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values (0, 1, and 2) of the total spin S. A preliminary
examination indicates that the first-order dispersion
energies then depend on a parameter related to 5,
somewhat as they depended on cT for doublet atoms in
Section II. However, this rnatter will not be pursued
further here.

A point of some interest (especially if approximate
theoretically computed values of p „are to be used in
the absence of experimental values) is the relation of

p „ to the value of p „ for a one-electron transition.
The cases of the bivalent alkaline-earth and Hg-type
atoms and of the rare gas atoms when one atom is in
its ground state and the other in its sp or pss resonance
state are especially simple. In both cases, a 2-electron
approximation should be fairly accurate (see the
1-electron approximation for alkali metal atoms in
Sec. VI). In this approximation it is easily shown for
the bivalent metal atoms that p, „is 2: times as large,
hence p „' and f„„are twice as large, as for a similar
transition p ~ s of a single electron. In the case of the
rare gas atoms, p„„' and f „are again just twice as

large as for a similar s &—p transition of a single electron
(Not, as one might perhaps casually surmise, six times
as large because of the six electrons in the p' shell).
If one uses real AO's and 4's, as is convenient here, p,

in Eq. (14) corresponds in the bivalent metal case to
any one of the transitions sp„'P, &—s', 'S, where q may
be x, y, or s. All of these give the same value of (p „«&)',
each time twice that for the corresponding transition
p„'P, +—s, 'S, because esther of the two electrons in s'
can jump. In the rare gas case, one has again three equal

p „"s,of which, for example, (p „&'&)' corresponds to

P 'P„'P,s, 'P, ~ P sP„'P.', 'S, with a value twice that for

p, 'p„'s, 'S&—p, 'p„'p„'P, . It will be noted that for
any one q, only two electrons of p' can be active.

In all the foregoing cases, of course, account must be
taken of the fact that a fraction of p, „' is lost from
'P to 'P&, depending on the energy difference between
'P and 'P and on how strong the spin-orbit coupling in
'P is. This loss can readily be computed by standard
methods if one knows the positions of the 'Po, 'P1, 'P2,
and P energy levels.
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The covariant equation for the three-body deuterium system is discussed, and reduced to a three-dimen-
sional equation for the case of instantaneous two-body interactions. A noncovariant perturbation scheme,
based on this three-dimensional equation, was employed to calculate the hyperfine structure (hfs) to order
um/2f' (hfs) for iH', iH', sHe'+. The results are compared with the experimental values, and shown to be
compatible. Final determination of the theoretical values and the adequacy of the theory is shown to depend
critically on the determination of a number of experimental quantities, in particular on a more precise
measurement of o., of the nucleon electric and magnetic form factors and associated nucleon polarization, of
the presence and magnitude of a two-nucleon spin-orbit potential, and of the singlet n-p effective range.

I. INTRODUCTION

HE hyperhne splitting of hydrogen has been
calculated to order n'(hfs) in the relativistic and

radiative corrections, ' nm/M in the mass corrections s

and (r-nucleus)/ao in the structure corrections. ' These
orders are of comparable magnitude, and the following
formula for the H' hfs is good to a few ppm:
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AvH= (16/3)n'cE„(p, „/p, ,) {1+m/M} '

X{1+n/2ir+0. 386n'/ir'}'{1+3n'/2}
X{1—ns(S/2 —ln2)}{1—35(+3 5) X10 '}
X{1—6},

where E.„is the rydberg constant for a nucleus of in-
finite mass; p„ is the magnetic moment of the proton;
p, , the magnetic moment of the electron; the erst
bracket is the reduced mass correction4; the second
bracket is the ratio of the magnetic moment of the
electron to the Bohr magneton; the third bracket is the
relativistic Breit correction; the fourth bracket is the
radiative correction of Kroll and Pollock'; the fifth
blacket ls the mass corI ection and the nucleoI1 structule
correction; the sixth bracket includes all otller possible

' G. Breit and R. E. Meyerott, Phys. Rev. 72, 1023 (1947).
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corrections, to be discussed in this section. The reduced
mass correction depends in a trivial way on the nuclear
mass, whereas the succeeding three brackets concern
the electron in the external Coulomb field and do not
depend on the nuclear mass or structure. The entire
expression through the fourth bracket is denoted by
E~, and the hyperfine anomaly for heavier elements is
defined with respect to the variation of the fifth and
sixth bracket with nuclear species:

one obtains:

(hvH), ~...——(1420.40094+14 ppm) (1—5'),
&'= (35&3 5)X10 s+6

(b,vH).„,= 1420.40573. (3)

6' is the sum of the structure correction and A. This is
to be compared with'

with 6=—hyperfine anomaly.
The mass and structure corrections arise from the

exchange of one or two transverse photons of high mo-
mentum (k)m) in the Bethe-Salpeter perturbation
theory, with the zero-order two-body interaction taken
to be the instantaneous Coulomb interaction. There
are three types of corrections: one proportional to
in(M/rw) 7; a second, nonlogarithmic, of order unity,
arising from the lower limit of the covariant perturba-
tion integrals; and a third large term to which all
momenta (but primarily those for which m& k&M)
contribute, arising from the finite size of the proton.
The corrections of order unity are expected to be 10—

15%%uq as large as those of order ln (M/m). This is the case
even in H', despite the almost complete fortuitous can-
cellation of the In(M/m) terms. The logarithmic terms
come entirely from retardation and recoil corrections
to the zero-order hyperfine operator. Furthermore, the
contribution from negative energy proton intermediate
states does not depend on the detailed wave function
of these states. These considerations enabled Newcomb

and Salpeter' to develop a noncovariant method which

gives the logarithmic terms, and hence about 90 jq of
the mass correction. The proton structure- corrections'
can also be derived from either a three-dimensional

approach or a covariant one, with results which agree
within 20%.s These calculations have been based on an

exponential form factor' as determined by the Stanford
experiments.

When Eq. (1) is evaluated, using the latest values of
the physical constants as given by Dumond and Cohen, '

'W. A. Newcomb, Ph.D. thesis, Cornell University, 1952
(unpublished); W. A. Newcomb and E. E. Salpeter, Phys. Rev.
97, 1146 (1955).

6 The covariant calculation also removes the logarithmic di-
vergence in the double-Pauli term. This is to be expected since
the form factor spreads out the moment into a finite region.

7 R. Hofstadter, Revs. Modern Phys. 28, 214 (1956); D. R.
Yennie, M. M. Levy, and D. G. Ravenhall, Revs. Modern Phys.
29, 144 (1957). M. R. Yearian and R. Hofstadter, Phys. Rev.
110, 552 (1958); 111,934 (1958). R. Hofstadter, M. R. Yearian,
and F. Bumiller, Revs. Modern Phys. 30, 482 (1958); A. M.
Sessler and R. L. Mills, Phys. Rev. 110, 1453 (1958).' J. W. M. Du Mond and E. R. Cohen, IIandbuch der Physik,
edited by S. Flugge (Springer-Verlag, Berlin, 1957), Vol. 35,
Part 1, p. 1; J. W. M. Du Mond and E. R. Cohen, Phys. Rev.
Letters 1, 291 (1958); see also S. M. Koenig, A. G. Prodell, and
P. Kusch, Phys. Rev. 88, 191 (1952).

If we equate Eq. (2) and Eq. (3), we obtain:

(38.5+23.5) X 10 '= —A.

There is thus a discrepancy between theory and experi-
ment, which can range from 15 to 60 ppm. "The in-

terpretation that is given to this discrepancy will

significantly affect the meaning of the results for the
heavier nuclei that are considered in this paper. There
are three possible sources for this discrepancy: (1) The
value of n may actually lie outside the maximum error
allowed by Daybook, Triebwasser, and Lamb. " A re-
determination of o. would be of great help in this con-
nection. (2) The form factor may differ considerably
from an exponential. It cannot yet be ruled out that a
highly singular form factor exists, which would give
rise to a value for (r, ) which differs considerably from

(r, ')&. (3) Nucleon polarization terms may yield an
additional correction 6 of the proper sign and magni-
tude. The form factor calculations consider the proton
merely as an extended charge distribution, and do not
take into account possible excitation of this distribution '

during the exchange of two or more (virtual) photons.
Drell and Ruderman" have estimated the size of this
contribution, and have found that it gives a correction
of the order of sr+~ of the main Coulomb and magnetic
scattering. Such a correction to the over-all scattering
may represent a non-negligible correction to the hfs,
which is itself already only a small part of the total
electron-proton interaction. Iddings and Platzman, "
using dispersion relations, have calculated the con-
tribution of intermediate states containing one meson.

They find a correction of &1 ppm. Thus it seems un-

likely that the hfs discrepancy can be accounted for by
polarization of the m-meson cloud. One cannot, of course,
rule out such a possibility, or exclude more complicated
mesonic effects.

The unsatisfactory state of affairs in H' will bear
directly on the situation in the heavier nuclei.

' P. Kusch, Phys. Rev. 100, 1188 (1955).
' It is interesting to note that before the introduction of the

structure correction, there seemed to be no discrepancy. There
were, however, uncomfortable logarithmic divergences in the final
result."E.S. Dayhoff, S. Triebwasser, and W. E. Lamb, Jr. , Phys.
Rev. 89, 106 (1953)."S. D. Drell and M. A. Ruderman, Phys. Rev. 106,561 (1957).

C. K. Iddings and P. M. Platzman, Phys. Rev. 115, 919
(1959).
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II. hfs OF DEUTERIUM

A. Covariant Equation

mentum four-vector (0,0,0,F) where

E= 28+22+e8 (13)
The three-body Bethe-Salpeter equation is'4

if (xi'x2'x3')

is the total energy of the system. In particular, we seek
the ground state of the bound system, for which

E(233l+2332+ m 3. (14)
dxldx2dx3lfx4lfxillx8 E+'(1'4)E~'(2'5)

XEp'(3'6) 0(456; 123)P (xlxix3), (7)

where the kernel 6 is the sum of all irreducible inter-
action diagrams. We assume the absence of three-body
forces, and take the three-body interactions to be com-
pounded of two-body interactions. We further assume
that we can choose a I.orentz frame in which the main
part of the two-body interaction can be represented by
an instantaneous interaction 6,; which will be taken to
be the zero-order interaction. 6,, depends only on the
relative coordinates of i and j, and can be written, e.g. ,
for i, j=1, 2, as:

g12(x4x3x6 j xlx2x8) =612(x4 x8)8(x4 xl)
X8 (x8—xl) 8 (x8—x3)8 (x,—x,') 8 (t4—/8). (8)

The total kernel is the sum of the three basic inter-
actions, and all other interactions:

&=Ci2+&23+&3i+&~. (9)

Gq will be treated as a perturbation. Multiplication of
Eq. (7) by (iV 233,),—where V=—y 8/Bx, leads to the
integro-differential equation

i(iVl 2381) (iV2 2232) (iV3 2333)$(xl x2 x8 )

For this state, we can consider only those components
of the wave function in'which pairs of particles prop-
agate together in negative energy states. This is due
to the instantaneous character of the interaction, which
guarantees that if we want the state at all times to
contain three particles (i.e., has lV+ —1V =3) then we
can only have at any time states in which both inter-
acting particles propagate together along their time-
ordered world lines. If we introduce the free Casimir
projection operators, we then have the result that any
solution can be written as the sum of four components,
+++, +——,—+—,a,nd ——+. Now let 32 be a
function defined by

8 (PlP2P3) = ~X (PlP2P3),

and let b;, be an integral operator which operates only
on the three space components of the momentum vec-
tors, such that

g12f (plp2p8) = dir12 612( k12)

Xf(pi+k12& P2 k121 &i)&2)P8)&3)~ (16)

The first integral on the right-hand side of Eq. (11) is
then

= (iV,' 233 ) —3dxidx2 682 (xi—x3)P(xlx2x3')

+ (1o)

The Fourier transform of Eq. (10) gives the basic
equation in momentum space. To make the energy de-
pendence clearer, we multiply by p4'p4'p4' and denote
y4'y4'y4'6 by a letter without a bar. The equation is

iZX(PlP2P8) L28 H3(P3)] tQ12 G12( k12)

gl2J dX12 32(P1) 21+X12) P2) 22 X12) P31 23)

X/28+Xi —Hi] 't 2 —X82—H2] '. (17)

The four integrals arising from Eq. (1'7) when 32 is
expressed as the sum of its four components, are each
functions of ~3 alone. Thus the integral as a whole is a
function of e3, and the remaining integrals on right-
hand side of Eq. (11) are functions of el and 22, re-
spectively. YVe can therefore write

V =f8(~l)+f2(22)+f3(23), (18)

where

where the f's are known functions. We further define
X(P'+ "& P' "& P')+' ' '~ ( 1) the auxiliary functions

&=L.2l —Hl(Pi) X~2—H. (P.)7L28—H3(P3)3,

P'= (P', '),
H'(p') =~' p'+P,~;

(12)

82, (23) =f, (c,)—f;(E;), i=1, 2, 3

3"(&')=o,

«=2 f'(&*), (20)

k;; is the momentum exchanged in the instantaneous
interaction between i and j. The motion of the center
of mass has been separated out in Eq. (11),being repre-
sented by a monochromatic exponential with mo-

' The nonrelativistic limit has been treated in the following
paper: G. %entzel, Phys. Rev. 89, 684 (1953).

where
E =+(P'+233')'

so that Eq. (18) becomes
3

3 =83+2 2'(2')
i=1

(21)
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In all of the above expressions only the energy depend-
ence has been shown explicitly, the dependence on the

y; being understood. qo is a function of the spatial
components alone. Inserting Kq. (22) into the right-
hand side of Kq. (11), we can perform the integration
over the fourth variable; if we indicate nonvanishing
components by the use of projection operators, we
obtain"

8 =2~(~. . +~. +—) B»(N++ ~—+-)-

X[E 88 Hl——H2)—( ppp+ 828)

+2~ (~. . . +~, ) B»(~+++—~-+-) (23)

X[E—82—»—Hp) '(8p+p 2)

+22r(Ap+++A~ ) B28(A. . .
—A~ )

X[E—pi —H2 —H8) '(p p+8 i).
We relinquish the constraint Kq. (13), and set «, =E;
in Kq. (23). Then, after solving for these values, we
obtain solutions for arbitrary p, . For p, =E; [using Kq.
(19)) Kq. (23) reduces to an equation for ipp. Defining
a new function f by

lp= —[E Hl H2 —H8) —'pp p,
— (24)

and introducing the abbreviated notation

OE12 2m'(A, ', ,
+A —+) B12(Ay~ A ~), (25)

we obtain, for e,=E;, the relation

(E Hl H2 H8)lP—= (m—12+BR18+5E23)lP. (26)

As in the two-body case, this differs from the "single-
particle theory" three-body relativistic equation by the
presence of the projection operators. This three-
dimensional equation alone suffices to determine the
energy eigenvalue E of our system, a result independent
of the e; dependence of the complete wave function.
The pp; are determined from Kq. (23):

(1—K,l[E—pp H; H;) ') pp—2—
= (88—Ep) an, ;[E—pp H, H,) 'lp, —(26—a)—

p 3 ——(pp —E3) p ply;; (E ep Hg H,)-')"p, —(26—b)—
n~l

where i4j4k and each index can assume the values
1 2 3.

We can now develop a perturbation expansion for the
excluded graphs. Kq. (11) can be written

where lP„* is the transposed complex conjugate spinor
to lP„, and the operators in Kq. (29) operate back on
the spinors. For another energy E&/E, let 2» be the
expression represented by Kq. (12) having total energy
E~, and let

x„~=«—'[—(Ep, H, H—2 —H8)P—+Q q &"&) (30)
where the pp,

'"& are the sanle as in Kq. (28). Note that
y„~ —+ x„as Eg —+ E„.Then

«x '= —(E~ E—)4' +Bx' (31)
Direct evaluation shows that

Bx.= Bx.'—(E.—E.)=-.,
where is a function involving p; and g . Then Kq.
(31) is

(«—B)x~'= —(E~—E.)(f.—=-). (32)

Consider the complete three-body equation

SQ„=(B+Bg)Q„, (33)
where Bq is the integral operator whose kernel is G~.
0„ is that eigenvector belonging to eigenvalue E~
=E +DE which goes over into x as Bll
approach zero. We can therefore write

~ln xn, +X5)
where x& is first-order small relative to z ~. Equation
(33) is then

(«—B)x.'+(«—B)x~= B~x-'+ B~x~. (34)

We multiply by p™ ~ on the left and integrate with re-
spect to the p, . The fact that the center-of-mass motipn
has been separated out is indicated by a factor
8(yl+y2+pp)8(E —p;p, ). The integrand is:
~E(4-*+=*)x.'+~EH -*+=*)x~

= —x.'B.x-' —x.'B.x.. (35)

We seek the first-order energy shift AE'( ). The secpnd
terms on each side of the equation are at least second
order small; the integrals involving ™give vanishing
contributions; in the remaining terms, x„can be re-
placed by x„ to erst order; and integration over the
fourth coordinate of lp„*x„simply replaces x„by
(22r)2lp„, . . . If we normalize our wave function accord-
ing to the requirement

(z.—B)x-=o, (2&) (2~)'~ 4-. . . 8-. . . dfildp2~183&(Z, y;) =1, (36)

where B stands for the integral operator with kernel

G»+G»+G», written explicitly as the right-hand side
of Kq. (11).The subscript 28 refers to a given eigenstate
of energy E„.The solution is

X =2 —'[—(E„—Hl —H2 —Hp)pn+p;pp;&n&). (28)

An adjoint function x„can be defined by

x„=[—f„*(E—Hl —H2 —Hp)+Q, p2;*&"&72 ', (29)

'5 The (y&+y2) parts of the Grst term on the right-hand side
vanish, as can be seen from the explicit expression for the q; given
in Eq. (26a). Similarly for the other terms.

we obtain from Kq. (35) a first-order energy shift

~E"'=—~' dp d p dip ~(Z'1')~(E—2;p,)x.B.x.

dpi&»dip ~(Z'1 *)~(E—2;p;)d&1848d48

Xxn (plp2pp) Bk (~12,~18)~28)

XXn (pl+~12+ lpga p2 ~12+f323q p3 ~13 k28) ~

(37)
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Ke are now in a position to see why the covariant
formalism which we have just outlined is unsuitable
for the problem of deuterium, and what formalism can
take its place. In deuterium, the basic interactions are
the electron-proton Coulomb interaction and the
neutron-proton interaction. There is, however, no
known nuclear interaction which can be used in the
tmo-body SS equation for the neutron-proton system. "
One might expect that the recent proposed phenomeno-
logical potentials" could be incorporated into the for-
malism. These are, however, three dimensional, and
only suitable for the noncovariant method which we
shall adopt in the next section. Association of the
phenomenological potential with the basic interaction
kernel would lead, because of the strength of the inter-
action, to sizeable contributions from second- and high-
order irreducible graphs, which would then destroy
the agreement of the original zero-order equation with
experiment. On the other hand, if one associated the
phenomenological potential with the sum of all orders
of irreducible diagrams, the basic interactions would
remain undetermined. There seems to be no way of
resolving this problem until the correct basic covariant
interaction is discovered.

Equation (26), the end product of the reduction of
the three-body equation, enables one to go over to a
three-dimensional formalism, which is reducible and
soluble. This is because the correct ground-state energy
and wave function are well represented by a three-
dimensional theory starting from Eq. (26). In a three-
dimensional formalism we can incorporate the phe-
nomenological potential, and expand the perturbation
theory only in powers of e. This procedure will yield
all the logarithmic terms arising from retardation and
recoil effects, and hence account for the exact covariant
correction to within about ten percent.

Pr ——V —en' A+ en' A —(i epr '/2M)

&&+„{p'(o')&lt) —ikp'a') A'(k)
—(icy~/2M) Pt{P'(e'Xk) i—kP'n') A'(k)

+(ie'pr '/2M)p'n'V g(i rr —
rsvp)

'

+(ie'p~/2M)p'u'Vs(~ rs —rs~)
—'

—(ie'q~/2M) p'n' vs(
~

r, —r,
~ )

—'

= V+&r+&e+&r '+&x'+&r 9+&rvo+&xr (39)

VD is the phenomenological n ppotent-ial, with modi-
6cations discussed below. This is part ordinary and
part exchange:

Vn (rs, rr) = Vo(r2 —rt)

+V (rs rr) expL'(rs —rr) ' (pr —ps)3 (40)

where U, ' is a pure spacial function. V,' and V are the
low-momentum and high-momentum parts of the
Coulomb interaction, defined by

V,'= —(e'/2s') expfiq (r&—r,)]q
—'dq,

~&&op

V= —(e'/2rr') I expLiq (rs —rt) jq
—'dq.

Q) Qp

(4&)

A'(lt) = (2s/k)'*{utqeaq expLik rj
—a,~'e„expr —ii r)). (42)

U, ' is responsible for most of the ordinary Coulomb
binding' if we choose the cutoff qp appropriately in the
range o.m(qp&f8. p,I =@~—1 is the anomalous part
of the proton moment, and

B. Three-Dimensional Method

%e label the proton, neutron and electron by No. 1,
No. 2, Xo. 3, respectively. The Hamiltonian in labora-
tory coordinates is the sum of a "large" part Hp con-
sisting of the kinetic energies, nuclear interaction and
the main Coulomb energy, and a "small" perturba-
tion HI consisting of the remaining electromagnetic
interactions:

Hs (u' pt+P'M)+ (tr' ps+——P'M)

+ (tr' ps+p'm)+ VD(r2 rl)+ V (3g)

'6 H. A. Bethe and E. E. Salpeter, Phys. Rev. 84, 1232 (1951);
H. S. Green and S. N. Biswas, Progr. Theoret. Phys. (Kyoto)
18, 121 (1957); S. N. Biswas, Progr. Yheoret. Phys. (Kyoto) 19,
725 (1958); J. S. Goldstein, Phys. Rev. 91, 1516 (1953); G. C.
Wick, Phys. Rev. 96, 1124 (1954); R. E. Cutkosky, Phys. Rev.
96, 1135 (1954)."P.S. Signell and R. E. Marshak, Phys. Rev. 106, 832 (1957);
109, 1229 (1958), P. S. Signell, R. Zinn, and R. E. Marshak,
Phys. Rev. Letters 1, 416 (1958);J. L. Gammel, R. S. Christian,
and R. M. Yhaler, Phys. Rev. 105, 311 (1957),J. L. Gambrel and
R, M. Thaler, Phys. Rev. 107, 291 (1957); 107, 1337 (1957).

All interactions of p p' and p~ are derived from the co-
variant Pauli interaction term.

The program is first to solve the zero-order equation

&sit = I'sly

to obtain wave functions f whose accuracy is sufficient
for the calculation of hfs perturbation energy to order
(nm/M) (hfs). The hyperfine splitting is then found by
standard perturbation theory, with H~ as the per-
turbation. The hfs terms are those containing an inter-
action between the spin of the electron and the spin or
orbital motion of the nucleus. All hfs expressions must
of course, contain H, at least once. Second- through
fourth-order perturbations must be evaluated. If we
denote the perturbation energy by the operators ap-
pearing in the matrix elements to be evaluated and
denote terms by letters, following the convention of
Newcomb and Salpeter' when possible, we see that we
must consider the following perturbations:
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(1) Second order:

1689

(Hp, H,)=D—
,

(2) Third order:

(H p, H„V)=CD,—
(Hp,H.,H p@)=QD-,
(H,H, ,H &)=Q:D,

(3) Fourth order:

(H p', H, )=P,—

(H p', H.,V) =CP-,
(Hp', H„Hpr))= QP-,
{Hp', H. ,H~&) =Q:P'—,

{II~',H,)=P'—.

(HN', H„V)=C:P-,
(H~', II„Hpo) =Q:P,—
(H~', H„H~&) =QP'. —

1'= fg —ry,

y= r3—r~,

R= rg,

r, =R,
r, = r+R,
r, = t)+R,

p= p2)

m= ps)

p —p).+p2+ P"

py= —p —N —P)

p2= pr

pg= N.

In this system, Eq. (43) becomes

( n' y ——n' ~+/'M) + (n' p+P'M)

+( 'n~+P'm)+ V (r0)+U, '(r) exp[ —2ir (p+~/2)]

—(e'/2~')~' exp[iq y]q 'dq P(r, g)

=rP(r, g). (4S)

Now a phenomenological potential for the two-body
problem is of the form

UD(r2, r)) = Uo(r)+ V,„'(r) exp[ —2ir p].

If we expand exp( —ir ~) in Eq. (45) to second order,
we obtain-

+Vg)(r) i~ rV,„—(1/2)(~ r)'V.—„

—(e'/2~') I exp[iq t)](I 'dq Jg(r, t))
~e&ao

=Etf (r, e), (4( )

where V, = VD —Vo. Introduction of the Casimir pro-

(Hp, Hp, H„H,)=DD, —

(H p', Hp', H. ,H,)=IP,
(H p', H~', H„H,)=P:P,

To solve the zero-order equation, we transfer to a
system of coordinates centered on the proton (adiabatic
approximation):

(Hp, IIp', H„H,)=DP,
(H p,H~', H„H,)=D:P, —

(H+',H ~',H. ,H.)=PP'. —

jection operators for the three particles enables us to
resolve any solution into components'":

P=tf, (l I l)+tf, (++—)+P(l l )+. . .

( 1 ) f 1 l( 1

+++«(1 )& &P (1 )& «(1 )&

q (—P (p, )y
+I LL LL La++-+" (47)

t.I')(p)) (I'2(p2) & & 1

where

&;(p;) =n' p~/[I~'(p, )+m;], (T'—Pauli spinors.

are eight component spinors, which we
shall see can be taken to be products of constant spinors
and scalar functions of the coordinates.

We turn first to positive energy solutions in the energy
range E&2M of which the ground state is the lowest.
For these, P(' ' ') is the main component, the others
giving the effect of pair states on f. P, , is at least n'
smaller than P. . . ,)9 hence can be neglected; P+ + and
tf~+ are (P/M)' 10 ' smaller than f. . . ; while the
other components are negligible. It appears that P
and f. , are not negligible. However, we can account
for these as follows: the equations for these components
express them in terms of f. . . ; if the expressions so
obtained are then substituted back into the equation
for P+++, we get an equation for P+++ which involves
only P+++ and includes the effect of f, , and P+ +.
This equation for f. . . involves the nucleon potential
plus correction terms. Furthermore, the nucleon part
of the +++ equation can be reduced to the Schrodinger
equation for the nucleon system, plus relativistic cor-
rections. Now the given phenomenological potential
describes two-nucleon phenomena (in the momentum
range of interest to us) when inserted into the Schrod-
inger equation. When using the phenomenological po-
tential in the Schrodinger equation, the above correc-
tions can therefore be ignored.

For negative-energy states, as in the two-body case,
'8 H. A. Bethe and E. E. Salpeter, Haedbuch der I'hysik, edited

by S. Fliigge (Springer-Verlag, Berlin, 1957},Vol. 35, Part 1,p. 88.
'9 E.E. Salpeter, Phys. Rev. 87, 328 (1952);see also footnote 6.



D. A. GREENBERG AND H. M. FOLEY

we need only use hole theory to obtain the results that
there exists a set of states having a pair present in
addition to the particle, and that these diGer from the
corresponding positive-energy states by 2m; in energy.

To obtain positive-energy solutions in detail, we first
transform Eq. (46) to momentum space:

{(—n' p —n' oo+P'M)+ (n' p+P'M)+ (n'oo+P'm) }

Xp(p, oo)+ Vo( —k)lp(y+k, oo)dk

—(e'/2~') q 'P(p, oo+q)dq
~o(.o

+ 5(—k)P(p+k, oo)dk=EQ(p, oo). (48)

The equation for the (+++) component is obtained
using spinor identities. '8 The only wave function we
need with great accuracy is the ground-state wave
function, which we require correct to nnz/M. To obtain
this, we use a perturbation procedure on the (+++)
part of Eq. (48). The zero-order equation is

Ei„,(y, )
={2M+m+ p'/2M+ p'/2M+~'/2m+m'/4M }

Xk. . . (p, )+, V (—k)k. . . (p+k, )dk
aJ

/1$ (1$ (1)
0+~(y, )=( I( I) w(y)~( ),

&0 &0) &0

where zv and u obey

JVw(p)=(p'/M)w(y)+ l V (—k)w(p+k)dk,

eu(oo) = (or'/2m+~'/4M)N(~)

(50)

(51)

—(e'/2m') q 'u(oo+q)dq, (52)
"a&co

E=W+ e+2M+m.

Equation {51) is just the Schrodinger equation for
the deuteron. Its solutions are the phenomenological
wave functions. Equation (52) is the Schrodinger equa-
tion for the electron with its reduced mass in deuterium,
moving in a Coulomb Geld which is cut o6 at qo. Here-
after, m is taken to represent this reduced mass, unless
otherwise stated. This gives the well-known reduced-
mass correction to the hfs, which was the only term
found by Breit and Meyerott. '4 The solutions of Eq.
(52) are essentially hydrogenic wave functions, except

r'&~+{p, +q)dq
~a &ao

and the remainder of the Hamiltonian Eq. (48) is
treated as a perturbation. The solutions of this separ-
able equation are of the form

C. Hyyer6ne Energy

The principal hfs energy is given by second-order
terms. The Dirac proton spin interaction is:
AEo= —2 P„'(0~ —en'Ai~)

X(~
~

en'A
~
0)(E„—Eo)-&. {55)

Only positive energy states appear as intermediate
states. All wave functions must appear to the maximum
accuracy of Sec. 3, since this term is o-(hfs). Thus, the
shifted wave function of Zq. (53) must appear, or
equivalently, the unshifted wave function and the slip
correction. Thus

DEo= 2e' Q„,g, g'(E„—Eo)
—'

X(4o~ (2n/k) :u»' e. xp(-ik r,) ~P„(' ' '))
Xg," ' ''~ (27r/k)'*nJ, g exp( —ik r,) ~lpo)

=4n-e' Q, g'(1/k) (E —Eo)
—'

X {(fr7wo»~n» exp(ik ry) ~tp„( ++))

Xg „(+++)
~
nl, ),

' exp( —ik ro)
~ fr7wolo)

yz, „'(fr7wo» ln»' exp('k ri) lp-' ' ")
Xg " ' ' )

~
nl, ),

' exp( —ik r,) ~ fr7w, N„)

X(w,u, ~oo v~wolo){Eo —E,„)-'
+P„'(Eo—E„)-'(wouoioo vow, u„)
x(fr7w, u„~n ),

' exp(ik r,) jg„~+++))

XQ „~' ' ') ~n»' exp( ik ro)
~

fr—7wono)
=—&i+~2+~o (56)

that they are cut oG more rapidly at high momenta.
Ke will return to this in Sec. C.

The perturbations to the solutions of Eq. (49) can be
calculated in a straightforward manner to nm/M. The
result is that the zero or-der solutions»(p) become
centered on the center of mass, i.e.,

»(p)»(p —r/2). (53)
This result is expected, since the electron moving in a
cut-o6 Coulomb potential "sees" only the average
proton position, which is centered at the center of mass
of the deuteron, p

—r/2.
Finally, we must examine the positive-energy inter-

mediate-state wave functions. There are two possible
types of intermediate state: (1) excited state of deu-
terium (deuteron or electron or both); (2) excited (or
ground) state of deuterium with a free photon of mo-
mentum k in the field. In case (1), the wave functions
are the same as those already found, with (mn) re-
placing (00). In case (2), by conservation of momentum,
we have P= —k. This means that we must examine
+++ states of the system in which we remove the
restriction P=O. In this case, the intermediate state
wave function is

P „'=expfiP (R+r/2)7P „, (54)

and the intermediate state will have in addition to the
deuterium excitation energy, the kinetic energy
(P—oo)'/4M.
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A simple calculation shows that the slip corrections to
the intermediate states cancel. Detailed consideration
of the matrix elements and the use of spin identities
yields

Ai ——(2or/3) (e'/Mm)(n'n') leo(0) I' (5l)

Thus, 6& is just the Fermi hyperfine energy associated
with the Dirac part of the proton moment, with the
reduced mass correction. Actually np is not the hydro-
genic wave function, but rather the solution with the
truncated potential. However, the third-order per-
turbation returns the high-momentum part of the wave
function via V, so that Eq. (57) with this correction
in fact does involve the hydrogenic wave function at the
origin. ho+Do gives rise to the usual D-state orbital
hfs terms. This term is missing without the slip cor-
rection, due to our particular choice of proton-centered
coordinates for our zero-order problem. The slip term
brings back the orbital contribution by recentering the
electron wave function on the center of mass. If we take

pr, ——(1/2) (e/2M) L= (e/4M) I (58)

(the factor of —,
' appears because only one particle in

the deuteron is charged) we find

~ +~o= (g /3)vole (o)I'(n' t ~) (59)

AEP, which involves the anomalous moment of the
proton, adds the contribution of pi

' to Eq. (5'7):

aE~= (2~/3) (pi'e'/reM)(e'n') luo(0) I' (60)

The slip terms vanish, there being no anomaly associ-
ated with the orbital motion.

The Anal second-order term is AE ', the neutron-
electron interaction. This again splits into two parts
~i+~2:

61= (2'ir/3) (e'Ijn /Mei) ( 'n)n~l «rip
I ieo(r)

I

'

XL»(e) —(1/2)r ~.eo(~)3'(r —e)

XL o(e) —(1/2) &. o(e)7

= (2ir/3) (e'p~/Mm) (n' n') drdg
I wo(r)

I

' (61)

x I »(e) I'~'(r —e) —"«de
I
~o(r) I

'

XLr &.»(e)7»(~)~'(r —e) .

If we choose the Coulomb cutoff to be about 20nng, ,
we find that for r d«ro ao/5 Lwhere d is "deuteron
radius, " d= (MWo) l7 the electronic wave function to
a few percent is P= (47r) ~uo(0) sinkr/kr, where»(0) is
the hydrogenic wave function at the origin, and k em.
The second integrand of Eq. (61) becomes 0(d/no)' and
hence negligible. The first integrand has the hydrogenic

(62)

This completes the second-order terms.
The third-order terms, as well as the fourth-order

terms a.re of order (anz/M) ln(M/m) and hence re-
quire the use only of product wave functions, without
the d/ao slip correction. Furthermore, the region of
integration of k is now k) m, so that the energy de-
nominators involve nuclear and electronic excitations,
and the matrix elements require careful consideration
in the absence of closure. "

Consider, for example, AE~D, with the following
order of operators:

~& ' =2- «I& I )& I& I
')( 'I VIo)

X(&.—&o) '(&. —E)) '. (63)

Hp involves only emission, H„absorption. Written in
detail, this is

SF.,~D

=P„„,(~ ~o)
—i(~, go)

—i

X(0 I
en' Qi, i, (2~/k):aj, hei, i, exp(ik ro)

I e)

X(el —en' (2ir/k)~agg*ei, ), exp( —ik ri)
I

e')

e' —e' 2x' exp iq r3 —r& q
—'dq 0

Q) Qp

=&- ( .— o) '( - —-o) '( ) '("/ ) (64)

X,I dk dq(1/k)q '(Olney, i,
' exp(ik ro)

I
e)

~o&oo

X(elnii' exp( —ik ri) e')(e'I expLiq (ro —ri)7I0).
For positive energy intermediate states, Ie') has an
elect:ron of momentum q (if we neglect the spread of
ground-state momenta relative to q, in what follows)
and a proton of momentum —p —q; I e) has an electron

"A. Bohr, Phys. Rev. 73, 1109 (1948); F. E. Low, Phys. Rev.
77, 361 (1950);F. E. j.ow and E. E. Salpeter, Phys. Rev. 83, 478
(1951).

"The calculation of the third- and fourth-order S-state log
terms closely parallels that of C. Grei6nger, Ph.D. thesis, Cornell
University, 1954 (unpublished).

wave-function tail returned to it by the third-order
perturbation, and so contributes J'drlwo(r) I'lgo(0) I'
X(1—2r/ao), which is the neutron Fermi energy and
the Bohr-Low 5-state d/ao correction. "6,, which van-
ishes for the 5-state components of mp, is the L= 2 Low
correction, so that

DEP'= (2ir/3)(e'p~/Mei)(n'n') leo(0) I'
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of momentuin q, center-of-mass of momentum —k
(hence c.m. energy [(q+k)'/4M]), and proton of
momentum —p —q —k; and the left-hand matrix ele-
ment yields k= —q.

When Eq. (64) is evaluated in detail for the S state,
one obtains

where

= (hfs) (n/m) (m/M) (1/4or) Sim, (65)

(hfs) = (2m/3) (eo/Mm)(e'e')
I eo(0) I'

Sien Mdk k——[Ep(k)] 'dQk(k+E&(k) —m) '

Then

a =k+Ep (k) m, —
b p E,(k) m+—ko/4M+ W Wo

cp k+ k'/4M+ ——W —Wp.

{67)

5~++ca=2M
~

dkdQ k[E,(k)?'
~a&ao

XZ,f( b,)-'+(,)-'+(b".)-')
X(wplexp( —-,'ik r) lw, )

X(w, l
exp(-,'ik r) I

wo). (68)

For negative energy intermediate states, we associate
with each positive energy process a negative energy
(pair) process having the same temporal order of emis-
sion and absorption. Consider first electron pair states.

XP,(wplexp( i-'k r)lw, )(w, lexp( —-'ik. r)lwp)

X[k'/4M+ Ep (k) +W, —Wp —m]. (66)

The results for other orderings of the operators in Eq.
(63) for positive energy intermediate states are best
expressed in terms of auxiliary quantities:

For these, the net matrix element is identical to that
of the corresponding positive energy state. This re-
sults from the cancellation of two effects: (1) inter-
change of the order of annihilation and creating opera-
tors yields a net minus sign; (2) the momentum of the
positron has direction opposite to that of the hole,
yielding another minus sign. Using the identity A (k) e&
= n,A+(k) the matrix elements are seen to be identical
in the two cases. The energy denominators differ by
2m, the rest energy of the extra pair. For negative energy
proton states (positive energy electron), the added 2M
in the energy denominator enables us to use closure to
the desired accuracy, so that

Sl ' ' =— dkdn k[Ep(k)] '(k+E (k) —m) '. (69)

The negative energy proton and electron intermediate
states yield a result which differs from Eq. (69) by the
presence of an additional +2m in the denominator.

To evaluate the first term of Eq. (68), designated I,
we separate off the logarithmic contribution by writing

[Ep(k) —m+k'/4M+Wp —Wp] '
= [E,(k) —m]-' —(ko/4M+ W, —W,)

X[Ep(k) —m+W, —Wp] '[Ep(k) —m] '. (70)

This separates I into two terms I,+I2. Ii is not of
logarithmic order; in evaluating it, closure can be used,
and the net result is to return to the zero-order hydro-
genic wave function the high-momentum tail. Evalua-
tion of I2 is aided by

(w,
l

exp(-', ik r) I wo)(W, —Wo)
= (w, l [HD, exp(-,'ik'r)] lwp),

where HD ———V'/M+Vo+V. . Upon evaluating the
commutator, we obtain

I,= 2M~ "dkdO k[E,—(k)] '[k+Eo(k) —m] '[Eo(k) —m] '

X(P (wplexp( piik r)lw )(w'le px( ikpi'r)k'/2MI )w[oE (kp)
—m+Wo —Wo] '

+(1/M) P,(wolexp( ——,'ik r) Iw, )(w, l
exp(-,'ik r)k plwp)[Eo(k) —m+W, —Wp]

+g, (wol exp( p'k') Iwp)(wo I
2i sin( —k r) V,„lwp)[Ep(k) —m+W, —W,]—'). (71)

This is evaluated term by term. It is convenient to
write the denominator in the form

[E&(k)—m+Wp —Wp?'= [Ep(k) —m] '

+[E (k) —m] '[Ep{k)—m+W, —Wo] '.

Each term of I2 then becomes the sum of two terms, one
allowing closure, the other not. For the latter, we sepa-
rate the region of integration into two regions, k&8
and k&B, where B 20 Mev. In the region k(B we
can expand the exponents in the matrix elements, and
in the region k)B we use the fact that (Wo —Wp)
-k'/M for those matrix elements giving sizable con-

tributions. We can also neglect re with respect to k
for the logarithmic terms. The term by term evaluation
gives

I=S, +++= —27r ln—(M/m) —(27r/3)iM go(wp
I
r

I
w, )

' (w
I
v

I
wp) in[(W —Wp)/m]

+(4mM/6)(wol (1—lnymr)r'V, Iwo), (72)

where v = (i/2) (HD r rH~) = y/M ir V,„T—he remain-— .
ing terms of Eq. (68) can be calculated in the same
fashion, with extra care taken for the third term. Simi-
larly, the negative energy state contributions are ob-
tained from the above discussion: 5++ ~D=5+++~D
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(since m is neglected with respect to k in the denomina-
tors) and S, ,

eD and S~ e~ are obtained directly
from Eq. (69). Thus the net CD contribution is

ScD/4pr = —4 ln(M/m) —2iM Q, ln[(Wp —Wp)/m

+2M(wo
I
(2/3 C —lnm—r)r'V

I
wo)+1. (73)

The remaining third-order terms are calculated in
the same way. The calculation is simplified by introduc-
ing f factors, as done by Newcomb and Salpeter, '
which relate the Pauli integrands to the CD integrands.
%ith this aid, all integrals are reduced to the general
type of I above. The QP, Q'P, Q:D, Q:P', and QP'
terms all give vanishing contributions to our order.
The final result can be expressed in terms of one 5
integral, if we use the relation (e))=(e')=-,'(e~) valid
for the deuteron ground state. Then

S&/4~ = —2(»+1) ln(M/m)

2i()))i —p)p)M—Q, rp, v, )) ln[(W, —1Vp)/mj

+(»—p)) )[1+2M(u)p
I (2/3 —C—lnmr)

Xr'V, „
I wp)] (74)

is the net third order energy, arising from the exchange
of a single transverse photon, and considering the 5-
state component of the deuteron ground state.

The third-order energy also contains a non-negligible
D-state term, arising from the nuclear CD matrix
element. For AE~~~, this is:

'~Ei' = («'/Mm) Iuo(o) I'

X (e'/4n') (m/M) P, M dkdQ

~DE~~ = —(87r/3) (e'/4Mm)
I up(0) I

'(2e'/7r)

X (m/
I
Wo

I )&'2 ro X y o»[(W —Wo)/ I Wo
I j

X[(W,—Wp)/I Wol] ' (77)

is the D-state correction.
The fourth-order energy is calculated in the same

manner, the only complication arising from the multi-
plicity of terms to be considered. The Pauli terms are
again gotten from the corresponding DD terms by use
of appropriate f factors. Since two transverse photons
are exchanged, the intermediate state can be a "spin-
flipped" singlet m-p state, and such states must be
included. The final result is

S'/4n. = [(3/4))))~'+ (1/4) (p p+1)(3»—1)$ ln(M/m)
—(~~—»)'{(3/8) 2 p I

(u'p
I
u'. ') I'

Xln[(W, —Wo)/m)+ p), (78)

where Iu)p') signifies eigenstates of the singlet u-p
system.

As in hydrogen, there is a nucleon structure correc-
tion to the hyperfine energy. This has been calculated
by Sessler and Mills using the three-dimensional
method, which is expected to represent the correct
covariant value (which cannot be calculated directly
in deuterium) as well here as in H'. Their numerical
results will be employed in Sec. D.

There is another possible correction, which would
arise in the event that a spin-orbit potential is present
in the nuclear two-body interaction. Feshbach" has
pointed out the electromagnetic interaction introduced
by gauge invariance due to the presence of a potential
of the form Vz,s= V(r)L S and Sessler and Foley"
have calculated the effect of this added interaction
term on the hfs. They find an additional hyperhne
energy of magnitude

Xk[Eo(k) j-'[k+Ep(k) —mg-'

X[Ep(k) —m+W, —Wp+k'/4Mj '

X (wo I
2ie' y X lr exp( —'zk r) I

u) )

X(w, I exp( —2ilr. r) I
wp). (75)

where
AEr, s/E~ = —0.004 (Ap) I.e,

(i1~)»= —(e/16)(ol V(r)L(S r)' —r'(S J)]l0)
= (e/'12) [(SI "V

I S)—(1/~2)(S
I
r'V ID)

+-', (Dl "VI D&g.

(79)

The small amount of D state makes the entire term
small enough, so that only the lead term need be re-
tained. The integrals vary as 1/k' for large k. We can
thus restrict ourselves to the region k&8 and expand
the exponentials. This yieMs

AEc = —(8pr/3) (e'/4Mm)
I up(0) I'(2e'm/m)

Xe'Q, rp, X y,p(W, —Wo)
—' ln[(W, Wo)/m] (76)— .

The constant logarithmic term vanishes, since

P,rp, X y,p/(W, —Wp) =0,

a relation easily derived by expressing p as a commuta-
tor of r and H~ and using closure. Then

Ke return to this effect in Sec. D.

D. Numerical Results and Discussion

If we take the ground-state wave function of the
deuteron to be of the form

p)p= (4') *

cosp){[&pe(r))/r)xi+sino){[yD(r))/r)
X{(2/20) X1V20+ (6/20) 'go&oi

+ (12/20) -*'x,7',o), (80)

we can collect all of our corrections into the formula

~ H. Feshbach, Phys. Rev. 107, 1626 (1957)."A. M. Sessler, Ph.D. thesis, Columbia University, 1953
(unpublished). A. M. Sessler and H. M. Foley, Phys. Rev. 98, 6
{1955);110, 995 {1958).
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~E/E'=1 (p—~d/pz&ao)

+(net/xp~M) {(—$ s n'") t-
—2(p~+1) ln(M/~)+3(p p —px) ln(~ Wo~/~)+pe px—j

+cos'co(p~ —p~)L(2/3 —C—ln(j Wo~/m)) {Mr'U,„)8—{ln(nw) Mr'V, }s)+(1—-', sin'")

XL(3/4) p"+(1/4) ( '+1)(3p' —1)j ln(M/~) —(1—8»n'") (p"—p')'l(3/8)»(l WoI/~)+8
—2i(pp —p") cos'co P, Mro, v, o lnL(W, —Wo)/) Wo) g

—(3/8) (p' —px)' cosco P, [(coo)",') J'

x»L(w. '—wo)/I woI3+(8~/3)(1/E') po» I»(0) I'

X{—(2&~/"pz)l Wol)~ '2 ro Xy oint-(W —Wo)/I Wol j/I:(W —Wo)/I Woldj

+nucleon structure term+spin-orbit term. (81)

The first correction in Eq. (81), the Low term, is calcu-
ated in two ways. First we use the most recent phe-
nomenological wave function of Signell and Marshak, "
which includes about 7% D state, the implications of
which we shall discuss below. Ke use the analytic
expressions for the wave function found by Moravcsik, "
which represent the numerically tabulated phenomeno-
logical wave function to within 2% everywhere and to
within better than 1% for r)1 fermi. We obtain:

sM (224~5)X10—6 (82)

Second, we use I.ow's original result, "which is given as
a function of % D state. We find

'L.„L'"=(220"10)X 10—', 7% D state
=(242~10)X10-6, 4% D state.

Thus, for the same 7% D state, the exact, phenomeno-
logical wave function gives a value which divers little
from that found by I,ow using effective range theory.
The actual value of e~, varies significantly with the

% D state.
The other expressionsneeded for Eq. (81) are given by

iM Qq roq vqo inL(Wq —Wo)/) Wo] j
= —3.21~0.3, (84)

&.I("oI".') I'»E(W. —Wo}/I Wol j
=0.55w0.35, (85)

(Mr'V. )= —0.14, (86)

(Mr'V, 1n(mr)) = 1.52. (87)

Equation (84) is found with the aid of the approximate
formula found by Low, "good to within 10%%uo. A more
accurate determination of Eq. (84) using numerical
methods would not affect the error of the final result

significantly. Equation (85) has been calculated by
C reihnger" using effective-range theory. The entire
expression contributes but 4 ppm, so that the error is
of no interest. Equation (86) and Eq. (87) are calcu-
lated using a Serber exchange potential; the result is

2' M. J. Moravcsik, Nuclear Phys. 7, 113 (1958).

relatively insensitive to the exact amount of exchange
force. The nucleon structure correction' is given as the
sum of two terms, one arising from the proton form
factor and one from the neutron:

(88}

This gives for the two percent D-state values:

'E/E'=1+(267~22}X10 '—(111~15)X10'
0.004(hp) s'—, 7% D state

90=1+(290+27)X10 '—(111+15)X10 '
—0.004(hp)8g, 4% D state.

In both expressions, we have allowed a 2% error for
possible relativistic corrections2' and a 10% error in
the mass term for possible end effects.

The hfs anomaly 6 for deuterium is defined by

(»)8
(1+&). (»)

(~v)H' En"
The experimental value for 6 is"

6.. p=(170~1)X10 '

to be compared with the theoretical values

b,h...= (267~22) X 10 ' —(111+15)X 10—'
—0.004(d p) sz+(39~4) X10 '= (195&41)

X 10 ' 0 004(~p) sr. , 7—%.D state
= (290~27)X10-'-(1»~15)X1O-

—0.004(~p) gg+(39~4) X 10—'
= (218~46)X 10 '—0.004(hp) q',

4% D state.
25 M. Sugawara, Arkiv Fysik 10, 113 (1955).--"P. Kusch, Phys. Rev. 100, 1188 (1955).

(92)

DE„„.„/E'= —128~13 ppm,

'Eneutron/E = 17~ 2 ppm

Inserting this into Eq. (81), we obtain

DE/E'= 1+hz,. +(55~9)X10 '
—(178~46)X10 'sin'" —(128+13)X10 '

+(17~2)X10 '—0004(~p)s'. (89)
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Note that the extremely low (1—2/o) D state suggested
by Newton'~ seems to be excluded.

The spin-orbit term remains to be discussed. When
first introduced the I.-S potential was taken to be inde-
pendent of isotopic spin and attractive. This was ob-
jected to by Feshbach" and Sessler and Foley, " on
grounds discussed above. In reply, Signell, Marshak,
and de Swart" pointed out that Feshbach's value for
(Dlj)sr. was too large, and that a phenomonological
wave function gave

(ap) 8r.= —0.024 nm. (94)

Since this value was still too large, in that it still pre-
cluded the presence of D state in the ground-state
wave function, these authors suggested that the L S
potential may be isotopic-spin dependent, having the
given value in the I= j. state, and either vanishing or
having a "wiggly tail" in the I=O state (the latter
being insensitive to the presence of the L S force in
the scattering). They would then set (Dp)sz, =O, and
with this, the hyperfine correction would vanish as
well. The status of this entire question must await a
final determination of the presence of a spin-orbit
potential (and its isotopic spin dependence if present)
in the rs psyst-em.

Although the SM wave function gives better agree-
ment with 5, v (omitting the L S term) there is one
important feature in which this wave function is de-
ficient. The high percentage of D state gives a magnetic
moment which is 0.024 nm smaller than the observed
moment. This discrepancy is of the same magnitude as,
and opposite in sign to, the discrepancy which led to the
first suggestion of 4% D state. H the SM percent D
state is accepted, we must then look for another source
of magnetic interaction which would contribute a term
to the hyperfine anomaly, which would have to be
taken into account in Eq. (93) when comparing 5,i...
and 8, p.

Finally, we must recall the discrepancy in the H' hfs
discussed in Sec. I. If an error in the value of n is its
cause, this would have no effect on the deuterium
anomaly. But if there existed nucleon polarization terms,
or a singular charge distribution, which wouM cancel
the existent structure correction, we would expect the
same cancellation to occur in deuterium, since the deu-
teron is loosely bound, and the effect of the binding on
such intrinsic nucleon characteristics is expected to be
negligible. In this event, the second and fourth terms in
Eq. (93) would vanish, leading to a result

5iheo, '= (267&22) &&10 '—0.004(hp)81„
7%%u~ D state (95)

= (290~27) X10 '—0.004Ldp) sr„
4%%u~ D state.

"R.G. Newton and T. Fulton, Phys. Rev. 107, 1103 (1957);
R. G. Newton and J. H. Scofield, Phys. Rev. 110, 785 (1958).

'8 J. J. de Swart, R. E. Marshak, and P. S. Signell, Nuovo
cimento 6, 1189 (1957); Progr. Theoret. Phys. (Kyoto) 20, 171,
181 (1958).

Both cases diverge considerably from the experimental
value" "

It is thus of prime importance to redetermine n
accurately, and to obtain more information both on
the nucleon structure and the possible spin-orbit
potentials. Until such questions are settled, the theo-
retical value for the H' hyperfine anomaly remains in
doubt. On the other hand, the theoretical expressions
for this anomaly can help provide a check on suggested
values for these quantities.

III. hfs OF TRITIUM

The ground state of the triton has spin —.,', and mag-
netic moment nearly equal to that of the proton. The
wave function can be taken to consist almost entirely
of an 5-state spatial function symmetric in all nucleon
coordinates, and a spin function with the two neutrons
in a relative singlet state and with the proton's spin
pointing in the direction of the triton's spin. The entire
hyperfine energy is then due to the proton. In the
absence of Bohr-I.ow terms we start from a nonadiabatic
approximation which centers the electron on the c.m.
The third-order perturbation containing U will then
restore the high-momentum part of the electron wave
function to its adiabatic motion around the proton. We
label the proton, neutron, and electron by Nos. 1—4,
respectively, and use the coordinate system of Morita
et al." These authors have obtained the best triton
(and He') wave functions to date. Hard-core inter-
action potentials were employed and excellent agree-
ment with the experimental data were obtained. We
also introduce an electron-c. m. relative coordinate, g4.

The second-order hfs terms give the Fermi energy.

"The two problems outlined may be related, as it is possible
that the same magnetic term which accounts for the discrepancy
in the deuteron moment, also gives rise to a hfs contribution which
restores agreement between Eq. (95) and Eq. (92). This has led
us to the following conjecture: If we take as a spin-orbit potential

UL s = —,
' (1+v' s') U(Signell-Marshak),

the I=O potential would be repulsive, of opposite sign and equal
magnitude to the triplet value. The insensitivity of the I=O
scattering to the presence of an L.S term of suggested magnitude,
makes the verihcation of this hypothesis via e-p scattering data
unlikely at present. A careful study of its effect on other electro-
magnetic phenomena, such as photodisintegration of the deu-
teron or electron-deuteron scattering, may yield more decisive
results. See footnote 30 for references.

Such a repulsive potential would contribute +0.024 nm to the
deuteron magnetic moment, by Eq. (94), and this would just
account for the remaining magnetic interaction needed to bring
p, D into agreement with ASM. By Eq. (95), a contribution —0.004
)&0.024= —96&(10 ', would. be made to the hfs anomaly, yielding
a value 5th„,'= (171&22))&10, which agrees excellently with
Eq. (92).

If the hydrogen discrepancy is due to an error in o., the entire
agreement would of course break down, and the virtual absence
of L S forces in the I=O state would be indicated."E.Butkov, Nuovo cimento 13, 809 (1959);J. J. de Swart and
R. E. Marshak, Phys. Rev. 111,272 (1958).

@M. Marita, T. Ohmura, and M. Vamada, Progr. Theoret.
Phys. (Kyoto) 15, 223 (1956);Progr. Theoret. Phys. (Kyoto) 17,
326 (1956); Phys. Rev. 101, 508 (1956).J. M. Blatt and G. Der-
rick, Nuclear Phys. 8, 310 (1958).
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Consider the first third-order term AE-i~~ ..

aB,~D

=2- (E-—Eo) '(E- —Eo) '

X &0 i
en4 Q i, (2or/k) la», ei z exp (ik r4)

~
rs& X

(E —Eo) '(E —Eo) '(2') s

we again write

[k+W, —Wp+k'/6M] '

=k ' —(k'/6M+Ws W—p)(k+Ws —Wp) "k ',

and set I=Ii+Is, where Ii contains no log correction,
and l2 is:

X (e'/or) ) dk dq(1/k) (1/q')
~a&ao

X&0)n»'esp(ik r4))e)&e)n»' exp( —ik ri) ~rs'&

X&a'( exp[iq (r4 —ri))
~

0). (96)

The nuclear matrix elements are

&0 I w-&&w- In»' exp[ —ik (1/3) (es—ei)] I
w.&

X (w, ~
exp [ik (1/3) (ys —

sos) ] ~
wp). (97)

The spin part is seen to be the same as in the deuteron.
Evaluating the remaining expressions in Eq. (96), we
have

fIs= —
M) dkdQ (1/k')

XZ.&wo I
exp[(1/3)ik (es—e )) I w. &

X(w,
~
exp[ —(1/3)ik. (gs ps)) ~wp&

X (k'/6M+ Wo —Wp) (k+ W —Wo)
—'. (103)

Setting, as before, (k+W, —Wo) '=k ' —(W —Wo)
X[k(k+W, —Wo)) ' we find that each term in Is
involves one part in which closure can be used, and
another in which only the region k(8 contributes,
where the exponentials can be expanded. The result is

SieD+++=M P, ~dkdD k[E4(k)]—'(k+E, (k) —m)
—'

AE en = (2sr/3) (es/Mm)(n'e4&
~
ssp(0)

~

s

I= —(4or/2) ln(M/m)+ (4vrM/6) (8/9)
X (wo

~
(1—in[(2ymps)/3]) ps'Vi '"(ps)

~

wp&

—(2 /3)i(4 or/3) + &wo I pslw &' &w IMvslwo)
J Xln[(W, —Wo)/m]. (104)

a =k+Es(k) —m,

bo=E4(k) m+ks/6M+ W—s Wo, —
c,=k+W, Wo+k'/6M, —

(100)

we get the same result as Eq. (68) for S+++eD. This
similarity to deuterium terms holds for all third-order
terms, when they are considered in detail.

In the fourth-order terms as well, the expressions for
5 are similar to those of deuterium, except that one
replaces the deuterium nuclear matrix elements through-
out by

&wo
I
exp[(1/3) ik. (vs —es)]n.'I wo&

X&wo ( exp[ —(1/3)ik (ys —ys)]ni '
( wp). (101)

To evaluate I, given by

I=2M dkdQ (1/2k)
J s)l:p

XP.&wo I
exp[(1/3)ik (es —es)] I w. &

X&w, ~
exp[ —(1/3)ik (ps —gs)) ~

wp)

X[k+Wo—Wo+k'/6M] ' (102)

X (k'/6M+ E4 (k) —m+ W —Wp)
—'

X &wo I exp[—(1/3) ik (ps —y,)] I
oi,&

X&wo~ exp[(1/3)ik (gs —p2)] wo&. (99)

Comparing with deuterium, we see that if we replace
the deuterium nuclear elements by Eq. (97) and the
denominators Eq. (67) by

Proceeding in the same fashion with all third-order
terms, we obtain:

Se/47r = —2 (pp+1) ln(M/m)+ (16/9) M»
X (wp

~

(5/6 —ln[(2ymps)/3]) ps'Vis'"(ps)
~
wp&

+ (4/3) ~ —(8/3)»i Z.&wp
I e I

w. &

~ &w, ( Mvs ) wp& 1n[(Ws —Wp)/m]. (105)

In evaluating the fourth-order terms, we need not
distinguish between the various intermediate spin
states, there being no diQerence in the interaction be-
tween the proton and the two singlet neutrons in the
spin-up or- spin-down state. The net fourth-order term is

S"/4or = (1/4) (pp+1) (3pp —1) ln(M/m). (106)

The hyperfine anomaly is defined as in Eq. (91).
If we write out the correction terms of hydrogen ex-

plicitly, ' we have

b = (n/~pr) (m/M) {—2 (»+1) ln(M/m)

+ (1/4) (pp+ 1) (3@i—1) ln(M/m)

(8/3)p~i Z—,&wol p lw, &

' &wo
~
Mvs

~
wo&»[(W, —Wo)/m]

+ (16M/9)»&wo
~
(5/6 —ln[(2ymps)/3))

Xps Vis'"(ps)
~
wo&+ (4/3)aI')

—(n/m. p p) (m/M) {—2 (»+1) ln(M/m)

+ (1/4) (pp+1) (3@p —1) ln(M/m)+ (1/8) (»—1)'j
+(»/pr)b(proton structure) —b(proton structure)

+b (other). (107)



HYPERFINE ANOMALIES OF D, T, AND He'+

8,i,«, ——+ (17&2)X 10 s+B(other) (108)

Since p, z =1.0664pp, terms which are the same except
for factors of 1/pr and 1/pp, cancel to the required.
order. Evaluation of Eq. (107) with the Morita wave
function gives

terium and tritium, and yield

5'/4 =2p {(4/3)s~Z.(wol Psl w.)
(w, l

vs
l ws) in[(W, —We)/m]

—(8/9) (ws l (5/6 —in[(2ymps)/3])
Xps'Vis'"(ps)

l
ws) —2/3 j (111)

to be compared with"

= (—5.7&0.2)X10 '.
5"/4ir =p,v'(3/4) ln (M/m)

(109) The net correction is then

(112)

The origin of 6,&h„ is perhaps the following: There are
many possible states which could combine to give the
observed J=-,' triton ground state. The near equality
of p& and p&, together with energy considerations, leads
one to choose the completely symmetric 5 state with
singlet neutrons as the predominant state. Neverthe-
less, the residual magnetism in the triton must be
accounted for, as well as that of He', and, by charge
independence, the sum of the moments of the mirror
nuclei H' and He' must obey a further relation. Mixing
in 4%%u~ D state into the ground-state wave function
matches the sum of the mirror moments, but leaves a
discrepancy of +0.27 nm in H' and He', respectively,
between calculated and observed moments. This re-
sidual magnetism is then ascribed to (unknown) ex-
change currents. The 4%%uo D state in tritium leads to a
negligible orbital hfs correction.

In order to bring Eq. (108) into agreement with the
experimenta, l value Eq. (109),"we must have

b(other) —23X10 '.

IV. hfs OF He'+

Sessler and Foley, " Sessler and Mills, ' and Xovick
and Commins'4 have calculated all of the known hfs
correction terms, with the exception of the mass cor-
rection, which we now discuss. Here the protons do not
contribute to the hfs, and the only terms which are
involved are the single photon C:P term and the double
photon PP' term. These are calculated as in deu-

"A. G. Prodell and P. Kusch, Phys. Rev. 106, 87 (1957);
Wm. Duffy, private communication from P. Kusch.

'3 Our conjectured L S contribution contributes +0.021 nm to
the magnetic moment of H' and He' (both the same sign); this is
far too small to account for the residual magnetism. A hfs cor-
rection term She,

' ——%6)&10 ' is added to H' and He', respec-
tively. The net effect is small, and does not alter the picture
signi6cantly in any direction. The same may be said for an iso-
topic spin independent I S potential, or one of the SM form
(vanishing in the I=0 state).

'4 R. Novick and E. D. Commins, Phys. Rev. 111,822 (1958).

a = (cr/~pn. ) (m/3I) 2piv{ (4/3) iM P, (wp
l gs l

~,)
(w, l

v, lws) in[(w, —wo)/m]
—(8/9)(wo

I
(5/6 —»[(2vmp )/3])p

'

X Vis' (ps) lwo) —2/3+ (3/8)piv ln(M/m)).

Evaluation of this gives

(113)

&.x.h= (+16~12)X10 ', res= 2.7 f
=(+ 2+12)X10 ' ros=24 f.

(118)

The value for res ——2.7 f compares well with Eq. (110),
whereas the other does not. It should be noted that a
redetermination of e, which could have a sizeable
effect here, as well as a more accurate determination of
rp8 (and a consequent recalculation of the other theo-
retical terms of He'+ in reference 33) are necessary be-
fore any final conclusions can be drawn.

In general, the corrections given by Eq. (108) and
Eq. (114) are of a magnitude which seems compatible
with the experimental results. It seems, then, that the
difficulties associated with the deuterium hfs are due to
uncertainties in the value of n and the properties of
the n psystem, rather than to-some large intrinsic error
in the method of calculation of the correction terms.

6=(—29+3)X10 '. (114)

The anomaly is defined as in Eq. (2). Its experimental
value is"

8e p= (—186+9)X10—'. (115)

The theoretical value, excluding mass and exchange
corrections, is'4

&ti100r = 173X10
7

PPg=2. 7 f
= —15~X10 ', rps=2. 4 f.

Inclusion of the latter effects yields

&,i,...———(202+3)X10 '+a .i„ros=2 7 f
(117)= —(188&3)X10 s+5, as, ros=24f,

so that, by comparing Eq. (115) and Eq. (117),we find


