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some dependence of the recombination cross section on
binding energy, as well as the emission of light as
observed by us and by Koenig and Brown. "
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Ranges of '7.S- to 52-kev H, +, D,+, He+, and Ne+ Ions in Quartz*
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Experimental values of penetration depths of positive ions in quartz obtained from measurements of
reflection coefficient versus wavelength are compared with theoretical predictions. Measurements of the
change in refractive index of quartz as a function of the energy dissipated per unit volume are shown to give
experimental values for the ratio of energy loss due to displacement collisions per unit thickness to the energy
loss due to ionization per unit thickness. The energy loss due to displacement collisions per unit thickness
agrees with theoretical predictions. From the experimental values of energy loss due to ionization, it is found
that the cross sections for scattering of valence electrons by the 6eld of the incident atoms are an order of
magnitude larger than the geometric cross sections.

I. INTRODUCTION

'HE penetration in solids of atoms with energies
below 50 kev is of current interest in connection

with investigation of radiation effects in solids. Most
of the information available' ' deals with energies above
50 kev and contains very little concerning the pene-
tration of medium weight low-energy atoms such as are
formed in solids by fast neutron bombardments.
Experimental determination of the ranges of the low-

energy atoms of interest here are hampered by the very
small penetration distances (10 ' cm) involved.
However, a variety of techniques have been successfully
employed to obtain range information at these low
energies. ' 7 In this paper, some recent determinations
of ion ranges in quartz are compared with the theo-
retical predictions.

The theoretical analysis of low-energy atom pene-
tration is limited to approximate methods which are
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valid over only small energy regions. In general the
atoms lose energy both by ionizing atoms of the stopping
material and also by making elastic collisions with
atoms of the stopping material. The general framework
of the theory of penetration of energetic particles is
presented by Bohr. ' More specific discussions of the
penetration of low-energy atoms are given by Nielsen'
and by Seitz and Koehler. "

2. THEORY

a. Energy Loss by Elastic Collisions

Following the treatment outlined by Seitz and
Koehler, "the collision problem can be treated classically
as long as

f/)t»l,

where X= fi/IJ, U and where b = ZZre's/ ,'p 'Uis the-
classical distance of closest approach in pure Coulomb
scattering. Z~ is the atomic number of the incident
atom, U its velocity, and e is the electronic charge. Z2
is the atomic number of the stationary atom. M» and
M& are the atomic masses of the incident and stationary
atoms, respectively, and lJ, =31&Ms/(3Er+M&) is the
reduced mass of the system. In all the cases of interest
here, the classical approximation is justified.

N. Bohr, Kgl. Danske Videnskab. Selskab. Biol. Medd. 18,
No. 8 (1948).

'0 F. Seitz and J. S. Koehler, Solid-State Physics, edited by F.
Seitz and D. Turnbull (Academic Press Inc. , New York, 1956),
Vol. 2, p. 305.
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a= ap,/(Zs +Zp-), (3)

where a& is the Bohr radius of the hydrogen atom. 1'he

importance of the screening can be inferred from the
size of the parameter g where

The screening effect of the orbital electrons is taken
into account by assuming a potential of the type

P(r) =Z,Z2e'r 'exp( —r/a), (2)

where r is the separation between the two atoms and

mately equal their binding energy" and they thus are
uniformly distributed in a thin spherical shell in velocity
space at a velocity Vo where

Vp= (2I/m) *',

and where m is the effective electron mass. The energy
transferred to the electrons is on the order of 2mVVO

per collision when V & Vo. The fraction of allowed
collisions f(g), due to scattering through an angle g in
the center-of-mass system, is

&=b/a. (4) f(g) = (4VVp sin2g —Vp'+4V'sin'2g)/8VUp sin~pg. (9)

Values of f large compared to unity denote strong
screening. The experimental information discussed in
this paper gives values of t less than unity which
denotes weak screening.

Nielsen' has shown that for 0.8(g& 15 the potential
(2) can be replaced by an inverse square potential. With
assumption the energy loss per unit path length by
elastic collisions with the screened Coulomb field,
(dE/dx) „is found to be

(dE/dx), =3 70npe'Z&Z. ~aM&/(M&+M2) (5)

where np is the number of atoms/cc of stopping material.
For weak screening when P(&1, the interaction is

primarily due to the unscreened nuclear Coulomb fields
and, as given by Seitz,"is

(dE/dx), =2mnpZPZ2'e'Mp 'U 'log(T /T, ), (6)

where
T =4MgMp(Mg+M2) 'E,

T,=4ZPZpPR"E 'MgMp '(Zg*+Zp*),

and R& is the Rydberg constant for hydrogen.

b. Energy Loss by Ionization

The excitation of electrons of the stopping material
is relatively improbable when the energy parameter, &

given by
e= ,m/EMg, (7)

of the incident atom is small compared to the first
strong excitation potential, I, of the stopping material.
m, is the electron mass. For quartz, I=6.2 ev. Although
the actual calculation given by Seitz and Koehler" for
the energy loss per unit path length by ionization applies
only to metals, it can be modified to apply to insulators
as well. It is convenient to use the coordinate system
in which the incident atom is at rest and the stopping
material is moving with velocity V. The energy transfer
is then due to the scattering of the valence electrons as
they move past the atom that is now considered at rest.
However, only those collisions are allowed which scatter
the electrons to unoccupied states. This means that
only collisions where the energy gain exceeds I are
allowed. Assuming that the valence electrons are bound
in a Coulomb field, their kinetic energy will approxi-

where Xp is the number of valence electrons/cc and o.

is the total scattering cross section for valence elec-
trons in collisions with the Geld of the incident atom.
It follows that

(dE/dx), 1Vpo(2Ilp-** —I).

c. Diffusion EÃects

In the above discussions it must be remembered that
the quantity x is the distance actually traveled by the
ion. For low-energy ions with masses approximately
equal to the mass of the stopping atoms, the scattering
is isotropic in the center-of-mass system and almost
every collision will result in a large deRection and the
ion penetration will be determined by diffusion effects.
Consequently, the experimental results are expressed
in terms of t, the depth beneath the surface. Nielsen'
has shown how the theory developed for neutron
scattering can be used by making only minor changes in
notation. By comparing Eqs. (13) and (21) given by
Nielsen' it is seen that the depth E. at which the incident
Aux falls to one half of its initial value is approximately
given by the relation

E/x=M&M'(M&+M') L0.75$(1 (cosy)~~)) *& (12)

where (cosy), =2M, /3Mp, $=1+r(1—r) 'logr, and
r= (M, —M)'

/( M&+ M&)'. Equation (12) is applicable
only when the number of scattering events is large
enough to make the motion of the incident ions random.
An approximate idea of the significance of (12) can be
obtained by calculating the number of collisions per
incident ion, C(y), which result in deflections of more
than p in the laboratory system. This is

C(q) =npddo, ((p), (13)

where o,(q) is the cross section for scattering through
an angle of more than y in the lab system, and At is the
thickness of stopping material. For small values of f
where the screening is weak, it follows from Seitz and

"E.Fermi and E. Teller, Phys. Rev. 72, 399 (1947).

The energy loss per unit path length due to electronic
collisions, (dE/dx) „is then given by

(dE/dx) ', 1VpoI' —(2mV. Vp) f(g) singdg, (10)
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FrG. 1. Range in quartz of H2+ and D&+ ions as a function of ion
energy. The molecular ions split into atomic particles as they
enter the solid so that the range for atomic ions of a given energy
will be equal to the range of molecular ions of twice the energy.

(E,') is the value of E,'(t) averaged over the depth d
of the bombarded layer. F(t) is the time integrated flux
density of the incident beam as a function of t. From
Fig. 8 given by Hines and Amdt, it is seen that it is
possible to choose a value of incident time integrated
flux density, Fz(t), such that

we[(E,'). ,F,(o)]=-,'t~e[(E,')..F~(0)]. (17)

F(d) =F(0)-,'(1—erf[(d —E)/@20]},

Since (16) is true for any F (t) including Fir(t), it is seen
that

F.(d) =-:[(E.)../E. (d)». (0).

The distribution of the penetration of the majority
of the particles as a function of depth is expected to be
a Gaussian function. ' Thus

Koehler, "Eqs. (7.2) and (3.6), that

o- =vrZisZs'e4(sin '-'8 —1)/p'V4 (14)
where E is the mean range and 0 is the root mean square
fluctuation in particle penetration. From (19) and (18)
it follows that

where Ms sin8/(Mr+Ms cosg) = tang.

d. Relation of Bombarded Layer Depth to Range
R=d —v20 erf '(1—[(E,'), /E, '(d)]}. (20)

Intuitively, the depth of the layer formed when an
ion beam bombards a quartz surface is expected to be
related to the range of the ions. The following discussion
shows the exact nature of the relationship. The range,
E, is defined as the depth at which the Aux of ions falls
to one half of the incident Aux at the surface of the
stopping material. The depth, d, of the bombarded
layer is obtained by fitting the theoretical curve of
reQection coefficient versus wavelength predicted for a
layer with uniform refractive index to the experimental
points of reAection coefficient versus wavelength.
However, the layer is expected to be nonuniform near
the end of the range of the particles. For saturation
bombardments, the change in refractive index of the
bombarded layer as a function of depth, An[t] is
believed to be constant for values of t(g and to
monotonically approach zero for values of t)E.
Analysis of a simple case of a nonuniform layer (curve
b in I'ig. 2 given by Hines and Amdt') shows that the
approximation of fitting the curves for a uniform layer
gives a value of d which is numerically equal to
jjPDN[t]dt/de[0]. In a first approximation this integral
relationship is equivalent to de6ning d by the relation

~n[d] =-,'~~[0]. (15)

The change in refractive index as a function of depth
is due to the fact that the energy liberated per unit
volume in displacement collisions, 8(t), is a function of
the depth. Thus, it is niore accurate to represent the
change in refractive index by he[8(t)]. If E.'(t) is the
energy liberated in displacement collisions per unit
thickness of stopping material at a depth t below the
surface, (15) can be expressed in the form
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FIG. 2. Range in quartz of He+ ions as a function of ion energy.

(E')-=(E.')-+(E.'):, (22)
and

Fss~E/d=F&s~(E. '). +Fss~(E.'). , (23)

where F50& is the time integrated fiux density of ions
required to produce 50% of the saturation change in

e. Ratio of Ionization Energy Loss to
Displacement Energy Loss

For values of the energy parameter such that

e&I/8

it is expected that practically all of the particle energy
loss is due to displacement collisions. " Under this
condition the energy per unit volume required to
produce a given change in refractive index is in-
dependent of the bombarding particle. For larger
values of e, energy is lost through ionization as well as
through displacement collisions. If E'(t) is the total
energy loss per unit thickness at a depth t, and E,'(t) is
the energy loss per unit thickness at depth t due to
ionization, then

~N[E'(d)F (d)]= l~~[(E.')-F(0)] (16) u F. Seitz, Discussions Faraday Soc. 5, 271 (1949).
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TABLE I. A comparison of experimental and theoretical values for the energy loss due to displacement collisions per unit thickness of
quartz, E,'; the energy loss due to ionization per unit thickness of quartz, E,'; and the total energy loss per unit thickness of quartz F.'.
The calculated values of the ratio, f, of the collision diameter to the screening constant; the ratio, 5/K, of the collision diameter to the
incident atom wavelength/2s; and the energy parameter, s= m, E/M~, are also included. The averages for (E,')„/(E,'), are taken over
the depth of the bombarded quartz layer.

Energy
Atom kev

H 11.8
D 10.6
He 155
Ne 45.0

e ev

6.41
2.90
2.12
1.23

0.0601
0.0730
0.122
0.368

b/X

28.9
43.2

101
673

(E '). /(E.')-
45 ~5.5
10.1 ~1.3
3.1 ~0.5
0.45~0.13

@I
Mev/cm

539& 62
464m 65
885& 74

6240~1900

@e
Mev/cm

527~ 61
422& 59
668& 61

1940m 700

E,' theory
Mev/cm

49.3
17.5
12.9
0

Mev/cm

11.7~ 1.9
41.8& 7.6

216 ~ 32
4300 ~1330

E,' theory
Mev/cm

12.4
26.6

128
6060

(E')-=E '(d) (25)

because E,'(d) is small when the ions are near the end
of their range and moving slowly. It follows from (22),
(24), and (25) that

E,'(d)/(E. '),=(F o%E/d)/7. 8X10". (26)

3. DISCUSSION

The experimental penetration depths found by
Hines and Amdt' for H2+, D2+, He+, and Ne+, ions in
quartz are presented in Figs. 1, 2, and 3. The data for
penetration of A+, Kr+, and Xe+ ions in quartz are not
included here because the depth of the altered quartz
layer may be partly or completely due to the primary
Si and 0 knockons created by the heavy atoms and
may bear little relationship to the penetration of the
heavy atoms themselves.

It must be remembered that the ions are penetrating
a layer of damaged quartz whose density is close to that
of vitreous silica (2.20 g/cc). Thus a density of 2.20
g/cc is used in the range calculations rather than the
density of quartz (2.65 g/cc).

Although the incident atoms are positively charged,
the cross sections for charge exchange are very large
and the beam quickly reaches a charged state in-
dependent of the original charge. In particular, Allison"
states that thicknesses of 10 ' g/cc (0.1%%uq of the
penetrations discussed here) are suKcient to produce
charge equilibrium. Also, the charge-equilibrated state

"S.K. Allison, Revs. Modern Phys. 30, 1137 (1958).

Ae. The averages are taken over the depth, d, of the
bombarded layer. For Fs0%(E,), the value of 7.8)&10"
ev/cc found by averaging the values of Fss%E/d for
A+ ion bombardment given by Hines and Amdt' is
used because for A+ ion bombardment the energy
parameter is small enough to neglect ionization. Thus
the ratio of ionization energy loss to displacement
energy loss can be found from (23) to be

(E,'), /(E, ') =((Fss%E/d)/7. 8)t,'10"j—1. (24)

It is also possible to estimate the ratio E,'(d)/(E, '),
by using the experimental observation from Figs. 1, 2,
and 3 that the range versus energy curves are approxi-
mately linear. This means that E'(t) is constant and
that

is predominantly neutral. 70% of the charge-
equilibrated beam of 10-kev hydrogen emerging from
a silicon monoxide film is neutral and 96% of a 16-kev
helium beam in neon gas is neutral. Consequently, the
particles of interest here can be considered neutral
during most of the time they are moving through the
solid.

The molecular ions are expected to split as they
penetrate the erst surface layers of atoms with the
subsequent atomic particles following independent
paths. The energy will be shared equally between the
two atomic particles because they have equal velocities
and masses. Fogel et al.' find that the energy distri-
bution and charge state of the beam emerging from an
Al foil for an incident beam of 32-kev H2+ ions is the
same as it is for an incident beam of H+ ions with half
the energy of the molecular ions. Here, all calculations
for molecular beams are carried out assuming the
penetrating particles are neutral atomic particles with
one half the energy of the incident molecular ion.

The relationship of bombarded layer depth to range
is given by (20) and (26). Using the experimental values
of Fss%E/d given by Hines and Amdt, s it is seen that
the difference between the range and the penetration
depth varies from 0.600 for 7.5-kev He+ ions to 2.340
for 32.6-kev H2+ ions. Although no theory exists for
calculating 0 in this energy range, it is expected to be
small and can be neglected because most of the energy
is lost by ionization and the average energy loss per
ionization event is only 10 ' of the total energy. Some
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FIG. 3. Range in quartz of Ne+ ions as a function of ion energy.
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straggling is also to be expected from nuclear Coulomb
scattering, but, as shown below, only a minor fraction
of the incident atoms are scattered through large angles.

Table I presents experimental average values of E'
obtained by subtracting the lowest and highest energy
points given in Figs. 1, 2, and 3 for each ion. These are
compared with theoretical values of E,' and E.'. The
values of (E,'), /(E, '), are found using (24) and the
experimental values of J'gp%E/d given by Hines and
Amdt for the middle bombardment energies. Since
both E' and (E.'), /(E, '), are known, approximate
experimental values for E,'(E ) and E,'(E ) can be
found by assuming that

(E.')-/(E. ')-=E.'(E-)/E. '(E-), (27)

where E is the mean energy of the two points used to
calculate the experimental values of E'. Since E,'(/)
vanishes at the end of the range, the value of E,'(E )/
E,'(E ) is larger than (E,'), /(E, '), . For 45-kev Ne
atoms, E.' is calculated by dividing (5) by (12). The
value of )=0 368 i.s outside the region where (5) is
valid, however, the agreement between calculated and
observed values of E,' is satisfactory. For the light
ions the diffusion factor is not pertinent since the
nuclear scattering cross section is low. From (13) and
(14), the fraction of incident atoms scattered through
lab angles in excess of 45' can be calculated for the.
thickness involved for the experimental values given in
Table I. The fractions are 0.074 for 11.8-kev H atoms,
0.099 for 10.6-kev D atoms, and 0.183 for 15.5-kev
He atoms. Since i«1 for the H, D, and He incident
atoms, the weak screening formula (6) is used to
calculate E.'. For 11.8-kev H atoms the agreement
between experimental and theoretical values of E,'
is within the range of experimental error. For 10.6-kev
D atoms and 15.5-kev He atoms the experimental
values of E,' are significantly larger than predicted.
However, the assumption (27) overestimates the value
of E,'. If ionization energy loss predominates and varies
approximately linearly with particle energy, assumption

(27) would overestimate E,' by a factor close to two.
Thus it appears that the experimental values of E,' for
10.6-kev D atoms and 15.5-kev He atoms do agree
with theory within the validity of the analysis of the
experimental data.

For the ionization energy loss the experimental
values are an order of magnitude greater than the
theoretical values calculated from (11) if the cross
section for scattering of valence electrons by the field
of the incident atom is taken equal to the geometric
cross section, o.p=ÃQI, Zy', of the incident atom. This
result is not sensitive to the assumption (27) because
ionization accounts for most of the energy loss for
11.8-kev H atoms, 10.6-kev D atoms, and 15.5-kev
He atoms. Consequently it appears that the scattering
cross section is considerably larger than the geometric
cross section. Comparing the experimental results
with (11), the ratios for 0/oo are seen to be 11&1 for
11.8-kev H atoms, 24~3 for 10.6-kev D atoms, and
52+5 for 15.5-kev He atoms. For 45-kev Ne atoms,
(11) predicts zero ionization energy loss. Experi-
mentally, some ionization energy loss is observed but
it is of doubtful significance since it is only 2.8 times
the experimental error.

4. CONCLUSIONS

The experimental value for energy loss per unit path
length due to displacement collisions for 45-kev Xe
atoms in quartz is consistent with Bohr's theory when
the diffusion nature of the Ne atom motion is taken
into account. For 11.8-kev H atoms, 10.6-k.ev D atoms,
and 15.5-kev He atoms the energy loss per unit path
length due to displacement collisions is consistent with
the theory of weakly screened nuclear collisions. The
energy loss of 11.8-kev H atoms, 10.6 D atoms, and
15.5-kev He atoms is mainly due to ionization and the
cross sections for ionization of the valence electrons

by the moving atoms are found to be an order of magni-
tude larger than the geometric cross sections.


