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The theory of long-range first-order interaction energies is
discussed for two like odd-electron atoms in different doublet
states, for the case that spin-orbit coupling is smaller than the
other splittings. The treatment involves some revision and some
extension of previous work. At interatomic distances sufficiently
large that overlap of the wave functions of the two atoms is
negligible, only the first-order dispersion (dipole-dipole and higher
multipole) forces remain, but it is shown that even at rather
large distances there often is sufficient overlap that valence
forces predominate over first-order dispersion forces.

For the case of two H atoms one in a 'S and the other in a 'P
state it is shown that the first-order dispersion energy corresponds
explicitly to a particular e'/r» integral which represents precisely

the mutual electrostatic energy, falling off approximately as 1/jf',
of two dipolar charge distributions one on each atom. (All the
other, valence-force e'/r» integrals fall off exponentially with E.)
Tables are given for the first-order dispersion splitting patterns
(out to terms in 1/2P) for the interaction of a 'P with a '5 or
with a 'D atom.

Finally, the first-order splittings for pairs of like even-electron
atoms is discussed. The results are simpler than for odd-electron
atoms, and are applicable also to any pair of such atoms either in
singlet states or in any states in which spin-orbit coupling is
strong. For atoms both in, for example, triplet, states with weak
spin-orbit coupling, different formulas will be needed.

I. INTRODUCTION

'HE London dispersion forces (second-order disper-
sion forces, with approximately 1/R' potentials)

which account for much of the ground-state van der
Waals attraction between atoms or molecules are well
known. The existence of stronger longer-range forces
(first-order dispersion forces, or excitation-exchange
forces, with approximately 1/R' potential) between an
atom in its ground state and another atom of the same
kind in an excited state to which spectroscopic transitions
from the ground state are allowed, was erst discussed for
the case of two hydrogen atoms with one in its 2pvr

excited state by Eisenschitz and London. ' King and
Van Vleck' developed the discussion further for atoms
with one and two valence electrons, and showed that
experimental data on the low 'lI states of Na2, Cd2,
and Hgs (including the existence of a small maximum
in the potential curve at large R values) are in agreement
with the theory. Unfortunately their results, while
correct for sieglef states ('Z+ and 'll states), appear to
be in error for triplet states. (Eisenschitz and London's
results for both 'll and 'll states of H2 appear to be
correct. ) The present paper contains a new and in
part rather different and more general discussion. From
this it is seen that errors of sign are very likely to arise
unless great care is taken.

The initial discussion, in Sec. II, deals with the
general case of two like atoms in any two different
doublet states. In Secs. III—V the simpler case of two
H atoms is examined in more detail, and it is shown
that the discussion of 6rst-order dispersion forces for
the Z states (though not the II states) of H(1s)+H (2p)

is somewhat academic, because valence-type interac-
tions (including those with H++H ) predominate out
to large E values. However, it is shown in Secs. IV and
VI that there are other cases (e.g. , one normal Na atom
and one Na atom in its first excited state), where valence
forces do not yet dominate at large E'.

II. THE FIRST-ORDER INTERACTION OF LIKE
ATOMS IN DIFFERENT DOUBLET STATES

%i= S(i; j)C»; 4» ——0', (i; j)C»,

where for 3f&=0 for the total system,

(2)

C =2-:I~-(')C..'(j)+ C-'(')C-. (j)3,
C»=Refer —2—:IC ~s(i)c „,'(j)+oC s'(i)& „,(j)j (3)

It has seemed desirable to treat erst, in Sec. II, the
general case of two like atoms in doublet electronic
states. However, the reader may And it illuminating at
various points in the argument to specialize the discus-
sion (as is easily done) to the relatively simple case of
two H atoms.

For the interaction of two like atoms in any two
different doublet electronic states, the normalized
erst order wave functions may be expressed in the
general form

(+I+'/+II)/(2+ 2rf&r») *, (1)

where g= &1 and SI II is the nonorthogonality integral
f%'r*%»dr. (In the applications below, 5»r is usually
small or negligible. )

In (1), if the atoms are in doublet states,

while for Ms=+1 or —1, respectively,*This work was assisted in part by the Air Force Ballistics
Division under a contract with the General Electric Space Science
Laboratory, Philadelphia, Pennsylvania, and in part by the Office
of Naval Research under a contract with the University of
Chicago. Presented at the March, 1959 Cambridge meeting of the
American Physical Society LBull. Am. Phys. Soc. 4, 173 (1959)j.' R. Eiscenschitz and P. london, Z. Physik 6p, 491 (193Q) In Eqs. (3), (3a,), Ref refers to the operation of

G. lvV. King and J. H. Van Vleck, Phys. Rev. 55, 1165 (1939). reflection of any electronic wave function (e.g. , Ci) in
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the median plane perpendicular to the line joining the
two atoms a and b. Here and throughout the following
discussion, the nuclei of atoms a and b are considered as
centers of force which always remain in fixed locations
in space. C (i) represents the exact electronic eigen-
function of any one Zeeman or Stark component of
any doublet state (m) of atom a with Ms=+ —',, written
as a function of E electrons 1 S (collectivelydesig-
nated as i); while C s' represents the exact electronic
eigenfunction of any dQFereet doublet state (e) of another
atom b of the same kind with M8 ———~, written as a
function of S electrons %+1, 21V (collectively
designated as j).For example, C „.may correspond to a
set of closed shells plus one electron in an atomic spin-
orbital (ASO) nz n and C „b' to a like set of closed shells
plus one electron in an ASO e&P; but Eqs. (3), (3a) are
not restricted to this special case. Eqs. (3) and (3a) are
directly applicable only insofar as spin-orbit coupling
can be neglected (see below).

In Eqs. (2), the "supplementary antisymmetrizer"
8(i; j) is an operator which converts a product such
as C (i)C„& (j), in which C, and C„& are normalized
and C, is antisymmetric in electrons 1 S, C„b in
electrons X+1 2iV, into a function which is normal-
ized and is antisymmetric in all the electrons 1. 2'.
It follows that

it'(i; j)=((& )'/(2&). 7' Zs (—1)"&s(i j) (4)

where the I's(i; j) effect such permutations L21V!/(Ã!)'
in number] between electrons of the groups i and j as
are necessary to make 0' antisymmetric in all the
electrons. '

For the case of two H atoms, C,(i) and C b ( j)
reduce to nz, mr and e»Ps, where nz and e now refer
to any two atomic orbitals (AO's), n and P are the
usual one-electron spin functions, and 1 and 2 index
the two electrons. 0', (i; j) now becomes the ordinary
antisymmetrizer.

In the present paper, the positive directions of the
s and sb axes will both be taken toward the center of the
molecule; but xb will be taken parallel to x and yb to y .
(If the axis-system is right-handed on a, it is then
left-handed on b )If polar .coordinates are used, !1,
will be measured from s, and Ob from sb, with the axes
chosen as stated, g.=Ps It is then .seen that for uey AO,
say m, Ream, = m&, hence for any doublet-state
atomic wave function, Reft, (i)=C s(i); and so on.

In some cases, Eqs. (3) and (3a) must be replaced by
more general expressions. C (i) and C „s'(j) are

' Note that each of C, (i) and C „&'(j) already consists of a linear
combination of 2V. functions obtained by permutations of the
electrons within the group i or the group j.This is true whether
or not 4, and 4„f,' correspond to a single ASO configuration, and
still holds if 4, , and C„b' are exact wave functions of particular
atomic states, since these may in principle always be expanded
as infinite sums of single-determinant forms (configuration-
interaction description).

characterized not only by 5=—', and M8=+-', or ——',,
but also by L and M& values (in the case of two H
atoms, by i and m& values). Equations (3) and (3a) are
valid except in the case of the Z+ and 2 states which
arise when both Mr, (a) and Mr, (b) are nonzero and Mz, (a)
= —Mz (b). Equations (3) are then replaced usually" by
the following expressions, in which p can be +1 or —1:

C'i =-'LC'-"(i)C'.-s (j)+oC'-"'(i)C'--s( j)
+p~=.(i)~"s'(j)+no~--.'(i)~- s(j)7'

C'rr=«f C'i (3b)

Equations (3a) for MB——+1 are replaced by

C'i = 2 'LC'-"(')C'--s(j)+ pC'--. (i)C'"s(j)]
or 2—*'LC„+.'(i)C'~-b (j)+pC'~-~ (i)C +s'(j)7; (3c)

—R~f3r@

s' Bnt not if the states differ only in Mz, (see paragraph follow-
ing Table I).

In the H+H case (i= 1 only, j=2 only), C + may,
for example, correspond to a 2p~+ AO and C„ to a3' AO, in which case the interaction of the two atoms
gives rise to singlet and triplet, g and I, Z+ and 2—
states; it can readily be verified that the +1 value of
the index p corresponds Az all cases (i.e. , for singlet or
triplet, g or I) to Z+, the value —1 to Z states. Com-
pletely analogous examples occur for doublet atoms in
general (e.g. , if no+ is Mr, ——&1 of any 'I' state and
e+ is M&=%1 of any 'D state, 2+ and 2 states
again result).

The wave funct:ions given by Eqs. (1), (2), and (3b)
contain three indices g, 0-, and p, of which o-=~1
correspond always to triplet and singlet states, respec-
tively. The paly p (+1 for g, —1 for u) of anydiatomic
electronic wave function corresponds to the behavior
of the latter for the operation of inversion at the center
of the system. This operation is equivalent to the
product of the two operations of reQection in the
mid-plane Ref(~) and rotation by 180' a,round the
symmetry axis (Ro ). Ref~ yields +1 or —1 according
as ri is +1 or —1. It is readily seen that the effect of
Ro is given by (—1)s, hence that p= ri(—1)s, the same
whether Eqs. (3) and (3a) or (3b) and (3c) hold, and
independent of the values of o- and p. For Z states a
further symmetry property exists, namely their behavior
(1 for Z+, —1 for Z states) toward the operation Ref"
of reflection in any plane through the symmetry axis.
Z states described by Eqs. (1), (2), and (3) or (3a) are
always Z+ states, while those described by Eqs. (1),
(2), and (3b) or (3c) are Z+ or Z according as p is
+1 or —1.

For convenient reference, Table I lists the values of
the various indices just mentioned, also of the composite
index —riop or —rio (which will be seen below to be
important), for the va, rious types of sta, tes which can



1676 ROBERT S. MULLI KEN

TABLE I. Summary of indices for various diatomic state-types. Taking into account the properties of S(i; j),—see
Eq. (4),—~z z and Kzz z can be simplified to:

State
V&P

or —go'

lg+ 3g+
g

1Z„,3Z„
lg+ 3g+

'~g '~u
'~e, '~u
IC'

w1

W1

w1

Wi

—1—1
1
1—1

—1

a1
&1
W1
%1
&1

&1
W1

a The index p exists only for Z+ and Z states derived from the interaction
of atoms in states of equal A&0. In other cases (Z+ states derived from
atoms with A. =0, and II, 3„4, ~ ~ states), the index —qo. takes the place of—perp. Or, formally, one may set p =+1 in these cases.

arise from the interaction of two like atoms in different
doublet states.

The foregoing discussion, and Table I, do not apply
in the case of two like atoms in identical states (e.g. ,
ig ig or iPg i', or iPQ iP"). Even for Pairs such as
'PII+, 'PII which differ in the sign of ML, but which
are otherwise identical (e.g. , 2'+, 2p~ for two H
atoms), they do not apply. In all these cases, Eq. (1)
must be replaced by +=4'&,. that is, g, +», and 4»
in Eqs. (1)—(3c) must be dropped. For cases such as
'PII+, 'PII, the C~z equation. s of Eqs. (3b), (3c) are
valid. To determine the parity of any molecular state,
the result of the operation Ref~ can now be determined
only by applying it to the complete antisymmetrized%'.
The resulting Pauli-allowed states in some typical cases
are as follows: for 'S '5 or 'PZ 'PZ (e.g. , 1s, 1s or
2s, 2s or 2po. , 2po. for two H atoms) they are'Z, + and
'Z„+; for 'PII+, 'PII+, '6, and '6„;for 'PII+, 'PII+ they
are 'Zg+, 'Z~, 'Z~+, and ""Zg .

The first-order energy E of anystate given by Eq. (1),
taking into account that 3Czz zz=3Cz z for a homopolar
molecule and that 3Ciz I=KI zz*, is easily seen to be

~zz=P (—1)'~
~ Pb(i; j)C'z* ~Czdr,

k

(Sa)

~zz z=p (—1)'~ Pb(i; j)C'zz* 3CC'zdr.

The procedure and results are similar to those obtained
by a familiar theorem due to Slater.

For the computation of Iong-range interactions
between differently-excited like atoms, it is convenient
to express the total Hamiltonian 3C as a sum of free-atom
Hamiltonians K; ' and K,~' plus an interaction
Hamiltonian 3C'"':

3C=K'+3C'"' K'=K. '+K '

~'"'=2' (—e'/ 'b)+Z (—e'/r-. )

+2 2; ("/r';)+"/R (6)

Equations (6) are applicable directly only if, in the
wave function operated on by 3C, all electrons of group i
remain on atom a and those of group j on atom b. This
condition is

fulfilled

when�we

us Eqs. (Sa) in computing
Kz z and Xzz z. X, then has to operate only on products
such as C,(i)C b (j) of Eq. (3), in which there are
no exchanges between the i and j groups of electrons.

If E is large, it becomes a rather good approximation
to expand X,'"' in powers of E ' and to retain only the
first term, with the familiar result, ' ' used extensively
by London in discussing van der Waals forces,

X,'""=(e'/R')Lp, p, (x,,x,b+y, ,y,b+2s;,s,b)$

+(terms in higher powers of R '), (7)

"+'~+dr=(~z z+. Re~zz z)/(I+~pzz z), (S) orifc+andc, wherec+=2 l(@+ay) andc =2*(x —iy), —
are used as coordinates instead of x and y,

where Razz z denotes the real part of 3Czz z.
To compute 3Cz z and BCzz z, it will be sufficient to

use Eqs. (2), (3) or (2), (3b), since for triplet states
with MB——~1 $Eqs. (3a), (3c)g, E is the same as for
those with 3fe=O (Eqs. (3), (3b)7, if we neglect spin-
orbit coupling terms and suppose that no external fields
are present.

Using Eqs. (2), Kz z and 3Czz z have the forms

~z z
——)I n(i; j)ez*Xe(i;j)4zdr,

X'- =(e/R')LEZ; (c,.+c,;pc,. c;b'+2s;~;-b)]

+ (7a)

The coordinate origin for electrons of group i is at
nucleus a, that for group j at nucleus b. In Eqs. (7),
(7a), the usual'' minus sign before 2s,,s;b has been.
changed to a plus sign because in the present discussion
the positive s direction for each atom is taken toward
the other atom. Equations (7) and (7a) can be written
in a manner which will shortly prove convenient, as
follows

3Czz z ——t'e(i; j)err*see, (i;j)4zdr
3&'"'= (e'/R') (Z. V. 2'2 V'.q b)+

with y, = 1 for x, y or c+, c, and y, = 2 for s.

(7b)
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Using Eqs. (5a) and (6) one now has

X»=E' 1++' (—1) ~ "[P&(i;j)C'z*]3C'4'zdr

+p (—1)'p [Pl..(i; j)Cz*]K'"'Czdr,

(5b)

&4z i=L Szz z+Q' (—1) +J [Ps(i; j)Czz*]R'@dr

+P (—1)'~ [Pp(i; j)C zz*]X'"'Czdr,
k

where P~' omits the identity permutation, and
E'=E,'+E„ss. At this point, it is desirable to distin-
guish two possible situations: (1) R is so large that
overlap between the wave functions of atoms a and b

is negligible; (2) R is large, but overlap of the two
wave functions is not negligible.

In situation (1),

Xz z ——E', and E=E'+r)Rzz z,

Kzz z=P (—1) ~ [Ps(i; j)C'zz*]K'"'Czdr,
(5c)

and, as we shall see, only dispersion-type interactions
remain. In situation (2), valence-type interactions are
also present. A special case of situation (2) will be
thoroughly considered in Secs. V and VI for the case of
two H or two Na atoms, but the general discussion will
now be continued for situation (1) only.

To proceed further, the expressions for C~ and Czz

from Eqs. (3) or (3b), and for X'"' from Eq. (7b), must
first be substituted into the Kzz z expression of Eq. (5c).
Using Eqs. (3b), one obtains

= (e'/4R') Z (—1) (P (i' j)[c' *(i)c' —.'*U)

+pc.—*(')~..'*(j)+.~- '*(')~--.*U)

+po~--s'*(i)C'-"*(j)])K V. 2 Z q'.q s]

X[4'-"(i)C'-- '(j)+pC'=. (iH'- ~'(i)

+oC +.'(i)4„-s(j)+poC ,'(i)C„+&(j)]—dr+

This expression contains 2 V!/(X!) permutations on six-
teen integrals of the type J'Xzs(i)Xq, *(j)K'"'Xs,(i)X4&(j)
Xdv- times a factor, in which each x also includes E'.
permutations on the X electrons of group i or group j.
However, a survey shows that only four of the sixteen
yield a nonzero result, these four being those which
include a po. factor. Let us consider one of these, with

its permutations, for example,

(.-)("/«') Z (-1)" I'[P.(;j)~."*(')~.—.*(j)]
XSe'"'e —.'(i)C.+s (j)dr.

A canvass shows that there is one, and only one, of
the I'I,, s in this expression which gives a nonzero result,
namely that permutation, 4 an odd one since E is odd,
which exchanges all the S electrons of the i group with
those of the j group. The expression thus reduces to

(—p~) ("/«') 2 v. I P'-- '*(i)][Eq;.][C.—.'(i)]d.,
q eJ

X [C ~ *(j)][Zq,][~..(j)]d.;+" .
J

Now, for example, e'J'C -'*(i) Pq,4 -'(i)dr, is p, — —,

the dipole moment of the nz +-+ e spectroscopic
transition in atom a or b.' Noting also that out of
Pqy„only one particular q is involved in any one
spectroscopic transition between two C's of an atom,
the above expressions becomes (—poyq)t4 „p, +„+-/-
4R'. This contribution to 3C~z q is one of four which
are readily seen to be equal, so that

~ZZ Z ( pO yq)t4m n t4m+ n+/R +
Hence [see Eq. (5c), and noting that always t4

:t4 + +]

L' Es= ( rtpo yq)
—p n,+ n—+s/Rs+ ~ ~ = —2rtpa p, ~+n+q/R

+(terms in higher powers of R '), (Sb)

since here states m+ and r4+ (or ques and r4 ) are alike
in Mz. , q is s, and yq = 2. E—E' is the f4rst order disPer-
sioe energy corresponding to Z+ and Z interactions for
which Eq. (3b) holds.

A discussion closely similar to the preceding, but
using Eq. (3) instead of Eq. (3b), yields

E—E'= ( qto7, )t4„„'/R'—
+(terms in higher powers of R '), (S)

where now q is one of c+, c (or x or y), or s depending
on the particular nz and e considered, and yq=i for
q=c+, c, x, or y, 2 for q=s. If t4 and R in Eqs. (S)
and (Sb) are measured in atomic 44r4its, E—E~ is also in
atomic units (1 a. .=ue'/a s27.1 ev). This can be
seen by rewriting, for example, Eqs. (S) in the form

E E'= ( 97.) (e'/oo) (—p '—/e'cto')/(Rloo)'+
4 Every expression of the type Zz( —1)~PEq(i;j )C n+s(i)4n ,'(j)-

is antisymmetric in all the 2N electrons of groups i and j, and
(see reference 3) can in general be written as a linear combination
of determinants each with 2N rows and 2N columns. An odd
number (N) of exchanges of rows converts for example each
C~+&(i)C„- '(j)determinant into the corresponding C „-'(i)C +I,(j)
determinant.' It will be recalled that each C or C' corresponds to one partic-
ular Zeeman component, i.e., Ml. and Mg value, of the doublet
state which it represents, neglecting spin-orbit coupling as we
are here doing. Further, in the dipole moment integral, the value
of kg (+—,

' for 4, ——', for C') does not matter, except that Mg
angst @&utch for the C* and C, or C'* and 4', which appear in the
integral.
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ol
E L~'= —goy, (—ry/v, )f „/R'+ (9)

2~.~(r—y/v-)f-:/R'+. (9b)

It is important to note that f in these equations
corresponds to a siegte Stark or Zeeman component of
a spectroscopic transition, and is not in general equal
to the mean oscillator strength f commonly used.

The @seam oscillator strength f, averaged over all
polarizations and over all AO's of a degenerate initial
state (e.g. , in the (1+1)-electron H + H case over the
AO's 2pm.+i, 2po. , and 2p7r i in a transition to 3d) and
summed over all AO's of a degenerate final state (e.g. ,
3d5+~, 3dm+i, 3do., 3dm. i, 3d5 2) is given (see Bethe and
Salpeter' and second paragraph of Sec. IV below) by

max(l, ,lr)
f'~=-'( '~/r ) —(R*')',

2l,+1
where i and f refer to the initial and final states,
respectively. In the important special case that i and f
are, respectively, ms and np, f, „v=3(v, „/ry)
)&(R,'"v)'= f, , „v, where ep refers to any one of
ape, cpa. , or spy, for all of which p „in Eq (9) is .the
same. ' For the interaction of an ms with an vip atom,
f„„in Eq. (9) is f, , „and is equal to f, , „.

A point of considerable interest is the fact that
first-order dispersion interactions between atoms in
states m and ii can be large even where f „ is very
small or even zero. This is because the first-order
dispersion splittings are approximately proportional to
p „', but f „ to v „p '. Thus, for example, large
effects are- predicted for the interaction of a 2s and a
2p H atom because p~, ~v' is large, even though f2, ~v

——0.

' See H. A. Bethe and E. E. Salpeter, IXundbnch der I'hysik,
edited by S. Flugge (Springer-Verlag, Berlin, 1957), Vol. 35, Part
I, Eqs. (60.7) and (60.11) for general expressions for the matrix
elements J n*gmdV=p „«) of q for the transition from any
initial AO m to any final AO n, See also especially (59.14), (60.8),
(61.2), (61.3). The correctness of the transformation from the
first to the second form of D,+ in Eqs. (12a) can be seen from
Eqs. (60.11). The fact that only one, if any, of p, „('+), p
p „&') is nonvanishing when complex AO's are used is also demon-
strated in connection with the derivation of Eqs. (60.7) and
(60.11); in view of this fact, it is seen that either the c+ or the c
term in the second form of D,+ in Eqs. (12a) always vanishes.

7 If i and f are mp and ns, respectively, f, „,„,=(—',)f„,
=(3)f„, „. In other cases than (ms, nP) and (mP, ns), p,~ of
Eq. (9) or (9b) is no longer the same for all m, n belonging to a
given pair of degenerate states, and so f;y is not equal to any
individual f~ .

Equation (8) or (8b) can conveniently be rewritt. en
in terms of the oscillator strengths of spectroscopic
transitions. In general, the oscillator strength f for
the single nonvanishing polarized component of a
spectroscopic transition m ~ e of frequency v is

fmtl= (vms/ry)ymA

if p, „ is in a.u. ; ry is the rydberg constant; v „and
ry may conveniently be expressed in cm '. Combining
this equation with Eq. (8) or (8b),

The discussion leading to Eqs. (8) and (9) is similar
to that of reference 2 (4 and 4&„here correspond to 5
and P there), but more detailed, resulting in the
uncovering of the factor —0- in Kii i, omitted in
reference 2. The present discussion is also more general,
and shows the need of Eq. (8b) in certain situations.

In view of the assumptions made in their derivation,
Eqs. (8), (8b), (9), (9b) should be good approximations
only at R values sufficiently large that overlap of
atoms a and 6 with resulting valence-type interaction,
is negligible. For still larger R values, a new complica-
tion enters. Namely, when the magnitudes of the
dispersion-force splittings become small enough to be
comparable with spin-orbit splittings, as for example
in the 3s3p, 'P state of Na with its 'P,* and 'Pi; sub-
states, one must consider the joint eGects of the
dispersion and spin-orbit forces in splitting each of
'P; and 'Pi, into several components. However, the
'P; —'P; separation for the Na atom is only 0.0021 ev
(17.20 cm '), which (see Sec. VI) is smaller than the
dispersion-force splittings until R exceeds 40 a.u. For
the heavier alkali metals, the spin-orbit coupling
becomes more important. For cesium, 'P; —'P; is
0.069 ev, about equal to the dispersion-force splitting
constant at 12 a.u. Calculation of the rather complicated
dispersion-force splittings of the individual components
of a 'P or other doublet state can be carried out in a
straightforward way, but will not be attempted here.
In such a treatment, it would be necessary to classify
the atomic states and the states of any interacting
atom-pair not by the usual strong-field quantum
numbers A or Ml. , and M&, but by the weak-field
("iar-nuclei case c") quantum numbers Q (0,+,0„+,
0, , 1„, etc. , atom pair states, from 0+, 0, 1,
atomic states). '

Some examples of atom-pair states to which Eqs.
(8) or (8b), (9) or (9b) are directly applicable are:
I.i 1s'2s('5), 1s'mp('P'); B 1s'2s'2p('P'), 1s'2s'3s('5)
or 1s2s2p'('P or 'D or '5); N 1s'2s'2p'('D' or 'P'),
1s'2s2p'('P or 'D or '5). Some examples where the
treatment based on strong spin-orbit coupling would
have to be used are: Tl s'p('P, or 'P.;), s's('5) or
gp2(2P, 2P, 2D 25) ~ Br g2p5 (2P, or 2P, ) gP6 25

III. FIRST-ORDER DISPERSION AND VALENCE
INTERACTIONS BETWEEN H ATOMS

IN DIFFERENT STATES

All of Eqs. (1)—(7b) of Sec. II are applicable to the
computation of complete first-order interaction energies,
including both dispersion-type and valence-type interac-
tions. ' All these equations are directly applicable to the
case of two H atoms, with the following simplifications:
i, j become merely 1 and 2, 0', (i; j) becomes 0', t equal
to 2 '*(1—P&~)j and P,P, can be omitted in Eqs. (7)—

See R. S. Mulliken, Revs. Modern Phys. 3, 113—115 (1930);
4, 28—9 (1932).' But further interactions of both types may occur if de-
generacies remain (see Sec. V).
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(7b). If m and n are two suitable H atom Ao's, Eqs. (3)
become

Cr=2 "Lm.(1)n(1)nb(2)P(2)
+o.m, (1)p(1)nb(2)n(2) j,

4rr= 2 'l mb(1)n(1)n, (2)p(2)
(3')

+o.mb (1)P(1)n, (2)n (2)$.
Equations for Cr and Czr for H+H corresponding to
Eqs. (3b) can easily be written when needed.

Let us now, however, consider owly cases where Eqs.
(3') are applicable and proceed with the detailed
development of Eqs. (Sb), 7oAhoui assuming negligible
overlap of the wave functions of atoms a and b Equ. a-
tions (Sb) now become

(~r z=E
I

1— &i2C'r*~'C'zdr
l)

The former of these last two integrals is a one-electron,
the latter a two-electron integral. In Eqs. (11), note
that, for example (of course only in a homopolar case,
as here), (m,mb*l p,) = (m,mb*l pb), but ( m*nb

l p, )
N(m nb*lpb). All the integrals in Eqs. (11) are real,
even when complex orbitals are involved.

To a high order of approximation, if R is fairly
large, the terms gS ~ „ in Eq. (10) can be dropped,
since (1+rlS 5„„) on. the left and right sides of
Eq. (10) very nearly balance each other out.

Now using the expansion Eq. (7) or (7a) for BC'"',

one obtains again' Eq. (10), but Eqs. (11) are replaced
by the following Eqs. (12) if m and n are real, or by
Eqs. (12a) if m and/or n are complex.

M=0+

I' =y, m, nb(q, /R) d U m, nb(qb/R)d V+

+ f (C'z*—~u@z*)&&'"'~'zdr,

~rr r =E
l

Srr r —i
&i2C'zr*~'%dr

I

(Sb')
(12)

Q=2)t m, mb(s. /R)dV n,nb(sb/R)dU j
+ f (%r*—&iPr rr*)3'-'"'@idr.

If, for example, m is 1s and n is 2s or 2po or 2p~+,
Ep= Eg,+E2a ~

———0.625 a.u. = 17.0 ev.
It is instructive to evaluate E first using the exact

form of X'"'
l
see Eq. (6)j, then the approximate form

LEqs. (7—7b)j.The results from the former evaluation
will give the exact first order energy for all values of E,
those from the latter should give a good approximation
at su%ciently large E.

Using the exact form of 3C'"', the following results are
obtained. '

E(1+gSmmSaa) =Eo(1+gSmmSaa &Sma )
+ (e'/R)l M—oP+riQ —goD$, (10)

where

~=1+ (m 'lnb') (m 2lpb) (n 'Ipb) i

&=Sma (manb*
I
ma*nb) Sma(ma*nb

I pa)

(11)
Sma(m. nb IPb) i

Q SmmSaa+(mamb I'na nb) Smm(na nbl pa)

5„„(m.—mb*l p.);
D= (n.*m.

I m, *nb)

In Eqs. (10) and (11), 5 „means J'm, *mbdV, S „
means J'm, nbdV(= j'mb*n, dU). Symbols such as
(m, 'lpb), (m,m ln,b*nb) have the following meanings:

(m, 'l pb)=—~I m, *m, (R/rb)dU; (m, mb*l n *nb)

~
m, (1)mb*(1)(R/rq2)n, *(2)nb(2)dV~dV2.

9 The M and P terms in Eq. (10) come from 3CI I, the Q and D
terms from 3'.Ir r.

D=y,
, n,m, (q/R)dU) mbnb(qb/R)dV+

In Eqs. (12), q is an appropriate one of x, y, s, and y,
is +1 for q=x or y, +2 for q=s. In, for example,
Jm, nb(q', /R)dU or j'mbnb(qb/R)dV, if m is 1s, q is x
if n is 2pmx, y if n is 2pmy, s if n is 2s or 2po. . When n is
2s, D vanishes, but I' and Q do not. If rn and/or n
are complex, '

35=0+

P,=2 nb*m, (s,/R)dV I m, *nb(sb/R)dV+

R'I'.+= I nbam. c,+dV)I m.*nbcb dV

+~I nb*m. c, dVJ m.*nbcb dV+

Q=2~fmb*m, (s,/R)dU fn, *nb(zb/R)dV+
~J

(12a)
D,=2~ n,*m, (s,/R)dV ' mb*nb(sb/R)dV+

R'D, +=~ n,*m.c,+dV~J mb*nbcb dV

+)I na maca dU mb nbcb+dV+ 'f

e *m c,+dV eb*mbcb+dV
J

+]I n,*m,c dV nb*mbcb dU+
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It is easily seen by inspection of the forms of E and Q
in Eqs. (11) or (12) that these quantities, times e'/R
from Eq. (10), vanish as 5'/R', hence somewhat faster
than exponent. ially with R, since each 5 (when not.
identically zero) vanishes exponentially wit, h R; here
5' refers to either 5 „'or 5 5„„."It should, however,
be noted that the magnitudes of these integrals vary
considerably with the particular orbitals involved.
Further, in spite of their vanishing as 5'/R, I'e'/R
and Qe'/R for H(1s)+H(2p) do not become negligible
compared with the long-range term De'/R until R
attains quite large values (see Sec. V). However, if R
is sufficiently large so that overlaps are negligible,
Pe'/R and Qe'/R vanish leaving only the term in De'/R.

2X4=8
(+)lg+ 3g +

( ) lg + 3g +

iXi=1
(+) III„3II,
(—) 'II„3rr„

ndm'

1X3=3
(+) ln„, 3II,
{—) 'II„3II.„

2X3=6
(+) '~„'~.
( ) lg 3p

2X3=6
(+) ly + Ig-

3g + 3+

( )lg+ lg-
3g + 3g

1, 3g 1, 3g

1X6=6
(+) '~., '~,
( ) 1(Iz 3@

0

' 3II '3II

TABLE III. First-order dipole-dil&ole dispersion coeAicients' of
molecular states of two H atoms one in an nzp the other in an
nd AO.

TABLE II. First-order dipole-dipole dispersion energy coeffi-
cients' of molecular states of two H atoms one in an nzs, the
other in an ns or np AO.

ms

ns

2X1=2
(+)lg+ 3y +

{ ) lg + 3y +

1X1=1
(+) lrr„, 3II,
(—) III„'3II„

a The top line in each box give pq XtMmn with tMmizq in units of (Rms t') /3,
as obtained using references 6 and 11. For s polarization, pq =2; for x or y
or c+ polarization, yq =1. The following lines marked (+) and ( —) give
the corresponding states of vns np for which —err in Eq. (8') is, respectively,
positive or negative. The ep~ AO's here may be taken equally well as real
or complex.

expanded interaction Hamiltonian of Eqs. (7)—(7b),
it is then easily seen' (noting that J'rz, *m,q,d V

J'zzsm sqsdV) that the same result is obtained for
E—E' as is given Lsee Eq. (8)j in Sec. II in the gen-
eral case of any two like odd-electron atoms:

E Eo rtoDe'/R+ —. =——r.toy, p, „'/R'+ —. . . (8')

Results of the application of Eq. (8'), onzzttzrzg the

terms zrz higher powers of R ' than 1/R', thus keeping

'0 Each of the two individual integrals in P, or Q of Eqs. (12)
computes the mean value of s,/R or st,/It for a charge distribution
whose magnitude is given by the corresponding overlap integral
S, „orS or S ~ In each case the charge distribution in question
(overlap distribution) is very weak and very diffuse, and is
centered about the mid-point of the molecule, or (where J'm, nt,d V
is involved) at least far from both nuclei. A little reflection shows
that the mean value of s', t/'R or of sq/R for the overlap distribution
is about ~ for Q and somewhat less (perhaps about 3) for P, .
Hence each of the integrals P.- and Q is of the order of magnitude
of S', more or less independent of R. The integrals P and P„
can also be seen to vanish exponentially in a similar way; although
in this case S „is identically zero, the same is not true of P or P„.
The exponential vanishing of P and Q can also be seen from
Eqs. (11).

IV. FIRST-ORDER DISPERSION INTERACTIONS
BETWEEN DIFFERENTLY EXCITED H ATOMS

Of major interest at E. values large enough so that all
overlaps between u and b AO's are negligible is the
first-order dispersion term (—rto)(De'/R). This term
is then all that remains of the interaction energy E—Eo
of Eq. (10). From Eqs. (12) or (12a), based on the

a The top line in each box gives yqXpmnq, with the latter in units of
(Rmp"d)2/15, as obtained using references 6 and 11. For z polarization,
yq

——2, for c+ polarization, yq =1. The following lines marked (+) or ( —)
give the corresponding states of mp-nd for which —zlcr in Eq. (8) or, for
the Z states of mpvr+ndvr+, —rtap in Eq. (8b), is respectively positive or
negative. It will be noted that it is best to use complex AO's here. In the
table, combinations such as mpzr+szd~+ mean mp7r+ndvr+ or mp~ nd~ only,
nOt mp7r+1Zd~ Or mp7r 1Zd7r+; the latter are liSted Separately aS mpm~tZd~+.

TABLE IV. Overlap integrals for H atom orbitals. '

Smm
(a.u ~ ) Sls S2s, 2s

Snn

S2i, 2J S2/. , 21

Smn

Sls, 2s Sls, 2@a' Sls, 2pzr

5 0.0966
6 0.0471
8 0.0102

10 0.0020
12 0.0004
16 0.0000

0.729 0.005
0.637 0.159
0.456 0.319
0.302 0.319
0.188 0.250
0.062 0.1.07

0.578
0,468
0.287
0.164
0.089
0.023

0.286 0.413 0.000
0.222 0.336 0.000
0.121 0.194 0.000
0.061 0.100 0.000
0.029 0.048 0.000
0.006 0.010 0.000

"R. S. Mulliken, C. A. Rieke, D. Orloff, and H. Orion, J. Chem. Phys.
1'7, 1248 (1949).

"Values of (R ")2 are tabulated in atomic units on p. 350 of
reference 6. Equations for f „and f „are also given.

only the "dipole-dipole" terms, are given below in
Tables II and III for two specific examples.

For a given pair of suitably chosen AO's, p, „«' is
nonvanishing for at most one particular q. For example,
im z, ssss0 for a q s

in a u s tzssss, nrssss' (&) =pm , ssrsis(s)

=tz, „„„'(y)=(-', )(R. ,"")', where in general R i"'
=J'R„i.(r)R i(r)r'dr, " R~i(r) being the radial factor
in the m/AO, in a.u.

Tables II and III give the values of y, and p „' for
the respect. ive cases that m is an ms and n an zzp AO,
and tha, t nz is an mp and rz an rzd AO. In the case of Z+
and Z states resulting from mpzr+, zzdzr+ or other zr",
zr+ or 8", 6+ combinations, Eqs. (3b), (Sb), as special-
ized to the H+H cases mentioned, have been used in
obtaining the results listed. 3»laking use of Table I,
the states corresponding to any combination of orbitals
belonging to ms zzp or to mp zzd and associated with a
positive or negative sign of —rta in Eq. (8) or of
—rtop in Eq. (Sb)'are readily determined, and are listed
in the tables. It will be noted that p „' takes the form
n(R~,"")'/3 for ms rzP and n(R "") /15 for mP nd,
where n is 1 for all ms zzp states but takes various
integral values 0, 1, 3, 4, 6 for various mp rzd states
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TABLE V. Approximate values of terms in Eq. (10) for R = 10 a.u. (all in ev), for the
interaction of normal and 2-quantum excited H atoms. '

State

1$2s Zg
lg +
3g +
3g +

is2pa. 'Z
lg +
3g +
3g +

is2pm 'll„

'H:u
3IIg

—1 +1—1 —1
+1 +1
+1 —1
—1 +1—1 —1
+1 +1
+1
—1 +1—1
+1 +1
+1

—aS 2Ep b

—0.0622—0.0622
+0.0622
+0.0622
—0.170—0.170
+0.170
+0.170

0.000
0.000
0.000
0.000

—oEe'/R

+0.0050
+0.0050—0.0050—0.0050
+0.0136
+0.0136—0.0136—0.0136
+ (0.0001)
+ (0.0001)—(0.0001)—(0.0001)

+gQe'/R

+0.0082—0.0082
+0.0082—0.0082
+0.0087—0.0087
+0.0087—0.0087
+0.0045—0.0045
+0.0045
—0.0045

—goDe'/R

0.000
0.000
0.000
0.000

+0.0302—0.0302—0.0302
+0.0302
+0.0151—0.0151—0.0151
+0.0151

Total
(E—Ep)

—0.049—0.067
+0.067
+0.049
—0.118—0.195
+0.135
+0.178
+0.0197—0.0195—0.0107
+0.0105

a For the X states, where qa and qb are za and zb in Eqs. (12) for I' and Q, each integral has been approximated as illustrated by J'manb(qa/R)dt/'
a Jmasbd V = sSmn (see reference 10). (? for the II states, where also q is z, has similarly been approximated as $$rrbm Snn For I for the H states, only

very rough guesstimates were made.
b Bo = —17.0 ev.

(tb„„and R " in a.u.). Table III illustrates the fact
that the splitting caused by 6rst-order dispersion forces
can in general be rather complex, although for the
ms np case discussed by King and Van Vleck it is
relatively simple.

With regard to the magnitudes of the splittings, the
needed values of (R "")'or (R "")'and from these of
p, „' and p „,,d', can be obtained" from reference 6.
For the case of 1s 2p, the values of E Es in Kq. (8), —
times 27.21 to convert from a.u. to ev, are obtained by
setting p1, 2„'=15.10. Thus, for example, for the 'Z,+

and 'II states of 1s 2p (see Table II),E—Es——30.20/R'
ev and 15.10/R' ev if R is in a.u. Larger tb

' values
and splittings are predicted in various cases where
both atoms are excited. For example for the 'Z,+

states of the pairs 2s 2po. , 2po" 3do., 3s 3po, 3po" 3do. ,

4po" 4do, and 4s 4po, the predicted values of E—Es
times R' (R in a.u.) are, respectively, 490, 327, 2940,
1470, 6275, and 9800 in ev. In connection with the
foregoing, it should be noted that terms involving
higher powers of R ' than 1/R' are important; for a more
accurate treatment, as has been shown especially in a
study by Fontana. "

The interaction energies in Table II agree with those
of King and Van Vleck' in the case of the singlet
states, but are reversed in sign for the triplet states. The
discrepancy may be attributed to the failure of King
and Van Vleck to consider effects which give rise to
the factor —o. which multiplies rtDe'/R in Eq. (10).
This factor, which they omitted, is +1.for singlet
states so that their results are correct for these, but
it is —1 for triplet states. Referring to Kqs. (3'), (Sb'),
and (10)—(11), the dipole-dipole int. eraction terms are
seen to arise from those parts of the terms j'—n,*(1)
)&P (1)mb*(2) n (2)3C'"bo.m, (1)P (1)nb (2)n (2)dr+ j'—o n„e

X (1)n(1)mb (2)P(2)3C'"'m, (1)n(1)nb(2)P(2)dr in 3Crr r

of Eqs. (5b') which come from the term /re~„izn bX'"b.

'2 P. R. I'"ontana (to be published).

The minus signs occur because the terms —n,*(1)
&(p(1)mb*(2)n(2) and —on,*(1)mb*(2)p(2) are those
which have arisen from electron exchange (P» in Eq.
(Sb') for Krr r), and the factor o occurs for reasons that
ca.n be seen in the combination of Eq. (3') with Eq.
(Sb') for Krr r.

In Kqs. (10)—(11), based on the exact form Lsee Eq.
(6)$ of the interaction Hamiltonian, De'/R appears as
an e'/r» integral of unusual long-range character. In-
spection shows in a particularly illuminating way that
if m is 1s and n is one of the real forms of 2p, this
integral represents the mutual electrostatic energy of
two dipolar charge distributions em, n, and em~a~

located on atoms a and b, respectively. The integral
can be evaluated after expanding (1/r&z) in powers of
1/R, with exactly the same result as in Eq. (8')."
However, if m and e are 1s and 2s, one no longer has
dipolar charge distributions, and, in agreement with
Eq. (8'), the integral vanishes unless one goes to
higher terms (1/R' and higher) in the expansion of
1/rr, zb in Eqs. (10)—(11) and/or of K'"b in Eqs. (7),
(10), (12).

It seems worth emphasizing here that the first-order
dispersion energy can in all cases be computed exactly
if De'/R can be a,ccurately computed as an e'/r»
integral, instead of as a series in 1/R which is broken
off at the term in 1/R'. This can now be done readily
with the aid of existing tables of "Coulomb" integrals
or corresponding digital computer programs. '"

"Expansion of (1/rI~ ») yields precisely K'"' of Eqs. (7), plus
the following: e'/R+e'(z&, +ebb)/R'+e'(zi, '+ebb

zeal

zp2'
——,'xP —-,'-x22)/R' plus terms in R~, R ~, etc. On integration after
substitution in (m, rb, ~mbnb), the extra terms in 1/R, 1/R', and
1/R' all yield precisely zero contributions ta the iriIegral.

"'In this connection see H. C. Longuet-Higgins, Proc. Roy.
Soc. 235A, 537 (1956). I'urther, on "the representation of long-
range forces by series expansions, " see A. Dalgarno and J. T.
Lewis, Proc. Roy. Soc. (London) A69, 57 (1956). For tables
(is, 2s, 2p Ao's only) see for example C. C. J. Roothaan, Special
ONR Technical Report 1955, available from this Laboratory.
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V. VALENCE FORCES BETWEEN NORMAL AND
2-QUANTUM EXCITED H ATOMS AT

LARGE DISTANCES

A consideration of the magnitudes of the terms in
S „', E, and Q in Eqs. (10) shows that they often
predominate in importance over the term in D unless
R is so large that the latter is scarcely worth talking
about. Thus for the interaction of 1s with 2s or
2p atoms, the terms in S „', I', and Q are important
out to quite large R values, as will be seen from Tables
IV and V. Table IV shows the magnitudes of the
various overlap integrals involved in Eqs. (10)—(11)
for several R values. Table V shows the contributions of
the terms oEOS', —oPe'/R—, +gQe'/R, and itoD—e'/R.

to E Eo when—R=10 a, .u. (5.28 A), using the R '
terms of Eqs. (12), (8') to estimate I', Q, and D, and
neglecting itS S „ in Eq. (10)."

It is seen from Table V that even at R=10 a.u. the
term —o-5 „'Eo predominates in the case of the 2
states, and that the terms in I' and Q are by no means
negligible compared with that in D (for 1s 2s, the
latter out to terms in R ' is of course zero). For the
II states, on the other hand, the term in D definitely
predominates, but the term in Q is still almost a third
as large. One is forced to conclude that, on the whole,
first-order dispersion forces do not represent at all
well the interaction between normal H atoms and
2-quantum or higher excited H atoms until R values so
large are reached that all interactions have become
rather unimportant. However, things are not quite
so bad for the 1s 2pm II states: the dispersion forces
are definitely dominant at R = 10 a.u. (though they lose
their dominance somewhat below 9 a.u.).

In the case of the Z states, the situation is really
considerably worse than that portrayed by Table V.
Namely, because of the degeneracy between 2s and 2p,
there are valence-type interactions between pairs of
Z+ functions of like symmetry arising from 1s 2s and
1s 2po. ; for example, between 1s 2s, 'Z,+ and 1s 2pa. ,
'Z,+, or 1s 2s, 'Z,+ and 1s 2pa, 'Z,+, causing each such
pair of wave functions to mix and their energy curves
to repel each other. These interactions are probably
of the same order of magnitude as those listed in Table
V. For the 'Z,+ and 'Z + pairs of functions things are
even worse, since each of these pairs must mix with a
further wave function, namely the 'Z,+ or 'Z„+, respec-
tively, coming from H++H . These interactions are
very strong for R values near 10 a.u. , but become
weak beyond 12 a.u."

None of the complications which exist for the Z states
occur for the 1s 2pn. II states. However, when one goes
to 1s 3pm, there are pairwise degeneracies with the

"The neglect of pS~~S„~ on both sides of Eq. (10) is obviously
justified. The use of the R ' terms of Eqs. (12), (8') for M, I',
Q, and D should be a good approximation at 8=10 a.u. for the
cases 1s 2s, 1s 2pa. , or 1s 2pm."J.T. Lewis, Proc. Phys. Soc. (London) 68, 632 (1955).

1s.3d~ II wave functions; also, overlaps are larger and
D values smaller at any given R.

On the other hand, when one considers certaAz pairs
+here bo/h atoms are excited, much larger D values are
again encountered (see Sec.IV), and first-order dispersion
forces should be large and important at R values where
valence forces have become small. Additional first-
order dispersion effects due to configurational de-
generacies (e.g. , 2s 2s with 2po" 2po.) also occur for the
case of two H atoms. "

An interesting feature of the discussion in Sec. IV
was the demonstration that the first-order dispersion
forces for H+H* are attributable to one particular
e'/ri2 integral $D in Eqs. (11)j which vanishes only
about as 1/R', whereas all the other e'/r» integrals
vanish about as S'/R'. In a complete first-order calcula-
tion valid at all R values, both types of e'/r» integrals
would of course be included.

For a still more adequate treatment, second-order
terms must be included. Most of these become appreci-
ably large only as E. becomes smaller, though for
increasingly excited states they become important at
larger and larger E. values. But in addition, paralleling
the situation for the 6rst-order terms, there are some
long-range second-order terms, namely the familiar
1/R' and furt:her second-order dispersion terms. "

VI. LONG-RANGE INTERACTIONS BETWEEN
ALKALI-METAL ATOMS

Although it has been shown that the resonance
interactions between normal and excited H atoms are
complicated and confused by valence-force effects out
to R values so large that they are becoming rather
unimportant, the same is not true for atom-pairs such
as Li+Li* and Na+Na*. To a rather good approxima-
tion, these may be treated as 1-electron atoms, like
H+H*. Tables (not included here) similar to Tables
IV and V for H+H*, for the cases 3s 3pa. (four Z

states) and 3s3p~ (four II states) of Na+Na*, con-
structed using rough estimates of relevant overlap
integrals, then indicate that the overlaps and corre-
sponding valence-force terms are roughly similar in
magnitude at 10 a.u. to those for 1s 2pa and 1s 2pir of
H+H*. (The term —O.S „'ao for 3s 3po. , however, is
perhaps somewhat larger than the corresponding H
atom 1s 2po term. ) However, De'/R is now very much
larger (172',/R' in ev instead of 15.1 y,/R', for R in
a.u. ) and for II states it appears that the first-order
dispersion forces should be important and completely
dominant at 10 a.u. (except perhaps for second-order
effects—see below). Further, the present 3s 3p case is

simpler than that of H+H* in that there is of course
no degeneracy like that between 1s 2po and 1s 2s.

For the 2 states of Na2, the term —cr5 „'Eo may be
of the same order of magnitude as De'/R at 10 a.u. ,
but at perhaps 12 a.u. De'/R should definitely be
dominant, and still large (+0.2 ev). In the case of the
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'Z+ states an added complication occurs, analogous so
that for H+H*, namely that their potential curves are
crossed near 10 a.u. by the 'Z,+ and 'Z„+ curves of
Na++Na, with which strong interaction may be
expected. However, beyond 12 a.u. this interaction is
probably negligible, so that the potential curves of
all the 3s 3po Z states should then probably be well
described by the De'/R term alone.

Returning to the II states, consideration should be
given to the likelihood (which, in accordance with
molecular orbital theory, because a certainty at stable
molecular distances, near 6 a.u.) that second-order
interactions, with II states of Na++Na *, become
important near 10 a.u. in addition to the first-order
valence interactions already considered. (By Na * is
meant an excited virtual state of Na which becomes
stabilized on approaching an Na+. ) Inspection of the
experimental potential curve' of the observed lowest
'II„state of Na2, a stable state with a pronounced
minimum at 6.45 a.u. but with evidence of a dispersion-
force maximum near 12 a.u. , suggests that this is the
case."In any event, however, there would seem tobe
very little doubt that the dispersion forces are dominant
and important beyond 12 a.u. for both the II and the
Z states.

4'i=@,(i)C' b(j); 4'ii= Reft i, (13)

~ =2-:L~-"(')~--.(j)+p~--.(')C-"(j)j;
@'xi=Ref C'i (13b)

In Kqs. (13b), p can be +1 (Z+ states in case 1, 0+
states in case 2 or 3) or —1 (Z states in case 1, 0
states in case 2 or 3), the designations 0+ and 0 being
those usual for "far-nuclei case c" for diatomic mol-
cules. s C +, and4 —,etc. , refer to wave functions of

' As mentioned earlier, the present results for the theoretical
first-order dispersion energies agree entirely with those of reference
2 for singlet states.

VII. RESONANCE FORCES BETWEEN LIKE ATOMS
WITH EVEN NUMBERS OF ELECTRONS

For the interaction of two like atoms in different
states of excitation, relations are simpler when the
number of electrons (Ã) in each atom is even than when
it is odd. The following cases will be considered here:
(1) both atoms are in singlet states; (2) one atom is
in a singlet, the other in a triplet state in which the
spin-orbit coupling is strong compared with the first-
order dispersion interaction energies; (3) both atoms are
in states in which the spin-orbit coupling is strong
compared with the first-order dispersion energies (this
case includes the possibility of states of higher than
triplet multiplicity, also that of j, j or similar coupling
in one or both states).

The treatment is completely identical in these three
cases; no distinction between them is needed. In all,
Kqs. (1) and (2) of Sec. II hold, but instead of Eqs. (3),
(3a) and (3b), (3c) we have':

TABLE VI. Electronic state types for the interaction of like atoms
in singlet or triplet atoms with strong spin-orbit coupling.

States

~g +u ~g 0g p 1us 2g&IZ;;0;
~u p +gp ~ui 7 u ) gl u7

&z„-;0„-

1—1—1
1

a The symbols 'Z&+, etc. , are applicable in case 1 (both states singlets),
Og+, etc. in cases 2 and 3 (one or both states nonsinglets with strong spin-
orbit coupling, defined by their J values); the symbols 0, 1, 2, etc. , refer to
the 0 (i.e. , over-all )M ~) value of case c coupling, s In those cases where
Eqs. (14) apply, p (though really not defined) may be taken as +1.

atom a with M (the component of J along the line
joining the atoms) values 40 of equal magnitude but
opposite sign.

Equations (4)—(7b) are the same as in Sec. II. For
R values large enough so that atoms a and b do not
overlap we now find, by reasoning parallel to that in
Sec. II though now simpler, that

&O=gpqpmn /R =17g(ry/&ma) fmn/R & (14)

P Eo= 2 tpip~ „—+/+R =b2gp(ry/y~„) f~„/Rb (14b)

corresponding to Eqs. (8), (9) and (8b), (9b). Table VI
shows the relation of state-species to g and p values,
replacing Table I of Sec. II.

In the case that both atoms are in singlet states,
Eq. (14) and Table VI are in agreement with reference
2, while Eq. (14b) corresponds to less common situations
not considered there. A simple example of case (2a)
where Eq. (14) is applicable is that of the interaction
of a normal Hg atom with a Hg atom in the lowest

sp, 'Pi state (upper state of the X2537 resonance line).
Here, due to admixture of 'P into 'Pi, f „is of appre-
ciable magnitude. Other similar examples occur in
the interaction of p', '5 ground state with pbs, 'Pi
resonance-excited rare gas atoms. Another case, (2b),
may be defined in which one atom is in a singlet state
and the other is in a triplet state in which spin-orbit
coupling is weak; in such cases singlet-triplet mixing,
hence f „,is small, and the first-order dispersion energy
is negligible. In both of cases (2a) and (2b), the atom-
pair states are triplet or nearly triplet states. As
examples of case (3), one may cite the interaction of a
ground-state configuration (p') S atom in one of the
states 'Po, 'P1, 'P2 with an excited S atom in one of the
p'p' states 'Pb, 'Pi, 'P~. Various state-pairs, each of
them with various modes of interaction, will involve
various f values, withE E'v laeusgive nby E—q(14)
or, when M = 3IIb, by Eq. (14b). —

In the case of two atoms in different triplet states
having spin-orbit coupling which is comparable to or
weaker than the first-order dispersion eGects, a more
complicated treatment is required. With relatively
weak spin-orbit coupling in both atoms (for example,
one s'p' and one s'pp' C atom), the atom-pair states
are characterized (as they are not in case 3) by definite
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values (0, 1, and 2) of the total spin S. A preliminary
examination indicates that the first-order dispersion
energies then depend on a parameter related to 5,
somewhat as they depended on cT for doublet atoms in
Section II. However, this rnatter will not be pursued
further here.

A point of some interest (especially if approximate
theoretically computed values of p „are to be used in
the absence of experimental values) is the relation of

p „ to the value of p „ for a one-electron transition.
The cases of the bivalent alkaline-earth and Hg-type
atoms and of the rare gas atoms when one atom is in
its ground state and the other in its sp or pss resonance
state are especially simple. In both cases, a 2-electron
approximation should be fairly accurate (see the
1-electron approximation for alkali metal atoms in
Sec. VI). In this approximation it is easily shown for
the bivalent metal atoms that p, „is 2: times as large,
hence p „' and f„„are twice as large, as for a similar
transition p ~ s of a single electron. In the case of the
rare gas atoms, p„„' and f „are again just twice as

large as for a similar s &—p transition of a single electron
(Not, as one might perhaps casually surmise, six times
as large because of the six electrons in the p' shell).
If one uses real AO's and 4's, as is convenient here, p,

in Eq. (14) corresponds in the bivalent metal case to
any one of the transitions sp„'P, &—s', 'S, where q may
be x, y, or s. All of these give the same value of (p „«&)',
each time twice that for the corresponding transition
p„'P, +—s, 'S, because esther of the two electrons in s'
can jump. In the rare gas case, one has again three equal

p „"s,of which, for example, (p „&'&)' corresponds to

P 'P„'P,s, 'P, ~ P sP„'P.', 'S, with a value twice that for

p, 'p„'s, 'S&—p, 'p„'p„'P, . It will be noted that for
any one q, only two electrons of p' can be active.

In all the foregoing cases, of course, account must be
taken of the fact that a fraction of p, „' is lost from
'P to 'P&, depending on the energy difference between
'P and 'P and on how strong the spin-orbit coupling in
'P is. This loss can readily be computed by standard
methods if one knows the positions of the 'Po, 'P1, 'P2,
and P energy levels.
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Theory of the Hyperfine Anomalies of Deuterium, Tritium, and Helium-3+*
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The covariant equation for the three-body deuterium system is discussed, and reduced to a three-dimen-
sional equation for the case of instantaneous two-body interactions. A noncovariant perturbation scheme,
based on this three-dimensional equation, was employed to calculate the hyperfine structure (hfs) to order
um/2f' (hfs) for iH', iH', sHe'+. The results are compared with the experimental values, and shown to be
compatible. Final determination of the theoretical values and the adequacy of the theory is shown to depend
critically on the determination of a number of experimental quantities, in particular on a more precise
measurement of o., of the nucleon electric and magnetic form factors and associated nucleon polarization, of
the presence and magnitude of a two-nucleon spin-orbit potential, and of the singlet n-p effective range.

I. INTRODUCTION

HE hyperhne splitting of hydrogen has been
calculated to order n'(hfs) in the relativistic and

radiative corrections, ' nm/M in the mass corrections s

and (r-nucleus)/ao in the structure corrections. ' These
orders are of comparable magnitude, and the following
formula for the H' hfs is good to a few ppm:

* This work was supported in part by the U. S. Atomic Energy
Commission and the National Science Foundation.
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AvH= (16/3)n'cE„(p, „/p, ,) {1+m/M} '

X{1+n/2ir+0. 386n'/ir'}'{1+3n'/2}
X{1—ns(S/2 —ln2)}{1—35(+3 5) X10 '}
X{1—6},

where E.„is the rydberg constant for a nucleus of in-
finite mass; p„ is the magnetic moment of the proton;
p, , the magnetic moment of the electron; the erst
bracket is the reduced mass correction4; the second
bracket is the ratio of the magnetic moment of the
electron to the Bohr magneton; the third bracket is the
relativistic Breit correction; the fourth bracket is the
radiative correction of Kroll and Pollock'; the fifth
blacket ls the mass corI ection and the nucleoI1 structule
correction; the sixth bracket includes all otller possible

' G. Breit and R. E. Meyerott, Phys. Rev. 72, 1023 (1947).


