E) according to the scheme described above, by
inferring an appropriate value of D directly from the
experimentally observed spacings as follows. The energy
levels will be divided into adjacent groups of & levels.
We compute the average value of the £—1 spacings and
use it as the mean spacing for each of the £—1 spacings
in the group. In terms of Eq. (2), this amounts to the
approximation

1 T(E)-T(E) k-1
CB—E/

D E—E;

3)

where E; and Ej are the least and greatest values of the
energy levels in a group of % levels.

Insofar as possible one wants to choosc & large enough
to determine the mean spacing with adequate accuracy,
but not so large that the energy dependence of this
quantity destroys the validity of the procedure. This
point will be pursued somewhat further in the Appendix

TasLE II. Distribution of the known energy levels
of Hf 1 with respect to parity and J value.

J 0Odd Even
0 5 3
1 25 22
2 35 45
3 37 37
4 22 22
5 7 9
6 1 1
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F16. 2. A plot of T(E) vs E for Hf 1. T'(E) is the number of levels of energy less than or equal to E, the excitation energy above the
ground state expressed in units of 1000 cm™. 7'(E) is seen to increase smoothly with E, tending to show that it makes sense to speak of

“local” density of levels.

where the dependence of the most important empirical

results of this work are studied as a function of k. It -

turns out that the main qualitative features of these
results are largely independent of % for a certain range
of values of k. The lower end of this range contains k=7
which we adopt, somewhat arbitrarily, as the value
which is used in all the computations, unless otherwise
stated.!®

3. Repulsion of Odd-Parity Levels Having
the Same J Value

In the region of the periodic table which contains the
element Hf the spin-dependent forces seem to be of the
same order of magnitude as the residual electrostatic
interaction. The situation is therefore very similar to
the nuclear case since the total angular momentum
J and parity = are the only general constants of the
motion that arise from such well-known symmetry
properties of the Hamiltonian as invariance under
rotation and reflection. We are therefore interested in
obtaining the distribution of the spacing between
adjacent levels having odd parity and the same J value.

In order to obtain the desired empirical distribution,
the odd-parity levels were separated into sequences
consisting of the levels of a definite J value (seven
sequences altogether corresponding to the seven values
of J which occur). A set of spacings was obtained
separately for each sequence, the reduction to unit

18 Unless the total number of spacings happens to be an integral
multiple of 6, there will be a few spacings left over. Unless stated
otherwise, these “remainders’ are included in our distributions,
the mean being computed on the basis of less than six spacings in
these cases. We shall draw attention to the few cases where this
trea%ment of the remainders makes a significant difference in the
results.

mean also being accomplished separately for each J
sequence. As each of the sets was relatively small, the
spacings were combined to yield a single distribution, in
order to reduce statistical fluctuations. The resulting
histogram is shown in Fig. 3. The repulsion of the levels
is quite evident, the histogram reflecting a distribution
rather similar to the Wigner distribution (solid curve
in Fig. 3).

4. Superposition of J Sequences

Having shown that the odd-parity levels of Hf 1 obey
the first part of the rule stated in the Introduction, we
shall now produce some evidence that the same levels
are also in accord with the second part of the rule, which
states that levels of different J value are not correlated
in position. This lack of correlation may be exhibited,
for example, by considering the distribution of the

.o T T T
HEf L (0dd)
P 0.5 -
| ]
(o] I 2 3 4
X =S/D

F16. 3. Plot of the empirical distribution of nearest-neighbor
spacings for the odd-parity levels of neutral Hf. The mean spacing
D used in the construction of the histogram is defined by Eq. (3).
To obtain this figure, separate histograms for /=0, 1,2, 3, 4, 5,
and 6 were constructed and then combined. The Wigner distri-
bution, represented by the continuous curve, is in excellent
qualitative agreement with the empirical distribution.
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spacings in the sequence consisting of @/l the odd-parity
levels, no attention being paid to angular momentum
classification. Qualitatively, it is easily seen that a
random superposition of two or more unrelated
sequences leads to an increase in the number of very
small spacings (as before, every spacing must be divided
by the now much smaller mean spacing of the combined
system of levels!). In the combined system of levels
there will be a nonvanishing probability that a level of
one sequence will be followed by a level of a different
sequence. Since these two levels are assumed to be not
correlated in any way, there will be a nonvanishing
probability (per unit interval) that the spacing between
them is zero. Thus, we have the general result that the
probability per unit interval for the occurrence of a zero
spacing in the combined system of sequences will be
nonvanishing.

If a large number of uncorrelated sequences is super-
posed, each of which contributes a vanishingly small
fraction to the over-all density of levels, then neigh-
boring levels evidently tend to become uncorrelated in
position. Therefore, in this limit the distribution of the
spacing (expressed in terms of the mean spacing, as
always) will be a pure exponential.

The exact expression for the distribution of spacings
P(x) resulting from the superposition of any number,
say n, of unrelated sequences, each contributing a cer-
tain fraction ¢;(¢=1,---n) to the total density of
levels in the combined system, is derived in the Appen-
dix. This is done on the assumption that each of the #
sequences separately obeys a spacing distribution p(x)
having, like Wigner’s distribution, the property #(0)=0.
Although the expression for P(x), given by Eq. (36),
is somewhat complicated, the most important single
feature of it has an exceedingly simple form, viz.,

PO)=1=20:¢# 2:iq=1(=1,-n). (4

We digress briefly to discuss some implications of
Eq. (4) which are of interest also when, as is often the

case for neutron resonance levels, one does not know the’

1.0 T T T

Hf I (odd)

X =8/D

F1c. 4. Plot of the empirical distribution of nearest-neighbor
spacings for the odd-parity levels of Hf 1 when the levels are not
separated according to J value. The repulsion is sharply reduced
compared with the distribution of Fig. 3. The solid curve repre-
sents the result of randomly superposing a number of appropriately
weighted Wigner distributions. The limiting exponential distri-
bution is also shown (dashed curve).
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values of angular momentum (or parity) for a set of
experimental levels.

(a) P(0)<1—1/n. The equality holds if and only if
gi=1/n. For example, if an examination of a set of
energy levels indicates that P(0)>%, then one must
conclude that the set is a superposition of at least three
independent sequences.

(b) Consider n=2. Then P(0)=1—¢2— ¢, ¢1+¢2=1.
Therefore, if one knows that an experimentally ob-
served set of energy levels consists of exactly two inde-
pendent sequences, as is generally the case in the
resonance scattering of slow neutrons on target nuclei
with nonzero spin, then a determination of P(0) yields
the ratio of the level densities of the two spin systems.?

(c) P(0)—1if > ;92— 0. However, since 3_; ¢;=1,
this can only occur if ¢,— 0, #— . Therefore, a
certain residual amount of repulsion of levels remains
when a finite number of sequences is superposed.

We now return to the particular case of the odd-parity
levels of Hf 1. We shall neglect the complications of the
increasing level density with excitation energy and the
incomplete overlap of the several J sequences, by
ascribing a single over-all fractional density to each of
the J sequences. Using the data of Table II one obtains
P(0)=0.783. The complete distribution, given by Eq.
(36) of the Appendix, is represented by the solid curve
of Fig. 4. The empirical distribution was obtained by
our standard method and is represented by the histo-
gram of Fig. 4. The histogram and the theoretical curve
are seen to be in excellent qualitative agreement, the
exponential distribution (the broken curve in Fig. 4) is
approached, but is not attained.

5. The Distribution of Spacings between the
Even-Parity Levels of Hf I

Generally speaking, the low-lying even-parity levels
of the elements to be considered in this paper arise from
the configurations d», d* s, and @*2s%. This results in
a relatively simpler and smaller set of levels than the
odd-parity set which is obtained by promoting one of
the s or d electrons to a p orbit. Furthermore, the group
of (known) even levels is generally concentrated near
the ground state. For all these reasons our attention
was drawn primarily to the odd-parity levels as repre-
senting a richer spectrum in which definite statistical
rules are more apt to appear. However, as was pointed
out by Meggers? some years ago, the even-parity levels
of Hf 1 form a notable exception to the state of affairs
described above. In this particular case, the number of
even levels is roughly equal to the number of odd levels,
as may be seen from Table II, and both sets are spread
out over almost the entire energy range. It is therefore
natural (1) to see whether the even levels repel each
other when separated into J sequences and (2) to avail
oneself of the rare opportunity of checking whether the

19 This was already noted in reference 7.
20 Cited in AEL (our reference 14), Vol. ITI, p. 143.
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levels of the same J value but of opposite parity are
uncorrelated in position.

The degree to which the even-parity levels repel each
other may be judged from the histogram shown in Fig.
5, which is the exact counterpart of the histogram based
on the odd-parity levels which was shown in Fig. 3. It
appears that there is some repulsion as compared to the
exponential distribution. However, the repulsion is
definitely not as fully developed as for the odd-parity
levels, as may be seen by a comparison with the Wigner
distribution (solid curve). This behavior of the even
levels of Hf 1is fairly typical of the even levels for many
of the elements to be considered in this paper. A discus-
sion of this feature will be attempted in Secs. IV and V.

We shall now demonstrate that the repulsion of both
the even-parity levels (shown in Fig. 5) and the odd-
parity levels (shown in Fig. 3) is reduced when the odd
and even levels having the same J value are combined.
This constitutes a superposition of two sequences. While
the result of Appendix 2 does not directly apply,? it is

1.0 T T T
- Hf1 (even)
277N
/ \\
P osd / N |
/
/ k
/ \
/ b
/
1 ] &:L_l__:l._l_\
o 1 2 3 4

X =8/D

F1c. 5. Plot of the empirical distribution of nearest-neighbor
spacings for the even-parity levels of Hf 1 when the levels are
sorted according to J value (as in the histogram of Fig. 3). The
repulsion of the levels is not as fully developed as for the odd-
parity levels, as may be seen by comparison with the Wigner
distribution (dashed curve).

qualitatively clear that, if the two systems of levels of
the same density are uncorrelated in position, then the
distribution based on the combined sequences must be
closer to an exponential than are the distributions based
on the separate sequences. This turns out to be so, as
may be seen from the appropriate histogram shown in
Fig. 6. (It should be kept in mind that, as before, the
results for the various J sequences were lumped together
in order to reduce statistical fluctuations.) Thus, we
have obtained a qualitative verification that Wigner’s
rule (part 2) is fulfilled with regard to parity. It should
be noted that the data necessary for checking the same
point for nuclear levels does not seem to be available
yet.?

2 The result (36) does not apply because it is based on the
assumption that every sequence is governed by the same distri-
bution. This restriction could be removed rather easily.

( 22 N. Rosenzweig and C. E. Porter, Bull. Am. Phys. Soc. 5, 17
1960).
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1.0 1 1 I

\ HfI (odd and even)

X=S/D

F16. 6. Plot of the empirical distribution of spacings for levels of
Hf 1, when the levels are sorted according to J value but not
according to parity. (The results for the seven J sequences are
combined, as usual, in order to reduce statistical fluctuations.)
The superposition of the levels of opposite parity reduces the
degree of repulsion observed for either the even- or the odd-parity
levels (see Figs. 5 and 3, respectively).

III. DISTRIBUTIONS FOR THE ODD-PARITY LEVELS
IN THE THREE LONG PERIODS

1. The Experimental Material

We now turn to the examination of the empirical
distribution of the spacing for the odd-parity levels in
the three long periods. The experimental data to be
considered are the energy levels of the neutral atoms
which are homologous with elements of the iron group.

TasiE III. Distribution of odd-parity energy levels with respect
to J value for the elements in three regions of the periodic table.
The integral and half-integral values of J are appropriate, respec-
tively, for the elements of even and odd atomic number. The data,
taken from AEL (except for Hf 1), gives an indication of the
number of spacings contributed by each spectrum to the distri-
butions of Fig. 7.

J Sct  Tir Vi Cri Mni Fer Cor Nir
0, % 9 12 40 15 22 12 23 4
1, 14 18 37 72 45 43 37 45 15
2,2 18 49 90 65 58 58 52 25
3, 31 12 47 89 72 60 63 49 23
4, 4 6 36 58 69 48 54 25 12
5, 5% 2 19 33 51 31 38 9 4
6, 6% 8 9 30 14 17 1 1
7, 7% 1 1 11 2 3
8, 8% 2

Y1 Zri1 Nbi Moiri Tcr* Rur Rhi Pdr
0, % 10 10 26 6 10 8 1
1,13 17 36 54 45 35 17 12
2,2% 18 47 70 58 42 24 24
3,32 13 45 70 63 48 18 20
4,4% 6 32 50 57 42 8 7
5, 53 2 18 24 44 20 2
6, 63 7 7 20 7
7,71 1 1 8 1

Lur* Hfr Tar Wi Rer Ost Irr Ptr®
0, % 5 19 9 18 2 15
1,11 25 47 36 42 29 34
2, 2% 35 49 61 44 45 36
3, 3% 37 54 61 49 49 40
4,4 22 28 59 30 33 26
5, 5% 7 14 45 19 14 11
6, 63 1 2 24 8 10 1
7,74 4

& Spectrum not sufficiently known or not sufficiently complex to be
included in the computations.
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With the exception of Hf 1 (already noted in Sec. II),
we have used all the levels and only the levels which are
listed in AEL. A summary of the elements included in
this study, as well as the number of energy levels known
for each of the elements, is contained in Table III,
which also gives the distribution of these levels with
respect to J value. The arrangement in Table III
evidently corresponds to that of the periodic table in the
sense that homologous elements are listed in the same
column.

The spectra of the first long period® are characterized
by relatively pure SZ coupling. The SL coupling approx-
imation provides a relatively poor description for the
elements of the second period, and is largely inappro-
priate for the elements of the third period. These condi-
tions are reflected in the fact that definite SL assign-
ments have been made for 929, of the levels (listed in
AEL) belonging to the elements of the first period, for
789, of the levels of the second period, and for only
189, of the levels of the third period.

2. Distribution of Spacings between Levels
Having the Same J Value

As has been noted previously, parity and J value are
known with practically complete reliability for every
energy level listed in AEL. It is, therefore, an easy
matter to construct the distribution of the spacing
between neighboring odd-parity levels having the same
J value for each of the elements in Table III. The
method of computation is exactly the same as described
in Sec. II, 3 for the odd levels of Hf 1. Instead of plotting
a separate histogram for each of the spectra, we have
combined the data (after the computation of the
spacings relative to the appropriate mean value for each
J sequence), in order to obtain a single histogram for
each group of elements belonging to the same period. In
view of what has been said previously, this procedure
evidently corresponds to a rough grouping according
to the strength of the spin-dependent forces. For ease
of comparison, the resulting three histograms are shown
together in Fig. 7.

Histogram (c) of Fig. 7 is based on the 1156 spacings
of the heavy atoms from Hf to Ir. The spectra of these
elements, as in the case of Hf already discussed in
Sec. I1, are very similar to the neutron resonance levels
in heavy nuclei, in that parity and total angular
momentum are the only general constants of the motion
that arise from the symmetry of the Hamiltonian, and
one finds, as in the nuclear case, that the odd levels
having the same J value repel each other approximately
in accordance with Wigner’s distribution.

On the other hand, the corresponding distribution
based on the 1813 spacings of the light elements Sc to
Ni (first long period) as shown in histogram (a) of Fig.
7, is much closer to the exponential distribution than to
the Wigner distribution. The distribution based on 1162

2 We have in mind only the elements listed in Table III.
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spacings for the clements of the second period, namely
Y to Pd, as represented by histogram (b) of Fig. 7, is
intermediate between the extremes of the exponential
and Wigner distributions.

In order to arrive at an understanding of these results
in terms of the work up to this point, consider the ex-
treme case in which the spin-dependent forces vanish
completely.? Then not only parity m, but the total spin
angular momentum S and the total orbital angular
momentum L are separately constants of the motion.
Furthermore, a state of a given S and L can be char-
acterized by a value of the total angular momentum J,
but the energy is independent of J. The set of degenerate
states labeled by definite values of S, L, and = is called
a term. Obviously, the zero spacings between the
degenerate levels of a term do not fluctuate and must be
excluded from our considerations. (A similar elimination
of the magnetic sublevels in the absence of external
fields was tacitly assumed in the Introduction.) This
leads us to the following modified statement of Wigner’s
rules.

1. Adjacent terms having the same values for S, L,

1.0 T T T
Sc, Ti, V, Cr, Mn, Fe, Co, Ni  (0dd)

Hf, Ta, W, Re, Os, Ir

(odd)

0.5 -

(c)

1 ]
o ! 2 3 4
X=8/D

F16. 7. Empirical distributions of nearest-neighbor spacings for
the odd-parity levels of elements in the first, second, and third
long periods (histograms «, b, and ¢, respectively). To obtain these
figures, separate distributions were constructed for the J sequences
of each element and then the results were combined. Comparison
with the exponential and Wigner distributions (also shown)
indicates that the degree of repulsion increases steadily as one
goes from the first to the second and, finally, to the third period.
This variation can be understood in terms of the corresponding
increase in strength of the spin-dependent forces.

24 Tn connection with some of the remarks which follow see, for
example, E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, 1935).
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and 7 repel each other approximately according to the
Wigner distribution. 2. Terms which differ in any of
the quantum numbers S, L, or 7 are not correlated in
position.

The above statement, while it contains the essence of
the matter, is not directly applicable to actual atomic
systems because there are practically no spectra in
which the spin-dependent forces vanish completely. In
the case of Russel and Saunders in which these forces
may be represented as a small perturbation in the form
of a spin-orbit coupling, the positions of the nearly
degenerate levels are given by the expression

E(S,LJ)=A(S,L)
+B(S,L)[J(J+1)~LL+1)=SS+1D ] (3)

In the above, E denotes the value of the energy char-
acterized by S, L, and J and A(S,L) represents the
value that the degenerate S,L term would have in the
absence of spin-dependent forces. It is easily verified
that

A(S,L)=2 52+ ES,LT)/252T+1).  (6)

A(S,L) is often called the “center of gravity” of the
term in question.

If Eq. (5) holds rigorously, then the spacings of the
nearly degenerate levels do not fluctuate statistically
(they follow the Landé interval rule) and must be
excluded from our considerations. This is easily done by
formulating a statistical rule similar to the above except
that the phrase ““center of gravity of the term’” replaces
the word “term.” The centers of gravity can be com-
puted from the observed energy levels by means of
Eq. (6). -

The form of the modified rule which we shall actually
verify (in the cases in which it may be expected to
apply) is closely related to the above in that it takes
into account the fact that a week spin-dependent
perturbation will remove the degeneracy of the S,L
terms, but it does not require a quantitative applica-
bility of Eq. (5). Provided the spin-dependent pertur-
bation is sufficiently small compared with the spacing
between unperturbed S,L terms of the same kind, we
may formulate the modified rule as follows.

1. Adjacent energy levels having the same values of
S, L, J, and = repel each other approximately according
to Wigner’s distribution.

2. Levels having the same J value but differing in any
of the quantum numbers S, L, or 7 are not correlated
in position.

We now return to a discussion of the empirical distri-
butions of Fig. 7. The elements of the first period are
dynamical systems in which the condition for the
modified rule (weak spin-dependent forces) are approxi-
mated rather well. It will be readily appreciated that
histogram (a) is in accord with the second part of the
rule. This is so because a sequence of odd levels all of
which have the same value of J are derived from S,L
terms of many different kinds (typically 8 to 12 different
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F16. 8. Plot of the empirical distribution of spacings for the odd-
parity levels of the first period, corresponding to a separation of
the levels into sequences each of which is labeled by definite values
of S, L, and J. Comparison with the Wigner distribution (solid
curve) shows that a strong repulsion of levels is observed if the
(approximate) symmetries resulting from (almost) complete
absence of spin-dependent forces are taken into consideration.

types), so that each of the J sequences should be re-
garded as a random superposition of many unrelated
sequences of levels in the sense of the Appendix. As in
earlier sections, we find a sharp reduction in repulsion
compared to the Wigner distribution. The exponential
distribution is approached but is not attained. It should
be noted, however, that the residual repulsion, which
is seen in histogram (a) has its origin in two factors.
One of these, which we have already encountered, is
the fact that the number of different kinds of .S, L terms,
while large, is finite. This factor by itself cannot account
for the appreciable deviation from the exponential in
the first interval (0, 0.2). The second aspect is that the
spin-dependent forces, while small, have an influence
which apparently goes beyond the removal of the
degeneracy in that there is already a slight tendency for
levels of the same J value to repel each other. [The
second factor is even more important for the elements
of the second period (histogram b) and becomes
decisive for the elements of the third period.]

The (approximate) applicability of the modified rule
to the elements of the first period can be tested further
by constructing the empirical distribution of the spacing
for the odd-parity levels having the same values for .S,
L, and J. (In doing this we simply ignore the 89 of the
levels in AEL for which no S,L assignment is given.)
The distribution, constructed in the usual way on the
basis of 1332 spacings, is represented by the histogram
of Fig. 8. The histogram is in excellent qualitative
agreement with the Wigner distribution, and thereby the
first part of the modified rule is also verified.

A practical matter connected with the reliability of
the histogram of Fig. 8 must also be mentioned. When
the levels of even the most complex spectrum are separ-
ated into sequences each one labeled by a fixed value of
the triplet of numbers S, L, and J, then each one of the
many sequences contains relatively few levels (typically
5 to 10 levels). On account of both the small number of
levels and the dependence of the mean spacing on
energy, this aggravates the problem of determining the
mean spacing. In order to reduce the uncertainties
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Fi16.9. Plots of the empirical distribution of spacings for the odd-
parity levels of the elements of the third long period. The con-
struction differs from the one leading to Fig. 7(c) in that the
energy levels were not separated into J sequences. The solid curve
represents the theoretical distribution obtained by superposing a
number of appropriately weighted Wigner distributions. The
limiting exponential distribution is also shown (dashed curve).

arising from these conditions we constructed the distri-
_bution in question also on the following basis. Only
sequences containing at least seven levels were retained,
and the “remainder of spacings” discussed in reference
18 was discarded. This procedure resulted in a total
number of 630 spacings. The corresponding histogram
(not shown) turns out to be very similar to the one in
Fig. 8.

We have thus arrived at a good descriptive under-
standing of the histograms (c) and (a) of Fig. 7, the
former being covered by the rule stated in the Introduc-
tion and the latter by its natural modification when
spin-dependent forces are sufficiently weak. Histogram
(b) evidently represents the intermediate case (in every
sense of the word) which is not covered by either rule.
In Sec. V we shall discuss a modified form of the
random-matrix hypothesis which leads not only to the
observed results in the two extremes but also yields
qualitatively correct results for the intermediate case.

3. Superposition of J Sequences for the Elements
of the Third Long Period

In the preceding section it was seen that the com-
posite distribution [shown in Fig. 7(c)], based on the
elements of the third long period, follows the first part
of the Rule of Sec. I, viz., the levels of the same parity
and J value repel each other approximately according
to Wigner’s distribution. We shall now verify the second
part of that rule, that the repulsion is reduced in accor-
dance with theoretical expectation when the odd-parity
levels of a given element are 7o separated into sequences
of a definite J value. An appropriate histogram (Fig. 9),
again a composite for all the elements of the third row
of Table III, clearly reflects a sharp reduction in
repulsion.

As in the case of Hf 1, considered in Sec. II, 4, a
quantitative account of the observed distribution is
obtained on the basis of the theory of the Appendix. As
before, we neglect the complication of the increasing
density with excitation energy by ascribing-a single
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over-all fractional density to each of the J sequences
making up the spectrum of a particular element. The
composite distribution for the group of elements is
given by

Px)=>;w:Pi(x). (7)

in which P;(x) is the distribution obtained for element ¢
by superposing the appropriate number of Wigner
distributions, in accordance with Eq. (36) of the
Appendix, and w; represents the fractional number of
spacings contributed by element 7 to the histogram of
Fig. 9. The numerical computations leading to P(x)
were carried out on the Argonne IBM-704 computer,
and the result is represented by the solid line in Fig. 9.
The agreement between the histogram, based on the
experimental data, and the theoretical curve is excellent.
While the degree of repulsion is greatly reduced by the
superposition of the levels having all the different J
values which occur, the residual effect is easily seen by
comparison with the exponential distribution which is
also shown in Fig. 9 (dashed curve).

IV. DISTRIBUTIONS FOR THE EVEN-PARITY
LEVELS IN THE THREE LONG PERIODS

We now turn to the examination of the empirical
distribution of the spacing for the even-parity levels in
the three long periods, the work being completely
analogous to that of Sec. IIT which dealt with the odd-
parity levels. As has already been noted in connection
with the spectrum of Hf 1 in Sec. II, the lowest lying
even-parity levels constitute spectra of less complexity
than the set of odd levels. It would therefore not be
correct to infer from the results of Sec. III that the
same statistical properties will necessarily show up in
the even spectra. Actually, the statistical properties do
appear, although the situation is not as clear-cut as in
the case of the odd-parity levels.

1. The Experimental Material

The experimental data to be considered are the even
levels of the same atoms considered in Sec. ITI. With
the exception of Hf 1 (already noted in Sec. II), all the
levels and only the levels listed in AEL are included in
this study. The distribution of these levels with respect
to element and J value is given in Table IV. The
arrangement of Table IV evidently is such that homol-
ogous elements are listed in the same column.

The even spectra of the first long period (first row of
Table IV) are characterized by relatively pure SL
coupling. The SL coupling approximation provides only
a fair description for the elements of the second period
(second row of Table IV) but is not appropriate for the
elements of the third long period (third row of Table
IV). These conditions are reflected to some extent in the
classification of the (even) levels in AEL, according to
which definite S,L assignments have been made for 989,
of the levels belonging to the first period, for 909, of the
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levels of the second period, and for only 489, of the
levels belonging to the third period.

2. Distribution of Spacings between Adjacent
Levels Having the Same J Value

The distribution of the spacing between neighboring
even-parity levels of the same J value was constructed
for each of the elements of Table IV. As before, we used
the method of Sec. IT for estimating the value of the
mean spacing. As in Sec. III, the data have been com-
bined in order to obtain a single histogram for each
group of elements belonging to the same period. This
procedure evidently corresponds to a rough grouping
according to increasing strength of the spin-dependent
forces. For ease of comparison, the resulting three
histograms are shown together in Fig. 10.

Histogram (a) of Fig. 10, based on 1089 even-parity
levels of the elements Sc to Ni, and histogram (b), based
on the 530 even-parity levels of the elements Y to Pd,
follow the exponential distribution rather closely. The
discussion of Sec. ITI immediately suggests that the
observed distributions are in accord with the second
part of the modified rule, which is applicable to systems
in which the spin-dependent forces are relatively weak.
The detailed explanation is the same as before, namely,
each of the sets of levels of a fixed J value (for a given

TasLE IV. Distribution of even-parity levels with respect to J
value for elements in three regions of the periodic table. The
integral and half-integral values of J are, respectively, appropriate
for the elements of even and odd atomic number. The data, taken
from AEL (except for Hf 1), gives an indication of the number of
spacings contributed by each spectrum to the histograms of
Fig. 10.

J Sct Tit Vi Cri1 Mni Fer Cor Nir
0, 7 7 14 8 13 9 9 5
1,1 19 19 24 21 22 26 24 13
2,2 20 33 28 32 30 41 33 23
3,3 14 36 28 36 30 39 28 24
4,4 9 36 23 30 22 36 22 19
5,5 1 23 13 19 13 23 11 11
6, 6 10 7 11 2 10 5 5
7,7 3 2 3 2 1 2

Yr Zr1 Nbi Mor Tcr* Rur Rhr Pdrx

0, 13 4 8 7 4 4 3
1,1 21 7 11 12 13 17 10
2,2 23 16 13 19 23 19 14
3,3 14 13 12 20 22 15 14
4,4 8 15 11 21 23 10 7
55 1 9 6 13 12 3 2
6,6 4 1 8 3
7,7 1 1

Lur* Hftr Tar W1 Rer Osr Ir1 Ptie
0, % 3 7 5 6 3 4
1,13 22 14 8 11 7 13
2,2% 45 21 11 20 20 11
3, 3% 37 10 10 15 24 15
4, 43 22 15 9 11 16 12
55 9 6 8 6 6 4
6, 6% 1 1 4 2 1

a Spectrum not sufficiently known or not sufficiently complex to be
ncluded in our study.
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Fi16. 10. Plots of the empirical distributions of nearest-neighbor
spacings for the even-parity levels of elements belonging to the
first, second, and third long periods (histograms e, b, and c,
respectively). These figures are the exact counterpart of the
histograms for the odd-parity levels shown in Fig. 7. No repulsion
is evident for the elements of the first and second long periods.
The repulsion is developed to some degree for the elements of the
third long period.

element) arises from many different kinds of S,L terms.
Thus, every such set is a superposition of many un-
related sequences which, according to the result ob-
tained in the Appendix, yields a distribution of spacings
which is very close to the exponential function in the
cases under consideration.

Histogram (c) of Fig. 10, based on the 475 even-
parity levels of the heavy elements Hf to Ir, reflects a
distribution which is intermediate between the exponen-
tial and Wigner distributions. Neither the rule of Sec. I,
nor the rule of Sec. IIT is applicable in this case in which
the spin-dependent forces are of intermediate strength.
The observed distribution can, however, be understood
on the basis of a modified random matrix hypothesis
which is suitable for the entire range of strength of
spin-dependent forces. That will be taken up in Sec. V.

As in Sec. ITI, one is interested in testing further the
applicability of the modified rule to the even-parity
levels of the first and second periods by constructing the
empirical distribution of the spacing for even levels
having fixed values for S, L, and J. In such an attempt
the difficulties resulting from the very small number
of levels in a sequence of fixed S, L, and J is even
more acute than for the odd-parity levels studied in
Sec. III. For example, if only those sequences which
contain at least seven levels are retained, then the total
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number of spacings contributing to the histogram for
the elements of the first period is reduced from 678 to
54 spacings. If all the sequences are kept, thereby giving
a rather questionable determination of the mean spacing
in many cases, one obtains a distribution which is closer
to the exponential than to the Wigner distribution.
This, contrary to expectation, indicates a violation of
the first part of the modified rule.

Although the results of the preceding paragraph
(only) seem inconclusive, let us suppose that the
empirical distribution does in fact violate the first part
of the modified rule, in that it reflects too little repulsion
of the levels. Then it is interesting to note that all the
results can still be understood on the assumption that
a large number of the even-parity levels have been
missed af random by the atomic spectroscopists. Suppose
that a sequence of levels is governed by a distribution
that, like Wigner’s, has the property P(0)=0. Denote
the distribution resulting from a random omission of a
fraction f of the levels by P(x), where « is the spacing
divided by the apparent mean spacing which is larger
than the true mean by the factor 1/(1—f). It seems
obvious that the P; will retain the property P;(0)=0.
On the other hand, it also seems clear that P,— e*
as f— 1 because the surviving neighboring levels tend
to become completely uncorrelated. Evidently, the
limiting exponential distribution is reached via a set of
functions in which the peak is monotonically shifted to
smaller values of x as f goes from O to 1. A quantitative
derivation of P,;(x) has recently been given by
Moldauer.?> An application of his results to the problem
at hand leads to the rough estimate f~3. It is unlikely
that the atomic spectroscopists have failed to observe
such a substantial fraction of the even-parity levels in
the energy range under consideration.

There is still another explanation for a violation of
the first part of the modified rule by the even parity
levels, which we mention primarily because of its in-
triguing character. One can attempt to attribute the
absence of repulsion to the existence of an additional
(unknown) constant of the motion X which assumes a
variety of values for the energy levels in question. To
substantiate such a hypothesis by statistical methods
one would have to sort the levels according to X and
exhibit a high degree of repulsion for the resulting
sequences.

V. THEORETICAL ASPECTS

As has already been mentioned, Wigner’s rule, which
governs the distribution of spacing in heavy nuclei as
well as in the heavy atoms of the third long period, has
been obtained on the basis of a statistical hypothesis
for the Hamiltonian matrix. In this section we shall
briefly review the previous work, and then propose a
natural modification of Wigner’s matrix hypothesis
which leaves previous results unchanged, but in addition

2P, A. Moldauer (to be published).
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leads to the rule of Sec. III (appropriate for systems in
which spin-dependent forces are very weak) as well as
to the results which are in at least qualitative agree-
ment with the distributions observed in the intermediate
case as exemplified by histogram (b) of Fig. 7.

1. Summary of Previous Work?s

In order to obtain Wigner’s rules, as given in Sec. I,
we note that there exist, of course, representations in
which the matrix of the Hamiltonian is real, symmetric,
and diagonal with respect to total angular momentum
J and parity . We shall make a statistical hypothesis
about the Hamiltonian matrix in one of these represen-
tations. The submatrix referring to a definite value of J
and 7 will be denoted by

A=llai],

Although we shall consider finite-dimensional matrices
(dimension N), we are very much interested in what
happens as NV — o, The statistical hypothesis may be
stated in two parts as follows.

1. In one (or more) of the above representations the
matrix A has the form of a typical member of the
ensemble of real and symmetric matrices specified by
the joint distribution of the matrix elements

F(A)=fu(an)f12(012)‘ - fii(ai) - - fan(aww), <7 (9)

Qij=Qji. (8)

fii(ai) = fiy(—a:) (10)
(@) av=pt?, 1<i<jSN (11)
<aii2>av=0'27 1<i<N (12)
w21l (13)

In words, the hypothesis states that aside from the
condition of symmetry the matrix elements are dis-
tributed independently and symmetrically about zero.
The second moments of the off-diagonal elements are
all the same. The second moments of the diagonal
elements are all the same and they are assumed to be
no larger than the second moment for the off-diagonal
elements.

2. There is no correlation between submatrices
referring to different values of « or J. (Therefore, there
is also no correlation between eigenvalues of different
mor J.)

b Let us now summarize what is known about the
consequences and the validity of the first part of the
hypothesis.

For small values of x, P(x)~=x. In order to see this,
consider the transformation of the variables

(14)

where the N’s are the eigenvalues ordered according to
size and the o’s are some parameters to complete the set.
It can be shown that the Jacobian determinant which

@1i@1s° + any —> M S Agtc Ay,0u0s° QN (v—1),

26 The work which is reviewed here is presented in much greater
detail (and with a slightly different emphasis) in reference 6.



‘‘REPULSION OF ENERGY LEVELS’

occurs in the transformation of the volume element has
the form

Glasas - ayy v ) Lici [ NN (15)

Aside from some singular behavior that might be
introduced by the function F(A), this shows that quite
generally the probability density of the spacing Na—X\;
=g for small x goes as P(x)~x.

If one incorporates this important insight into the
simple-minded approach and supposes that the spacing
distribution is governed by a Poisson process in a2
(rather than x), one obtains the Wigner surmise

(16)

A somewhat fuller discussion is possible for one
particular distribution of the matrix elements. We note
that if A is real and symmetric then

e tazd eyt 20+ - 2ax 8
=lwATA=3 ;N2

p(x)=3mx exp(—Ima?).

(17)
So let us take
Jiiai) = exp(—2a:),
Jii(as)=exp(—a:?).
Integrating over the domain of the variables o (only a
verbal step is required !) one sees that the joint distribu-
tion of the eigenvalues is proportional to

exp(—2: A IT [Ni—=2 ],

i<j

i<j 18

(19)

a Wishart distribution.

Incidentally, Eq. (17) together with the invariance
of the volume element dr=day; - dayywv—1y under
orthogonal transformations shows that the distribution
(18) is invariant. Furthermore, it has been shown (in
reference 6) that (18) is the only distribution of the type
defined by Egs. (9) and (10) which is invariant. The
existence of this invariant distribution strengthened our
belief that if the statistical model is valid (or approxi-
mately valid) in one representation it will remain so in
many representations.

It was surmised by Wigner that provided the dimen-
sionality N is sufficiently large, the distribution of
spacings does not depend sensitively on the form of f;;
and that the “universal” distribution might be given to
a good approximation?” by Eq. (16). The evidence for
the correctness of these conjectures comes mainly from
numerically diagonalizing a set of randomly generated
matrices by use of a fast digital computer. Several
different forms for fy;, with the restrictions on the
second moments retained, were used. The parameter u?
was varied in the range from 1 to <, and the depen-
dence of the results on dimensionality was studied up

27 While Eq. (16) is an excellent approximation, it is certainly
not the exact asymptotic expression for the Wishart distribution.
This follows from Professor Wigner’s calculation of the second
moment of the distribution (private communication) and also

from the computation of another statistic by M. L. Mehta (to be
published).
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to N'=20. Within the limited scope of our calculations
we found Wigner’s conjectures to be entirely correct.
(A further discussion of the dependence on N and on u?
in the range from 0 to 1 is given below.)

Since the conjectures seem to be correct it makes
good sense to attempt to integrate the Wishart distribu-
tion in order to obtain an analytical form for the spacing
distribution in the limit as N — 0. That has turned out
to be a difficult mathematical problem which has not
been solved to date.

An attempt has also been made to see whether the
statistical model is already indicated in the shell-model
calculations of the more complex nuclear spectra.?® It is
precisely in the shell-model representation that one
would expect the statistical hypothesis to hold—if the
system is sufficiently complex and the excitation energy
is sufficiently high. The matrices which were readily
available to us were those of Kurath® for the treatment
of p-shell nuclei. Only the simplest statistics, such as the
over-all distribution of off-diagonal matrix elements,
have been checked so far. In turns out that for these
matrices that distribution is nearly Gaussian.

Although this work deals almost exclusively with the
statistical properties of eigenvalues, it should be noted
that the random-matrix hypothesis of this section also
implies definite statistical properties for the corre-
sponding eigenvectors. This, of course, has important
physical consequences. For example, the Porter-
Thomas® distribution for the neutron width has been
derived on this basis. In analogy with the work men-
tioned in the preceding paragraph we have also exam-
ined the statistical properties of the eigenvectors which
are obtained in the shell-model calculations of both
atomic and nuclear spectroscopy and this study has
resulted in additional evidence for the correctness of
the random-matrix hypothesis.$

2. Random-Matrix Hypothesis for the Hamiltonian
in Representations in Which S, L,
J, and = are Diagonal

If the spin-dependent forces vanish completely, then
there exist representations in which the matrix of the
Hamiltonian is real, symmetric, and diagonal with
respect to S, L, J, and «. The modification in the ran-
dom matrix hypothesis which is required in the light of
the results of Secs. IIT and IV, consists in making the
hypothesis in one of these bases. A schematic represen-
tation of a typical Hamiltonian matrix labeled by a
definite value of = and J, which are denoted by = and
J1, is shown in Fig. 11. In the absence of spin-dependent
forces the matrix elements connecting different S,L
blocks are zero, and energy levels having different S,L
values are uncorrelated. The dimension of each sub-
matrix is postulated to be proportional to the fractional

28 C. E. Porter and N. Rosenzweig, Bull. Am. Phys. Soc. 4, 319
(1959) ; and reference 6.

29 D, Kurath, Phys. Rev. 101, 216 (1956).
30 R. G. Thomas and C. E. Porter, Phys. Rev. 104, 483 (1956).
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o Frc. 11. A schematic
representation of a typical
matrix of the Hamiltonian
151 in an S, L, J, = represen-

tation. The matrix is
ro diagonal with respect to =
and J but not, in general,
with respect to S and L. The
varying fractional density
of levels contributed by
each S, L type is repre-
sented by a corresponding
size of each S, L block. The
strength of the spin-
dependent forces is deter-
mined by the parameter u.

S Lp
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density of levels contributed (in reality) by the type of
S,L term in question. As a result, the distribution of
spacings based on the entire 7,J matrix will be given by
the superposition process of the Appendix, in agreement
with experiment. If the m,J matrix consists of many
different blocks, each of which contributes only a small
fraction of the total number of levels, then the exponen-
tial distribution will be approached [as, for example, in
Fig. 10(a)].

In order to obtain the Wigner distribution for the
levels having the same values of =, J, .S, and L, we
postulate that the distribution of matrix elements
within each .S,L block is given by Egs. (9) to (13) with
p=1 (for simplicity).

If the Hamiltonian contains a spin-dependent term,
then the matrix elements connecting different S,L
blocks do not vanish. In that case we postulate that
these matrix elements are distributed independently
and normally (O,us). (The above case, in which the spin-
dependent forces vanish, corresponds to u=0.) If p2>1,
we have practically® returned to the conditions of our
original hypothesis, and the distribution of spacings
will be given by the Wigner distribution to a very good
approximation. Thus, we have formulated a statistical
hypothesis which gives satisfactory results in the
extreme cases.

For the purpose of a quantitative study of the inter-
mediate case, we shall simplify the above model some-
what without destroying its essential features by
assuming that all S,L blocks are of the same size and
that there is a large number of them. Furthermore, we
make the simplifying assumption that all the off-
diagonal matrix elements (i.e., also those within S,L
blocks) are characterized by the same dispersion uo. We
have therefore returned to the matrix hypothesis em-
bodied by Eqgs. (9) to (13), except that we are now
interested in the values of u between 0 and 1.

The spacing distribution will evidently depend on two
parameters of the model, viz., u and N (not on o). We
already know that for a fixed value of NV (sufficiently
large) the Wigner distribution is approached for p>1.
Since there are V times as many off-diagonal as there

31 This is not entirely the case because the dispersion of the
off-diagonal matrix elements within .S,Z blocks was assumed to be
¢ and not uo.
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are diagonal matrix elements, it is to be expected that
the Wigner distribution will be approached also for a
fixed p<1 and N sufficiently large. A plausibility
argument based on second-order perturbation theory
as well as Wigner’s derivation of the “semicircle” law
for the over-all distribution of a single eigenvalue®
suggest that the combination of parameters which
largely determines the spacing distribution is Nu?.

In order to obtain some quantitative information, we
have extended our earlier numerical random-matrix
computations to the range of u from 0 to 1. Histograms
of spacing distributions were obtained for N=10 and
20, and the results are shown in Fig. 12. The six histo-
grams (a) through (f) are labeled by the value of the
parameter NVu?. In two cases, viz., (d) and (e), results
were obtained for both V=10 and 20 for the same value
of Nu?, and they provide some evidence that it is
largely the value of Nu? which determines the distribu-
tion.® The range in Nu? over which there is a rapid
change in the nature of the spacing distribution occurs,
roughly speaking, between the values 0.001 and 1. For
values of Nu? outside this interval the spacing distribu-
tion is already fairly close to the limiting exponential
and Wigner distributions.

1.0 T T T T
N2=0,001
05 .
(a)
0 1 1
1.0, T T T T
2
N:2= 0004 N =04
P o5- 4+ -
b) A
s
0 1 1 1 1
1.0 T T T T
NiE =0.016 . NF=100
05 oy 0\ i
(f)
Q
1 1 1 ;
o I 2 30 | 2 3

F16. 12. Plots of the theoretical distribution of nearest-neighbor
spacings, based on the random-matrix model defined in the text,
as a function of Nw?. The results, shown as histograms, were
obtained by diagonalizing a large set of randomly generated
matrices by means of a fast digital computer. The results for
N=10 (solid histograms) and N =20 (dashed histograms) are
nearly the same for equal values of Nu?. The series of histograms
(a) to (f) clearly shows the transition from the limiting ex-

ponential (Np?— 0) to the limiting Wigner distribution of

repulsion (Nwu2>>1). Qualitatively, this transition corresponds
exactly to the trend depicted in the empirical distributions of
Fig. 7.

32 E. P. Wigner, Ann. Math. 67, 325 (1958).
3 The evidence is rather limited since NV has only been varied
by a factor of 2.
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The dependence of the spacing distribution on the
parameter Nu? in the critical range may be further
illustrated by focusing on a particularly sensitive, and
from the empirical point of view very convenient, meas-
ure of repulsion, namely, the height of the first step in
the histograms which, to within statistical fluctuations,
is equal to the theoretical quantity 5./2P(x)dx. This
“measure of repulsion,” as obtained from the above
random-matrix computations is plotted against log (Vu?)
in Fig. 13. The solid curve was interpolated between the
calculated points. The dashed straight line segments in
Fig. 13 represent estimates of asymptotic values based
on the exponential and Wigner distributions. (The
simplest analytical approximation to our “measure of
repulsion” would be the first derivative of the spacing
distribution evaluated for zero spacing.)

The above results are not only in agreement with the
extreme cases of Secs. III and IV, in which the spin-
dependent forces are either very small (Nu?— 0) or
rather large (Vu?>1), but they also provide at least a
qualitative understanding of the intermediate cases as
exemplified by the empirical distributions of Figs. 7(b)
and 10(c). If desired, a very rough value of Nu? can be
assigned to the empirical distributions.

The fact that Nu? (or the corresponding more correct
quantity which is unknown to us) is at times very small
(as, for example, for the elements of the first and second
long periods considered in Sec. IIT) implies that only a
limited number of states interact significantly through
the spin-dependent part of the Hamiltonian (in the
SLJw scheme). On the other hand, it may happen that
the effect of a small term in the Hamiltonain is ampli-
fied by connecting a large number of states with one
another. General statements of this kind are, of course,
well known. However, we wish to emphasize that the
perturbation of the individual levels which are of
significance in our work is quite small. What counts
here is the displacement of levels relative to the mean

1.0 T T T T

(o] 1 1 1 1
o4 103 102 107! 1 10
2
Np

F1c. 13. A plot of the “measure of repulsion’ as a function of
Nu?. The open circles represent values obtained from numerical
random matrix computations. The two dashed line segments
correspond to asymptotic values as Nu?— 0 and o, and were
estimated from the exponential and Wigner distributions,
respectively.
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spacing between neighboring levels. It seems quite
possible that a root-mean-square shift per level of less
than 159, of the mean spacing will suffice to convert the
exponential to the Wigner distribution (or vice versa).

VI. CONCLUDING REMARKS

We have established that the phenomenon of the
repulsion of energy levels occurs in the odd-parity
spectra of the elements which are homologous with the
iron group. (Similar results, which were not described
in this paper, were obtained for the spectra of the singly
and doubly ionized ions of the same elements. On the
other hand, other regions of the periodic table were not
explored.) We have found that the additional sym-
metries that arise when the spin-dependent forces are
relatively weak must be taken into consideration. The
random-matrix hypothesis of Sec. V, 2 provides a good,
though somewhat oversimplified, picture of the phe-
nomena. While our computations give an excellent
indication of dependence of the degree of repulsion on
the parameters u and N of the model, it would be
desirable to obtain an analytical insight into the
situation.

At this stage we are primarily interested in the qualita-
tive features of the phenomena, and refrain from
stating, for example, whether or not the histogram of
Fig. 7(c) is quantitatively consistent with the Wigner
distribution. A statement of this kind must, we think,
await a more precise theoretical formulation of the role
played by the energy dependence of the mean spacing.
In passing, we merely note that there may be a useful
connection here between the density of eigenvalues of
a random matrix (given asymptotically by Wigner’s
semicircle law) and the variation in density which occurs
in the atomic spectra.

While the repulsion of levels evidently occurs in
atomic spectra, the complexity of the atomic systems
is not so great that the statistical properties are fully
developed in every respect. The Landé interval rule and
the tendency of configurations of opposite parity to be
located in different regions of excitation energy are
well-known examples of nonstatistical behavior which
we had to take into consideration. More subtle struc-
tural effects of a nonstatistical nature may be present
within the set of even-parity levels.

The results of this work, together with those pre-
viously obtained in nuclear physics, certainly
strengthen the idea that the following general principle
holds for all sufficiently complex quantum systems.
Energy levels of the same symmetry type repel each
other (approximately according to Wigner’s distribu-
tion), whereas levels of different symmetry are not
correlated in position. This would mean that a study of
the distribution of spacings is potentially capable of
giving information about the symmetry properties of
the physical system in question. This point of view may
be illustrated by means of the histogram of Fig. 7(a),
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which suggests immediately that there are other good
quantum numbers besides 7 and J (viz., S and L).
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APPENDIX

1. Dependence of Results on the Estimate
of the Mean Spacing D(E)

‘As noted in Sec. II, the entire work is subject to the
inherent complication that the mean spacing D(E)
decreases fairly rapidly with increasing excitation energy
E. We shall obtain an indication of the dependence of
some of our empirical results on the estimate of D(E),
by studying the “measure of repulsion” of Sec. V,
given by .

0.2
M=5f P(x)dx,
0

as a function of £ [the number of levels in Eq. (3)]. As
examples, we consider what are probably the most
significant empirical results of our investigation, namely,
the distributions for the odd-parity levels in the three
long periods dealt with in Sec. ITI. We focus out atten-
tion on the distributions shown in Fig. 7. These distribu-
tions were constructed again with values of % ranging
from 3 to 21 and with the restriction (not made in Sec.
IIT) that the “remainders” consisting of less than %
levels are discarded (see reference 18). The results are
summarized in Table V, in which the number of spacings
T contributing to the entire distribution (not only to
M) is also recorded.

It is plain that, although M varies with &, the qualita-
tive differences for the three groups of elements are
independent of k. The values of M which are representa-
tive for the first, second, and third periods are 0.65, 0.45,
and 0.30, respectively. (The limiting Wigner and
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exponential distributions correspond to values of 0.16
and 0.90, respectively.)

Next, we focus our attention on the variation of M
with %2 within each group of elements. The method of
Sec. II for estimating D(E) would give M =0 for k=2.
In this (absurd) extreme each spacing would also serve
as the mean spacing appropriate for it. This artificially
large repulsion (M =0) persists to a lesser extent up to
k=06 or 7. Beginning with k=7, M increases slowly with
increasing values of %, and the effect is most marked for
the elements of the first period. These trends can be
understood to some extent by considering the distribu-
tion of the mean? [ the mean is defined by formula (3)]
as a function of k. If the mean were constant as a func-
tion of energy then the most probable value of the
estimated mean D, would be smaller than the true
mean D, ; the approximate value of the ratio would
be given by

Dy/D=1—-1/k

for the exponential distribution of spacings and by
Dy/Do=~1—1/2k

for a distribution of the Wigner type. Clearly, the use
of D;, which is too small leads to an apparent repulsion
which is too large (M too small). From the above
expressions it also follows that for a given value of k, the
effect is larger for the exponential distribution (which
is applicable to the elements of the first period) than for
a distribution of the Wigner type (which is more
appropriate for the elements of the second and third
periods). If it were not for the strong energy dependence
of D(E), we would obtain the best possible estimate of
D by using all the levels (% as large as possible). Actu-
ally, we adopted the value k=7, which is about the

TaBiLE V. The dependence of M, the degree of repulsion, on &,
the number of levels used in the computation of the mean spacing.
M is based on the same empirical distribution shown in Fig. 7 of
Sec. III. Although M varies with 2 somewhat, the qualitative
differences for the three groups of elements is independent of k.
The number of spacings T, which remain after groups of less than
k levels are discarded, is also listed.

First long Second long Third long
period period period

k M T M T M T
3 0.32 1784 0.24 1130 0.21 1136
5 0.51 1732 0.39 1088 0.29 1104
6 0.53 1690 0.39 1065 0.30 1060
7 0.56 1656 0.46 1038 0.29 1062
8 0.59 1673 0.39 1015 0.31 1029
9 0.62 1640 0.43 1000 0.29 1032
11 0.61 1560 0.47 920 0.30 960
13 0.64 1488 0.47 864 0.33 948
21 0.71 1280 0.47 760 0.38 800

3¢ N. Rosenzweig, L. M. Bollinger, L. L. Lee, Jr., and J. P
Schiffer, Proceedings of the Second United Nations International
Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958
(United Nations, Geneva, 1958), Vol. 14, p. 58. There is a misprint
in formula (24) of this paper. NS* should be replaced by 2NS*.
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smallest possible value which gives meaningful results.
In a more quantitative study in the future, the correc-
tions implied by this discussion should certainly be
included (see also Sec. VI).

2. Random Superposition of a Number of
Sequences of Energy Levels

We shall now derive the distribution of spacing
resulting from the random superposition of # unrelated
sequences, a result which has been referred to repeatedly
in this work.?® Let p; be the density of levels of the ith
sequence and let p(p:s)pds be the probability that a
nearest-neighbor spacing in sequence ¢ has a value
between s and s+ds [this interval will be denoted by
(s, s++ds)]. The function p(x) is assumed to be the same
for all sequences. p(x) is normalized to unity and, since
the mean value of the spacing is the inverse of the
density, the first moment of $(x) must also be unity, i.e.,

f " ()= f ep(e)dn=1, (20)

0

We are primarily interested in functions p(x) which,
like Wigner’s distribution, have the property

2(0)=0. (21)

Now consider the system of levels resulting from the
superposition of all # sequences. The total density of
levels is given by

p="22:pi (22)

Let P*(s)ds be the probability®® that a spacing lies in
(s, s+ds). Our aim is to express P*(s) in terms of the
fundamental probability p(x). First we write P*as a sum
which exhausts all mutually exclusive possibilities, i.e.,

PH)= T 2p0s09),

2,7 o

(23)

where p;,;(s)ds is the probability that, given a level of
sequence ¢ at s=0, the nearest neighbor (in the positive
sense) will lie in (s, s+ds) and belong to sequence j.
Next, we write down some probabilities which are
needed for the evaluation of p; ;(s). Given that a level
of sequence ¢ occurs at s=0, the probability that the
next level of sequence 7 occurs in (s, s+ds) is given by

pip(pis)ds. (24)

Given that a level of sequence 7 occurs at s=0, the
probability that a level of sequence j(7#%7) occurs in

3 The case #=2 is considered in references 7 and 12. Our
treatment is a generalization of a recent unpublished derivation
by P. A. Moldauer (also for #=2) to whom we are indebted for
showing us his manuscript.

36 5 is expressed in energy units, for example, electron volts or
wave numbers. We reserve P (without *) for the probability
density in which the spacing is expressed in terms of the mean
spacing for the combined system of levels.
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(s, s+ds) is given by

desf p(x+pjs)dx. (25)

If we put ’

R)= [ plet)ds, (26)
0

then the probability (25) becomes p;dsR(p;s). Given

that a level of sequence 7 occurs at s=0, the probability

that a level of sequence 7 does not occur in (0,s) is

given by

f 00 (p2)dx=R(p35).

s

27

Given that a level of sequence ¢ occurs at s=0, the
probability that a level of sequence j(¢5%4) does not
occur in (0,s) is, in view of Eq. (25), given by

P; f f p(x+py)dady= f f p(x+y+p,5)dudy
s 0 0 0

- f wp(etp). (28)

0
Let us put

D(y)=f xp(x+y)da. (29)

Then the probability (28) is given by D(p;s). Using the
above results, one can express p; ; as

pip(pis) n
pii(s)= D69 kH=l D(pss), (30)
and, if 77 7,
R 7 R(p; n
9oy =PRI b, 61

D(p;s)D(pis) #=1

An expression for P*(s) may be obtained by substituting
Egs. (30) and (31) into (23). Before doing that, we
introduce the variable x which denotes the spacing
divided by the mean spacing for the combined system
of levels, i.e.,

ps=1, (32)
the distributions for s and x being related through
P*(s)ds=P(x)dx. (33)

It is convenient to replace the densities p; by the frac-
tional densities ¢; defined by

gi=pi/p, 2i¢:=1. (34)
By use of the abbreviation
II@)= kH D(qx), (35)
=1

the distribution P (x) which we set out to calculate may
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Fic. 14. Plots of the distribution of spacings implied by Eq.
(36) for the random superposition of J sequences; the fractional
density of levels ¢; contributed by each sequence is given by
Eq. (42). The various curves correspond to several values of ¢ as
noted in the figure.

be expressed as

2P(qix) Rlg) T’
PO=TIE|E 0 T ]
R(gix)7?
_g [quqix)] ' -0

We shall now derive the most important properties of
P(x). First, note that

R(0)=D(0)=1, 37)

these relations being entirely equivalent to Eq. (20).
Applying (21), (34), and (37) to (36) one obtains the
most important single feature of superposing a number
of unrelated sequences, viz.,

PO)=1-2:¢4,

which depends on only one detail of the fundamental
distribution, namely, $(0)=0. The value of the first
derivative at the origin also has a fairly simple form,

viz.,
P0)=—1+32:¢2+[p'(0)—2]3 ¢

The result (38) evidently depends on two details of the
fundamental distribution. (For the Wigner distribution
$'(0)—2=—0.429, and in this case the third term of
expression (38) is frequently small compared to the sum
of the first two terms.)
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Next, consider the superposition of 7 sequences with
all the fractional densities equal to 1/#. Denoting the
spacing distribution by P,(«x) in this case, we will show
that P, (x) — e ®asn — . Letting y=1x/n, one obtains

) RZM( 1+3)]. (39)
n

P =D)L
7T by oy
In view of Egs. (21) and (37), the expression in the
square brackets becomes unity in the limit as # — «
(y — 0). Next consider D(y), which we assume to be
expandable in a power series about zero. Since D’(0)
= —1, we have to first order in y that

D(y)~1—y=1—(x/n), (40)
from which it follows that
x n
Py(x)= lim (1—~) =¢77, (41)
n—oo n

The exponential function will, of course, be the limiting
case for other sequences. However, Eq. (37) shows that
a necessary condition is »_;¢2— 0. Accordingly, the
exponential distribution cannot be attained if ¢,70 for
any one sequence, even if an infinite number of sequences
are superposed. This may be illustrated by means of the
well-known formula for the fractional density of nuclear
levels having spin J and the same parity,*” namely,

gs=exp(—=J%/2¢") —exp[ — (J+1)*/20°],

J=0,1,---,00. (42)

Adopting the Wigner distribution, one obtains

R(x) =exp(—ima?),

D(x)=1—(§)

The function P(x), representing the distribution of
spacings that results from the superposition of all the
sequences implied by Eq. (42), was computed numeri-
cally for some values of ¢ in the range from 1 to « and
the results are shown in Fig. 14.

37 H. A. Bethe, Revs. Modern Phys. 9, 53 (1937); and C. Bloch,
Phys. Rev. 93, 1094 (1954).

1
z

z(m)t
f exp(—3y9)dy.  (43)
0



