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Elastic Constants of Ii Tin from 4.2'K to 300'K
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The adiabatic elastic constants of P tin have been measured in the temperature range 4.2 to 300'K
using the ultrasonic pulse technique. An unusually large variation with temperature of the shear constant
—,'(c~~ —c~2) has been observed. From the elastic constants extrapolated to O'K, the limiting value of the
Debye temperature of tin has been calculated. Using this value, the low-temperature specific heat data
on both normal and superconducting tin have been re-evaluated.

I. INTRODUCTION

'HE single crystal elastic constants of P tin were
first measured, at room temperature, by Bridg-

man' using a static method. More recently, Mason and
Bommel2 obtained values for these constants using
ultrasonic waves. As can be seen from Table I, there is
considerable disagreement between these two sets of
values. Furthermore, there existed no detailed study of
the variation of the constants with temperature. The
work described in this paper was undertaken to remedy
this situation. A precise knowledge of the elastic
constants and their variation with temperature is of
interest in the theory of solids. From their values at
O'K, the limiting value 00 of the Debye temperature
can be computed. This is particularly useful for metals
with a low Op, where the usual calorimetric method of
determining Op is not very accurate. The shear elastic
constants can be related to certain details of the Fermi
surface in the metal.

This paper describes the measurement of the elastic
constants of P tin between 4.2'K and 300'K. From the
extrapolated values at O'K, |I0 is computed. The
existing data on the specific heat of P tin in the normal
and superconducting states are reconsidered in the
light of this new value of Op. An unusually strong
dependence of certain shear constants on temperature
is pointed out, and it is suggested that this is connected
with overlap electrons (and possibly holes) across
certain faces of the Brillouin zone.

II. EXPERIMENTAL DETAILS

The starting material was tin, stated to be 99.999%
pure, obtained from the Vulcan Detinning Company.
Cylindrical single crystals, 2.5 cm in diameter and up
to 20 cm long, were grown in an alumina crucible using
a nitrogen atmosphere by a modified Bridgman tech-
nique. The crystals were oriented by the back-reQection
I aue method, and suitably oriented specimens cut using
a high-speed water-cooled carborundum wheel. The
samples were then lapped to remove the damaged
surface layer (about 0.025 cm) and to produce opposite
faces which were Rat and parallel to each other to

' P. W. Bridgman, Proc. Am. Acad. Arts Sci. 60, 305 (1925).
2W. P. Mason and H. E. Bommel, J. Acoust. Soc. Am. 28, 930

(1956).

TABLE I. Previous data on the elastic constants of p tin at
room temperature. The values attributed to Mason and Bommel
were recalculated from their paper, using the x-ray density of
7.279 g cm ' at 300'K as determined during the present investi-
gation.

Authors
Elastic constants in 10"dyne cm 2

Cyy C33 C44 C66 C$2 C13

P. W. Bridgman
W. P. Mason and

H. K. Bommel

8.39 9.67 1.75 0.741 4.87 2.81

7.33 8.74 2.19 2.25 2.38 2.48

' I. A. Rayne, Phys. Rev. 115, 63 (1959).

within 0.0005 cm. One specimen was further electro-
polished to remove the residual surface damage pro-
duced by the lapping. There was no detectable difference
in the elastic constants measured on this sample before
and after the electropolishing. It is therefore felt that
the data are free from errors due to surface imper-
fections.

To enable adequate cross-checks on the elastic
constants to be made, Ave crystals in all were used.
The propagation and polarization directions are shown
in Fig. 1. In each case the propagation direction was
within 1' of the indicated crystallographic direction;
this results in an error in the velocity of less than 1
part in 2000, which is negligible.

The ultrasonic measurements were made in the
temperature range from 4.2'K to 300'K using an
Arenberg pulsed oscillator and wide band ampli6er in
conjunction with a Tektronix 545 oscilloscope. Ten
Mc/sec pulses of 1 @sec duration were used, the reflected
pulses being observed without rectification to minimize
transit time error. The details of the apparatus have
been described in a previous paper. '

Considerable difhculty was experienced in making a
bond between the quartz transducer and the tin crystal
which would hold below liquid nitrogen temperatures.
Both glycerol and Nonaq tended to crack below 77'K.
A satisfactory bond was finally obtained using Bow
Corning silicone of 2.5&(10' centistokes viscosity and
rapidly cooling the specimen by plunging it into liquid
nitrogen. This procedure presumably allows the tin to
undergo most of its thermal contraction before the
bond solidifies, and thereby minimizes the thermal



ELASTI C CONSTANTS OF p —Sn 1659

stresses in the latter on subsequent cooling to liquid
helium temperatures.

It is necessary to know the lattice parameters of tin
as functions of temperature in order to obtain the
elastic constants from the measured sound velocities.
The parameters were obtained by making x-ray meas-
urements at 300, 77, and 4.2'K on two single crystal
slices mounted such that the L100j and [001$directions,
respectively, were parallel to the scattering vector of
the x-ray beam. Crystal-monochromated molybdenum
E radiation was used to obtain the Bragg angles for
the (16,0,0) and (0,0,8) reflections, respectively, the
lattice parameter in each case being taken as the mean
of the values given by the n& and n2 components. The
lattice parameters at intermediate temperatures were
obtained by interpolation. The results are shown in
Table II, together with the values obtained by Lee and

L00 i]

TABLE II. The lattice parameters of P tin.
All parameters are in angstrom units.

Lee and Raynor's
Parameter data at 300'K

5.83185
3.18151

Present measurements
300'K 77'K 4,2'K

5.83152 5.81311 5.81187
3.18280 3.16164 3.15743

III. RESULTS

Table III gives the experimental results at 300, 77,
and 4.2'K in terms of pv', p being the density of tin,
and v the velocity calculated from the observed transit
time. Both quantities have been calculated taking
account of the thermal expansion. The total error in
all cases except crystal d is estimated to be less than
0.7/o. This arises mainly from the uncertainty in the
transit time determination, and the possible effect of
dislocations on the elastic constants. Owing to the
somewhat impaired quality of the reQected pulses for
the quasi-modes in crystal d, the error in transit time
determination was higher. It is estimated that the total
error in ps' for these modes is 1.5'Po. Figure 1 shows the
combinations of elastic constants corresponding to the
various propagation modes as computed from Eqs.
(A1) and (A3) of the Appendix. From the data of
Table III, the elastic constants and their associated
errors have been computed. These are shown in Table
IV. The values at 300'K, obtained in the present work,
are compared in Table V with those of Mason and
Bommel. * The latter have been recalculated using the

TABLE III. Summary of experimental data. The letters I and
T in the second column refer to longitudinal and transverse
modes, respectively. The appropriate combinations of constants
are shown in Fig. 1. Equation (A6) of the appendix defines ss
and vz.

-+ c66

o]
Crystal and
propagation

direction
Particle
motion

pn', in 10"dyne cm '

300'K 77'K 4.2'K
FIG. 1. Propagation and polarization directions for the various

modes used in determining the elastic constants of tin. The
constants associated with each mode are indicated.

J

Raynor4 (corrected to 300'K). It is felt that the agree-
ment is satisfactory. The expansivities between 77'K
and 300'K obtained in the present work are A, =3.17
&(10 ' along the a axis and 6,=6.69)&10 ' along the
c axis, compared to the values obtained by Erfling, ',
viz. , 3.15)&10 ' and 5.81&(10 ', respectively. While
the values for 6, are in good agreement, the discrepancy
in 6, is outside the estimated combined experimental
errors. It should be noted that the thermal expansion
coeKcient at room temperature along the c axis meas-
ured by various observers also shows similar discrep-
ancies, the values ranging from 28.99)&10 ' deg '
obtained by Erring to 36.4&10 ' deg ' obtained by
Lee and Raynor.

4 J. A. Lee and G. V. Raynor, Proc. Phys. Soc. (London) 867,
737 {1954).

s H.-D. Erfling, Ann. Physik 34, 136 (1939).

a, [100]

1/ [001]

c, [110]

d, at x/4 to
[010]and
[001]axes

e, [100]

[100]L,
[001]T
[010]T
[001]I.
[100]T
[110]I.
[110]T
[001]T

[100]T
corresponding to el.
corresponding to ep

[100]I.
[010]T

7.250
2.217
2.407

8.114
2.616
2.782

8.260
2.694
2.823

8.840 10.040 10.310
2.199 2.620 2.689

9.006
0.666
2.193

2.311
8.005
2.291

7.209
2.393

9.755
1.184
2.624

2.626
9.005
2.811

8.190
2.780

9.878
1.271
2.702

2.691
8.996
2.922

8.287
2.813

$13

—4.8—3.94

*Rote added in p~oof. D. G. House and E. V. Vernon, Brit. J.
Appl. Phys. 11, 254 (1960) have reported measurements of the
coefficients of compliance of tin. Their values at 15'C and the
values calculated from the present room temperature data are
compared below (in units of 10 "cm dyne '):

$11 $/3 $44 $66 $12

House and Church 41.6 14.9 45.6 42.8 —31.2
Present work 43,6 14.5 45.4 41.7 —33.9
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TABLE IV. The elastic constants of P tin at 300, 77, and 4.2'K.
Boldface numbers show the weighted mean values. The errors
are shown only for the values at 4.2'K; these are used subse-
quently in the calculation of the uncertainty in 80. The units are
10"dyne cm 2.

Constant

Cj.1

Sample

Mean

Temperature
300'K 77'K 4.2'K

7.250 8.114 8.260
7.209 8.190 8.287
7.230 8.152 8.274a0.062

value p= 7.279 g/cm' obtained from the present x-ray
measurements. For every elastic constant except c»,
there are at least two independent values, which agree
to within the estimated error. The constant c33 was
measured on a crystal 3.8 cm long having exceptionally
good acoustic qualities; no cross-check was therefore
felt to be necessary in this case. Boldface numbers
have been used in Table IV to indicate the mean value
of each constant, weighted in relation to the estimated
errors where necessary. Figures 2(a) through 2(e) show
the temperature dependence of each elastic constant.
As may be seen, the internal consistency of each set of
measurements is considerably better than the error
estimates quoted above.

The agreement between the present results and those
of Mason and Bommel for the values at 300'K of c~~,

c33 and c44 is within the experimental error. There are,
however, discrepancies in the values for c66, c&2, and
c», which are particularly severe for the latter two
constants. No reason can be advanced for this dis-
crepancy, but it may be pointed out that the values
obtained in the present experiments have been verified
by cross-checks, and are therefore considered to be
more reliable. The agreement of the present results
with Bridgman s values is very poor. Since his measure-
ments were made by a static method, his results may
have been influenced by the ease with which pure tin
deforms plastically.

The compressibility E of tin calculated from the
formula

E= (cll+c12+2css 4cls)/Less(cll+c12) —2cls j
is 1.821&(10 " cm' dyne ' at 300'K. This agrees well

TABLE V. A comparison of the values of the elastic constants
at 300'K obtained in the present work, with those of Mason and
Bommel. The latter values have been recalculated using p= 7.279
g cm ' as determined in the present x-ray measurements. The
unit is 10"dyne cm '.

Constant

C11

c33
c44

c66
C12

C13

Mason and Bommel

7.33
8.74
2.19
2.25
2.38
2.48

This work

7.230
8.840
2.203
2.400
5.94
3.58

with the mean value of 1.86~0.13)&10—"cm' dyne —'
obtained by Bridgman' at 303'K.

IV. MSCUSSION

A. Temperature Dependence of the
Elastic Constants

Figures 2(a) through 2(e) show that the temperature
variation of all constants, except the shear constant
(c,~

—cts)/2, is normal. The increase on going to 4.2'K
from 300'K is about 15 to 20%; this increase is some-
what larger than that quoted by Mason and Bommel. '
Since they do not present detailed data on the temper-
ature variation observed by them, it is not possible to
assess the signihcance of the discrepancy.

The shear constant C'=(cn —crs)/2 has an excep-
tionally large temperature coefficient, increasing by
about 100% on going from 300'K to 4.2'K. This
behavior is in contrast to, for example, an increase of
15% in silver over the same temperature range. Other
experiments like the de Haas-van Alphen e6ect and
cyclotron resonance in tin have shown the presence of
pockets of electrons and holes in the higher Brillouin
zones. ' It seems likely that these pockets contribute to
the elastic constants in a manner similar to that
discussed by Leigh' for aluminum. Since the configura-
tion of these pockets should be sensitive to temperature,
one would expect a resulting marked dependence of
certain elastic constants on temperature. Such a
mechanism may be responsible for the anomalous
behavior of C'.

c33

c44

C12

C13

b
c

Mean

e
Mean

c (transverse)
c (longitudinal)

Mean

d (transversel
d (longitudinal)

Mean (see appendix)

8.840 10.040 10.310+0.077 B. The Limiting Value of the Debye
Temperature

3.512 3.544 3.533
3.626 3.744 3.395
3.578 3.642 3.421%0.11

2.217 2.616 2.694
2.199 2.620 2.689
2.193 2.624 2.702 At very low temperatures, only phonons of long
2.203 2.620 2.695&0.021 wavelength are excited jn a solid so that the effects of
2407 2 782 2 823 dispersion may be neglected. and the system treated
2.393 2.780 2.813 as an elastic continuum. The thermal properties in
2 400 2 781 2 818&0 02I this region and in particu] ar g the limiting value of
5.898 5.784 5.732 the 0ebye temperature, may be calculated from a

knowledge of the elastic constants. Thus 00 is readily
5.940 5.790 5.785~0.115

P. W. Bridgman, Proc. Am. Acad. Arts Sci. 58, 165 (1922).
7 D. Shoenberg, Progress irI, Iozo-Temperature Physics, edited

by J.C. Gorter (North Holland Publishing Company, Amsterdam,
1957), Vol. 2, p. 226.

8 R. S. Leigh, Phil. Mag. 42, 139 (1951).
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where C„ is the specific heat in the normal state.
Barron and Morrison' have re-examined these data
assuming a heat capacity of the form

C„=yT+aT'+bT',
and find a better fit with 80=205'K. The value of a
calculated from the present 80=201.6'K has been used
to obtain the best fit of the calorimetric data to Eq. (6)
by plotting (C aT')—/T versus T4 (see Fig. 3). The
deviation from linearity of this plot shows that at
temperatures beyond 3'K the lattice heat capacity
should also include higher order terms in T." A least
squares analysis of the linear region gives

FIG. 3. A plot oi (C„oT')/T —versus T' to determine the
coeKcient y of the linear term in the low-temperature speci6c
heat of tin in the normal state. The broken line represents a
least squares fit to the linear part of the curve.

shown to be given by

where X= the Avogadro number, V=molar volume,
p=density, and h and k have their usual meaning. The
$, are the eigenvalues of the propagation ma, trix, whose
elements are defined in Eqs. (A2) and (A3) of the
Appendix. The summation with respect to i is over the
three normal modes corresponding to the propagation
direction which lies within the element of solid angle
dO, and the integration is over the total solid angle of
4m. The tetragonal symmetry of tin permits one to
rewrite Eq. (1) as

9A" (b)' s t
"t'

t "sin8d8dg
(2)

16Vpl (k3 s=i ~ e=p "o=p

Hp was evaluated from Eq. (2) using an electronic
computer. To obtain the eigenvalues P;, the propagation
matrix was diagonalized at 450 points in the solid angle
defined by the limits of integration indicated in Eq.
(2). The resulting value of ep is

00= 201.6&2.6'K.

The uncertainty in this figure was obtained by direct
calculation from Eq. (2), using the extremal values of
the elements of the propagation matrix corresponding
to the error estimates in Table IV.

The calorimetric value obtained by Corak and
Satterthwaite' is

0,=195.0a0.6 K,

the error being the standard deviation for the least
squares fit of their specific heat data to the equation

C =yT+aT',
'K. S. Corak and C. B. Satterthwaite, Phys. Rev. 102, gg2

(1956}.

y=1.76X10 ' joule deg s mole ',

which agrees well with the value of (1.75%0.01)X10 '
Joule deg ' mole ' given by Corak and Satterthwaite,
but differs considerably from that obtained by Barron
and Morrison, viz. , p=1.9&10 ' joule deg ' mole '.

The new values of Oo and y have been used to recalcu-
late the constants in the equation for the electronic
specific heat C„given by the Bardeen, Cooper, and
Schrieff er theory":

C„/yT. = a exp( —bT,/T).
As shown by Bardeen and SchrieRer, " this equation is
approximately valid in the region 2.5&T,&6 with
a=8.5 and b=1.44. We obtain for these two constants
the values a=10.03 and b=1.528.

V. CONCLUSIONS

The elastic constants of tin have been measured in
the temperature range of 4.2 to 300 K. Although the
room temperature results differ in part from those of
Bridgman, and Mason and Bommel, it is felt that the
present data are more reliable, since adequate cross-
checks were made. The shear constant —', (c»—crp) shows
an unusually large variation with temperature, which
is presumably associated with the presence of small
pockets of electrons and holes in the Fermi surface of
tin. The elastic constants extrapolated to O'K have
been used to compute 00, the limiting value of the
Debye temperature of tin. Using this value of 80, the
low-temperature specific heat data of tin in the normal
state have been reanalyzed to obtain a more reliable
estimate of y, the coefficient in the electronic term.
The specific heat data in the superconducting state have
also been re-evaluated to obtain new estimates of a
and b in the equation C„=ayT. exp( —bT,/T).

"T.H. K. Barron and J. A. Monison, Can, J. Phys. Bs, 799
(1957)."Note added srs proof. Recent measurements of the speci6c heat
of tin below 0.5 K by N. V. Zavaritskii, I'rogressin Cryogemcs,
edited by K, Mendelssohn (Heywood 0 Co., Ltd. , London, 1959),
Vol. I, p. 217, give 80 ——202~3'K in good agreement with the value
obtained in the present work.

'~ J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, ii75 (1957).

",J. Bardeen and J. R, SchrieQ'er (to be published).
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APPENDIX

From this equation, it is clear that there is a pure
shear mode polarized in the [100] direction, with a
velocity corresponding to pv2=2(c44+c66). The other
two waves are quasi-longitudinal and quasi-shear modes
with velocities given by the equation

The equation giving the velocity of propagation of
plane waves in an aeolotropic solid medium is

2 (Cll+C44) P" 2 (C18+C44)

2 (C13+C44) 2 (C33+C44) —Pl'
=0. (A5)

(A1) This equation can be solved approximately to give
where

X&&=c,p &&Apo!&.

In Eq. (A2) c,&,, & is the elasticity tensor, and the Q,
are the direction cosines of the propagation vector.
Consider now a tetragonal crystal, and choose the 1
and 2 axes along the a axes, and the 3 axis along the
c axis. Then the A.;, are given in terms of the usual
elastic constants by

All CllQ1 +C66Q2 +C44Q3 q

ci =pal, =2—Cll+C38 C13

+ +C44
4 2

Cll+C33 C18

cr=p~7. =2= +6)
4 2

where vl, and ~~ are the velocities of the quasi-longi-
tudinal and quasi-transverse modes, and e is a small
correction term

X22 C66Q1 +CllQ2 +C44Q8 q

X88 C44(Q1 +Q2 )+C88Q8 )

~12 (C12+C66)Q1Q2)1

X23 (C18+C44)Q2Q8)

X31 (C18+C44)Q3Q1)

(A3)
c= (cll c33) /16(c»+c44).

It can readily be shown that the particle motion for
the quasi-longitudinal and quasi-transverse modes
makes angles p and 2r/2+/, respectively, with the
propagation direction, where

2 (C44+C66) —P&

0
0

0 0
2 (Cll+C44) —PS 2 (C13+C44)
—,
' (c13+c44) 2 (c33+c44)—ptl2

=0

(A4)
'4 P. C. Waterman, Phys. Rev. 113, 1240 (1959).

and all the other X;, vanish.
As shown by Waterman, " the only propagation

directions giving pure longitudinal as well as pure
transverse modes are [100], [110],and [001]. For a
propagation direction making an angle of lr/4 with the
[010] and [001] directions, Eqs. (A1) and (A3) lead
to the determinantal equation

P =7r/4 —-', tall '[(c13+c44)/(cll —c33)].

In the present case P 4', so that these two modes are
in fact almost pure.

The elastic constants corresponding to the various
propagation modes used in the present work are shown
in Fig. 1. Except for c~a, the calculation of the elastic
constants from the measured values of pv' is straight-
forward. The constant c~s was computed from each of
the two Eq. (A6), and also from their difference. The
last value has the least uncertainty, and is taken as
the best estimate of c~3. The constant e is obtained
iteratively.


