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This paper describes a study of the recombination of electrons and donors in #-type germanium at helium
temperatures. The excess electron density is obtained by means of low-temperature breakdown. Experi-
mental results indicate that the recombination probability varies approximately with the inverse of the
square of the temperature. Recombination light was detected. The origin of the disagreement of the present
measurements with those published by S. H. Koenig is discussed, and evidence is given to explain the dis-
crepancies between the two measurements. The magnitude of the recombination cross section appears to
depend on the binding energy of the electrons to the donor impurities, but large errors that are present
in the determination of V4 are responsible for a large uncertainty in the absolute magnitude of the cross

section. The cross sections vary from 1072 to 107 cm?.

I. INTRODUCTION

HEN a sufficiently large electric field (=5 v/cm)
is applied to a sample of germanium at liquid
helium temperatures, the density of electrons in the
conduction band increases rapidly for small changes
in electric field. The rate of change of the electron
density is determined by the interplay of electron-
production and electron-loss mechanisms. The mecha-
nism responsible for the increase in the free electron
density is impact ionization of electrons bound to
donor impurities. The recombination of electrons with
donors is responsible for the electron loss mechanism.
Many workers have observed the above-mentioned
increase of the electron density.’~® In particular, Sclar
and Burstein® proposed an equation to describe the
change in the electron density as a function of time,
for a constant electric field.

By showing that the ‘“breakdown’” field was in-
dependent of sample size, Sclar and Burstein® estab-
lished that diffusion of the electrons to the surface of
the crystal was not the mechanism responsible for
electron loss. Two additional mechanisms could
determine the rate of loss of electrons in the bulk of
the crystal: direct electron donor recombination with
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or without the emission of light, and impact recombina-
tion in which two electrons collide with a donor—one
of them recombines, and the other is responsible for the
removal of the momentum of the recombining electron.
This last mechanism is, according to Moss,” responsible
for the recombination of photocarriers in PbS; these
measurements were made by means of the photoelectro-
magnetic effect. We shall show that impact recombina-
tion is unimportant in germanium of high purity.

Many workers have attempted calculations of first-
order processes that could be responsible for the direct
electron donor recombination. Sclar and Burstein®
calculate the probability of recombination of an electron
with a donor with the emission of light. Their calcu-
lation is based on scaling the classical result for the
hydrogen atom to a hydrogen-like model of the ground
state of the donor. The calculation predicts a re-
combination probability « whose dependence on
temperature is proportional to 7%,

Gummel and Lax%? calculate a cross section for
recombination with the emission of one phonon; the
dependence of the corresponding cross section is
proportional to 7. Both of the cross sections predicted
by these calculations are much smaller than those found
experimentally. Lax'? used a semiclassical model
similar to the Thomson® scattering in a gas, by means
of which an electron is initially captured in a highly
excited state of the donor by the emission of a phonon.
After that, the electron can either absorb a phonon
and be excited back into the conduction band or emit a
phonon falling into a more tightly bound donor state;
this process repeats itself, and the electron slowly
diffuses into the ground state. When the binding energy
of the electron is of the order of &7 its final capture is
practically assured, and the remaining steps may take
place with a mechanism that has a much smaller
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probability than the interaction with phonons; e.g.,
emission of light. The predicted cross section is propor-
tional to 7~ and should be independent of the ground
state of the electron in the donor when its energy is
larger than k7. This, in general, will imply that this
cross section is independent of the type of impurity.

Our experimental result gives a cross section that
depends on temperature approximately as 72-5; the
cross section also depends on the binding energy of the
ground state of the donor impurity. Recombination
light was detected.

The magnitude of the recombination cross section
and its temperature dependence disagree with those
determined by Koenig.!* The disagreement can be
explained with the assumption that there has been some
Joule heating of the lattice and that at the lowest
temperatures this is the predominant factor in the
measured rate of disappearance of free electrons. We
believe that such an assumption is confirmed by the
more recent measurements of Koenig'? on a new sample
with the same characteristics as that reported in
reference 14 and by our measurements on the sample
used by Koenig.

Weinreich ef al.'®* measuring the acoustoelectric
effect were able to measure the intervalley scattering
down to temperatures of approximately 20°K. The
mechanism proposed by Weinreich ef al. to explain the
observed intervalley scattering is that an electron is
trapped into one state of a donor corresponding to one
of the wvalleys, is transferred to the level that is de-
generate with the first and corresponds to another
valley and is re-emitted from there into the conduction
band. Extrapolating their results from 20°K to 10°K,
Weinreich et ol. found a recombination probability 30
times larger than that determined by Koenig; from
this they concluded that the measured trapping proba-
bility can be explained by trapping into a highly
excited state of the impurity. If we extrapolate our
results on As-doped germanium at 4.2°K to 10°K and
compare them with the corresponding extrapolation
of Weinreich, the disagreement between them is only
of the order of a factor of 2, which is excellent, in view
of the many extrapolations involved.

Our measurements consisted of the measurement of
the Q of a microwave cavity at different times after the
pulsed dc breakdown field is removed. The procedure
is repeated periodically, and, by varying the delay
time between the measuring microwave pulse and the
time that the breakdown field is removed, the sample
conductivity can be measured as a function of time.
The recombination is bimolecular, and from the shape
of the electron-loss vs time curve the recombination
time constant can be determined. If the electron
mobility is known, the density of compensating im-
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purities in very pure samples can be measured with a
fair degree of accuracy.

II. NONEQUILIBRIUM STATES

Our measurements were made on a sample whose
carrier density is not that corresponding to thermal
equilibrium with its surroundings; its electron density
is much larger than that corresponding to the lattice
temperature and will decay to the equilibrium density
at the lattice temperature in a time determined by the
recombination mechanism. The average electron energy
will decay to the lattice temperature in a time generally
different from the former decay time for electron density.

Decay of the Electron Energy

There are two processes (both of which tend to
redistribute the electron energy) that go on at the same
time during the ‘“afterglow of our discharge”: The
redistribution of the energy among the electrons them-
selves—so that a Maxwellian distribution whose tem-
perature 7', is not generally equal to the lattice tem-
perature 7'z is produced, and processes in which the
electron distribution loses energy to the lattice. The
time constant associated with the former process is of
the order of the inverse of the plasma frequency'¢
wp= (4mne?/ Km*)}. We shall approximate this time
constant by w,!; for electron densities of the order of
102/cc, w,=10" sec™.

The latter mechanism, which determines the decay
of the electron temperature towards the lattice tem-
perature, is usually longer than w,™' and therefore
determines the shortest significant time of our measure-
ments. Gilardini and Brown'” made a calculation of
the time necessary for an electron in a gas, subject to
an rf field E and angular frequency w, to gain energy
until it reaches equilibrium at an energy U=kT,
=M (eE/2m*w)?. This time interval is very sensitive
to the mechanism responsible for the energy loss of
an electron in each collision. We shall call M the mass of
the particle with which the electron collides, m* the
effective mass of the electron, »,, the collision frequency
proportional to the 4th power of the velocity, and T
the lattice temperature corresponding to an energy U.
The problem of the decay of the electron energy from
an energy U to an energy U is similar to the converse
case of heating, so that we can use the results of
Gilardini and Brown shown in Fig. 1. As will be seen,
the corresponding times are generally much longer
than w,™. The time scale is measured in units of
[(2m*/M)vm]™, v being the collision frequency for
momentum transfer and in general a function of T,
and T,. In the case of a semiconductor, as well as in a
gas, it is important to know which transfer mechanism

18 D. Pines, Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press, Inc., New York, 1955), Vol. I, p. 378.
17 A. Gilardini and S. C. Brown, Phys. Rev. 105, 31 (1957).
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will be more effective in producing the required energy
loss (or energy gain).

Collisions with ionized impurities, considered as ions
in a gas, are not the most important mechanism for
transfer of energy because m*/M will be very small (of
the order of 107%), and the time constants for the loss of
energy will be exceedingly long. Collisions with acousti-
cal phonons will, on the contrary, be very effective in
disposing of the excess energy. Shockley'® has shown,
in connection with the problem of hot electrons, that,
in an electron phonon collision, the phonon could be
considered as having a mass k7./c?, where Ty is the
lattice temperature, and ¢ is the velocity of sound. Thus
M/2m* reduces to very reasonable values at helium
temperatures: =35 for transverse phonons and =12
for longitudinal ones (at T =4°K).

For longitudinal phonons the theory of hot electrons
gives k=1 (vmxTeT.), so that for T,/T.=3.5,
approximately 20 collision times are sufficient for the
electron temperature to come within 19, of the lattice
temperature. The times involved are of the order of
10~° sec.

The Rate Equation

The change in carrier density as a function of time
can be described by the following rate equation proposed
by Sclar and Burstein.?

dn/di=—an(n+Ns)+B(Np—Nis—n)
+7n(ND—NA—%)—6n2(n+NA). (1)
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I16. 1. Time necessary for an electron gas to reach an energy
0.99 (U-U) starting from the “gas’ energy U.l is the energy due
to the interaction with an applied rf field. The time is measured
in units of M/2m(1/vn), where v, is the collision frequency for
momentum transfer assumed proportional to (velocity)*. [From
A. L. Gilardini and S. C. Brown, Phys. Rev. 105, 31 (1957).]
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The first term, whose coefficient is «, describes the
direct recombination of one of the # electrons that
are in the conduction band with one of the (N4+#)
ionized donors; a can be expressed in terms of the
recombination cross section ¢, and the carrier velocity v:

a= (o), @

the average being taken over the electron distribution
function. The term whose coefficient is 8 describes the
thermal ionization of the (Np—N4—#n) nonionized
donors. The term in v is due to impact ionization of the
impurities by electrons accelerated by the applied
electric field; v is zero in the absence of an electric field
and is very sensitive to the exact form of the high-
energy tail of the electron distribution function. (This
subject will be taken up in more detail in a forthcoming
paper.) The term in & describes impact recombination;
it will be shown to be negligible.

Contrary to the case of low-pressure breakdown in
gases, diffusion has been completely neglected in Eq. (1).
Sclar and Burstein® have shown that the “breakdown
field” is independent of the sample dimensions. Con-
firming this, we found that the rate of loss of carriers is
independent of the cross-sectional dimensions of the
sample.

At thermal equilibrium, in the absence of an applied
electric field, the terms in o and 8 are tied by a simple
relation obtained by writing #=1n,, dn/dt=y=5=0,
and using the condition of detailed balance

B_ N (nw+NA)

2 3
=2(~—kT) (mamoms)}
a ND—NA—%OO h2

Xexp— (7:;), 3)

where € is the binding energy of the electrons into the
donor levels, and the other symbols have their
customary meaning. This formula is the usual expression
that is used to describe the density of carriers in the
conduction band in an extrinsic semiconductor.

If the term that is proportional to « is the most
important term in Eq. (1), its solution for short times
when #>>N 4 is

n—n,x 1/,

If impact recombination, described by the term in §,
were predominant, a faster recombination, proportional
to -2, would be expected.

If we assume v and § to be zero (y=0 when no electric
field is applied), Eq. (1) can be easily solved (a and g8
are independent of density).

1 a(NA+2noo)-6
n—nwr——[ ], (4)
al {{a(NVa+2n,)—B]/ang+1}et!"—1

where #,, is the equilibrium density in the absence of
any applied field and is given by Eq. (3) ; 7, is the initial
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density, at the moment the breakdown field is removed ;
and 7 is the main parameter measured experimentally
and is

T =a(Na+2n,)+B. ®)

In our case, from Eq. (3), for 7,&KN 4, we have alV .>>8.
Accordingly Egs. (4) and (5) can be simplified; and
we obtain

Na

N = y
(N a/no+1)etl"—1

(4a)

(5a)
For large times, when £>7, corresponding to n<&KV4,
the recombination becomes exponential, and we have

Ny
NA/n0+1

T*I%OINA.

N T =2 et

(4b)

if, additionally, N4, n—n,~N4 exp(—t/7).

By extrapolating this exponential to =0, the value
of Na/[(Na/no)+1]=N4, the compensation, can be
determined. If 7 and N4 are known, « and ¢, can be
calculated. To simplify the calculation of o, we shall
assume {o,9)= (o) ((#*))*.

III. DESCRIPTION OF THE MEASUREMENT
METHOD

Our measurements are based on the knowledge of
the Q of a microwave cavity as a function of time. The
sample is mounted on the axis of a cylindrical re-entrant
microwave cavity. The electron density in the sample
is increased periodically by means of breakdown
produced by a short (=2 usec) dc pulse applied across
it. The cavity is filled with liquid helium to ensure good
thermal contact with the sample. The applied fields
are approximately 15 v/cm for the BTL samples and
of the order of 50 v/cm for sample LL 2, so that break-
down is obtained after times of the order of 1 usec. The
breakdown field is removed approximately 0.5 usec
after breakdown is observed. A microwave pulse, whose
frequency is equal to the resonant frequency of the
cavity, is incident on the cavity, and the corresponding
impedance at resonance is measured by determining
the voltage-standing wave ratio in the line it terminates.
This is proportional to the loaded Q of the cavity, Qz,
determined by the losses in the line and in the cavity.
By varying the instant at which the microwave pulse
is incident on the cavity, the variation of the cavity
impedance can be followed as a function of time. The
measurements of time intervals are accurate within
10~% sec; the impedance measurements have an accuracy
shown by the experimental data.

Denoting by Qw, the Q of the cavity when no losses
are due to the sample, by Qs the Q of the cavity when
losses are due only to the sample, and by Q the measured
Q, we have 1/Q=1/Qs+1/Qw or Qw/Qs=(Qw/Q)—L.

The value of Qw is determined by measuring the Q
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of the cavity when the sample is not broken down; the
ratio of the cavity admittances at resonances, measured
with the sample broken down and measured with the
sample not broken down is thus Q/Qw.

Bethe and Schwinger® calculated the frequency shift
and the change in Q experienced by a microwave cavity
when a sample is introduced into it. If the sample
parameters are its dimensions, the dielectric constant K,
and the complex conductivity ¢=o,+ joj, then

AN 1 a;
—=—{K—1+——U E?dv/f Exdv, (6)
A 2 WeEp sample cavity

and
1 ar
A(——)= f Bdv / f 2, (7)
Q €0W Y sample cavity

where E is the electric field in the cavity.

When we have a lossless sample, as is the case of
germanium at low temperatures, the measured fre-
quency shift produced by the dielectric constant K
allows us to calculate the ratio of the preceding
integrals; hence, with a broken-down sample if Qw is
known, the conductivity can be calculated.

To obtain a good time resolution for a given (, it
would be ideal to work at the highest available fre-
quency; the time constant Qr/w which is due to the
rise-time of the resonant circuit representing the cavity
could then be neglected when compared with the times
associated with the conductivity changes. When very
high frequencies are used, the imaginary part of the
conductivity of the sample can become appreciable
compared with the real part: o;/o,=w/v, (for an
energy-independent collision frequency). Whene;/c,> 1,
a nonnegligible frequency shift accompanies the
change in Q; taking it into account in fast transient
measurements is a major difficulty. As a convenient
compromise we choose A=11 cm. Experimentally (by
means of continuous-wave measurements), it was
verified that at this frequency the changes in the
resonant frequency of the cavity resulting from the
changes in electron density, could not be detected, being
completely swamped by the changes in Q.

The microwave measuring power was sufficiently
small (~1 uwatt) to have a nonmeasurable effect on
the sample conductivity. This was ascertained by
measuring the impedance of the cavity when the
microwave power was doubled and verifying that,
within experimental error, the impedance of the cavity
remained unchanged. During these tests the microwave
power was continuously applied so that an eventual
heating of the sample would have been much larger
than that produced by the short measuring pulses
used in the transient measurements. A block diagram
of the circuit is given in Fig. 2.

9 H. A. Bethe and J. Schwinger, National Defense Research
Committee Report D 1-117, 1943 (unpublished).
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F16. 2. Block diagram of the experimental apparatus used for measuring the very fast changes in conductivity.

A final problem must be solved before we can calcu-
late the electron density from the observed conduc-
tivity: the electron mobility must be determined.
Arbitrarily, we chose a mobility u=10% cm2/v-sec; we
refer the reader to Sec. IV for a justification of our
choice.

Recombination light was detected by means of a far
infrared photocell that consisted of a block of Sb-doped
germanium whose impurity density was approximately
10'8/cc. Along the axis of this block, a hole was bored,
and the sample under study was fitted into it in such
a way that it would not have electrical contact with
the photocell (Fig. 3). Both samples were housed in a
light-proof casing and put into the liquid-helium
Dewar.

By means of a constant field applied to the sample,
breakdown was produced. Simultaneously, the conduc-
tivity of our ‘“detecting block” was monitored so that
any changes in its conductivity could be detected. These
changes were detected with the help of a capacitively
coupled amplifier and an oscilloscope. We chose to
apply to our sample a voltage that would produce
intermittent breakdown, and this effectively modulated
the light output. In this manner, we avoid the un-
avoidable long time constants that are connected with

the high impedance of the detector (the modulation
being at a relatively low frequency), as well as the
pickup problems that are present when pulse techniques
are used.

It is expected, in view of the high density of im-
purities in the detecting crystal, that the binding
energies of the electrons to the donors will be somewhat
smaller than in purer samples. This is evidenced by the
fact that impurity band conduction is dominant at
4.2°K, as should be expected when there is an appreci-

J Teflon

Sleeve

1l
1l

Amplifier |

Oscilloscope

F16. 3. Diagram of the experimental setup for detecting the
emission of light during breakdown. The sample under study is
mounted in the hole on the axis of the large germanium parallele-
piped (Np—N4=10% antimony atoms/cc). Both samples were
mounted in a light-proof case that was lowered into the helium
Dewar.
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TasirE I. Characteristics of the samples used in the experiment.

Evaluatiqns of N4

Dimensions Doping  Photoconductive Room temp. by originating
Sample mm3 element lifetime resistivity laboratory
BTL-1» 1.98X2.03X22.6 Sb >1000 usec 31.7 ohm-cm between 1 and 109, Np
BTL-2# 0.88X0.8X 18 Sb > 1000 usec 31.7 ohm-cm between 1 and 109, Np
LL-2 1.4 X1.4X16.5 As 2310 usec 35 ohm-cm unknown
n WLB-28-6 1.75X1.46X6.96 Sb unknown Np=2X108/ccb 5X102/cc

& The etch pit count on the BTL samples was of the order of 100/mm? on the smaller face of the parallelepiped that constituted the samples. No similar

data are known for the other samples.
b From reference 14.

able overlap of the electron wave functions correspond-
ing to neighboring donors.

Our samples had different origins. The BTL samples
were obtained from Bell Telephone Laboratories,
Murray Hill, New Jersey, by courtesy of L. J. Varnerin,
Jr. These samples are supposed to have between 19
and 109, minority impurities; the major impurity is Sh.
Sample LL-2 came from Lincoln Laboratory, Massa-
chusetts Institute of Technology, by courtesy of P. L.
Moody. The major impurity is As; its compensation
was unknown. Sample z-WLB 28-6 was obtained from
S. H. Koenig of Watson Laboratories, International
Business Machine Corporation, and is the same as that
used for the measurements given in reference 14. The
characteristics of the samples used in the experiment
are shown in Table I.

0 3 6 & 12 15 18 21 24 27 30 33
TIME (10 %secs)

Fi1G. 4. Variation of the microwave losses in sample BTL-1 as a

function of time after the breakdown field is removed. (Qw/Q)—1

is proportional to the sample conductivity. The full line is obtained

by fitting a curve solution ofjEq. (1); B=1.05; temperature,
4.2°K.

IV. EXPERIMENTAL RESULTS

Using the microwave pulse technique described
above, we measured the conductivity of sample BTL-1
as a function of the time interval from the instant the
breakdown field had been removed. Figure 4 shows the
results at 4.2°K. The solid line is drawn according to
what would be expected from the solution of Eq. (1)

Qw/Q—1=(4/Bexpt/7—1).

Here, 7 is measured directly from the slope of the
straight line, and B is approximately obtained from the
ratio of [(Qw/Q)—1] at n=n, and the extrapolation
of the exponential towards {=0. For samples with a
very small compensation, small changes in B around 1
will produce large changes in the theoretical curves.
In the case of sample BTL-1 for a breakdown field of
14 v/cm, B is 1.05, and N4/(Np—N.1)=1.29%,. The
difference obtained for LL-2, which is more heavily
doped (as is also evaluated from the breakdown
characteristics) is clearly seen in Fig. 5; here the coeffi-
cient B has a value of 1.2. The values of N4 of Table II
were calculated from the conductivity that corresponds
to the extrapolation towards time /=0 of the exponen-
tial portion of the decay of the electron density. For this
evaluation of V4 we assumed u=10% cm2/v-sec.

This choice of mobility can be justified. An upper
limit for the mobility should be evaluated as being
equal to that of pure ionized impurity scattering; for
BTL-1 this is u=~4X 105 cm?/v-sec. Another evaluation
can be obtained from the data of Debye and Conwel]?
(on a sample similar to ours) measured at 11°K if it
is extrapolated to 4.2°K and pure ionized impurity
scattering is assumed. Finally, the results of cyclotron
resonance of the Lincoln group? indicate that 7=10-1
sec at 4.2°K. It is well known that the collision time
measured by cyclotron resonance appears to be longer
than the collision time computed from pure ionized
impurity scattering; cyclotron resonance appears to
discriminate against point imperfections. At these low
temperatures and with the low density of compensating
impurities present, scattering connected with im-

2 P. Debye and E. Conwell, Phys. Rev. 93, 693 (1954).
2 H. J. Zeiger, C. J. Rauch, and M. E. Behrndt, J. Phys. Chem.
Solids 8, 496 (1959).
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TasLE II. Recombination coefficients as a function of temperature.

T Trec (SEC) Ttail (S€C) a(cm3/sec) a-(cm?) B/a(cm™3)
(a) Sample BTL-1
42 4.34-0.4X10-8 414+4X1078 5.1 X105 1.85X10™1 2.3X105
3.42 3.340.3X108 45:£4%1078 6.6 X1075 2.63X10™1 3.82X103
2.96 2.340.3X10°8 35£4X%1078 9.45%X 108 4.12X10™1 24.7
N 4~4.6X101/cc Np—N 4~3.8X108/cc
(b) Sample LL-2
4.2 5.6+£0.3X10-8 27X10°8 5.1 X106 1.85X 10712 5.7X 102
3.48 5.140.5X10-8 .- 5.6 X10-¢ 2.24X10™12 0.77
3.05 3.00.6 X108 9.5 X106 40510712 7X10™
213 2.540.3X10"8 11.6 X108 5.9 X101 3.28X1071

N 4=~3.5X10%2/cc

Np—N4=~4.2X1083/cc

purities like H, N, and O, that are present in large
quantities should become important.?

In this work it was noticed that for sample BTL-1
the conductivity corresponding to an electron density
N4/[1+(NVa/no)] does not appear to depend on
temperature in the range measured. The dependence of
such conductivity in sample LL-2 is also very small.

These experimental results and the order-of
magnitude calculations of previous workers lead us to
conclude that the errors associated with this arbitrary
choice of the mobility should not be greater than a
factor of 3.

If the breakdown field is increased in either value or
duration, a larger time constant appears in the ultimate
decay of the density. This was attributed to Joule
heating of the sample. In Fig. 6 the decay of the density
in the low-field case is compared with the decay in
the case of a higher breakdown field. If the long tail
appearing in the curve of the higher breakdown field
is extrapolated towards time {=0 and the corresponding

|0’ L L L T T T T L T T T T T T T T

2| Sample LL-2 -
© 4.2°K

4 Run I
e Run I

| N NN N S S S U U SN (NS N S S
0 2 4 6 8 10 12 4 16 18 20 22 24 26 28 30 32 34 36 38 40

(10 %ec)

Fi16. 5. Variation of the microwave losses in sample As LL-2as a
function of the time after the breakdown pulse is removed. The
full line is a solution of Eq. (1); B=1.2; temperature, 4.2°K.

2 H. A. Papazian and S. P. Wolsky, J. Appl. Phys. 27, 1561
(1956) ; J. H. Crawford, H. C. Schwenler, and D. K. Stevens, J.
Appl. Phys. 22, 838 (1956).

values are subtracted from the experimental data,
the newly calculated points fall on the curve of the
lower breakdown field. This slower decay process is
probably never absent; experimentally, we can only
minimize its importance by decreasing the applied
breakdown field and the time during which the sample
is “broken down.” This time constant is very clear for
an applied field of 43 v/cm; it is, however, probably
responsible for the departure from a pure exponential
of the last two points of Fig. 4, even though the field
is only 14 v/cm.

TIME (1078 SEC)

Fi16. 6. Thermal effects appear if the power input during break-
down is increased (sample BTL-1 at 4.2°K). The longer time
constant is attributed to Joule heating. The decay corresponding
to pure recombination (and a lower breakdown field) can be ob-
tained if the effect of heating is subtracted 229.

The long time constant is temperature-independent
(for temperatures below 4.2°K) and does not depend
upon the value of the breakdown field; the breakdown
field determines only the intercept of the extrapolation
of this exponential with the ordinate axis. To explore
the origin of this tail, measurements were made on
sample BTL-2 with dimensions approximately half
those of BTL-1 but originating from the same ingot
(Fig. 7). The low-field time constant of BTL-2 is not
changed as compared with that of BTL-1, but the
high-field time constant is nearly halved. This is what
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F16. 7. Variation of conductivity after the breakdown field was
removed. Both samples were cut from the same ingot; BTL-2
has cross-sectional dimensions nearly half of those of BTL-1.
The fast decay is not influenced by sample size; the longer time
constant is approximately halved, as expected from theory.

would be expected if the long time constant is due to
heating and the phonon mean-free path is limited by
sample size.

Similar measurements were made at lower tempera-
tures. At temperatures between 4.2°K and the A point
of helium, the importance of heating was often ap-
preciable, and the recombination time constants had
to be obtained by subtracting the thermal effect. The
results are shown in Table II and in Figs. 8 and 9. The
best measurements are those at 4.2°K, where the error
is smaller than 109,. At lower temperatures the errors
increase somewhat, but they remain of the same order
of magnitude.

Measurements on sample 7-WLB-28-6 should be
considered separately. This sample was shorter than
the others, so that it could not completely fill the gap
in the re-entrant cavity used for the measurements.

1o T T T

T (10%sec)

1 1 { 1 [
1 2 3 4 5 6

T°K
F16. 8. Variation of the time constants for recombination
as a function of temperature.
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As a result the leads necessary to produce dc breakdown
penetrate into the cavity, producing an appreciable
distortion of the rf field, and our method for calculating
the integrals appearing in Eq. (6) is not very reliable,
particularly when the sample is broken down. Two
elements are responsible for the decrease of our sensi-
tivity : the penetration of the leads (which make the dc
contact to the sample) and the decrease of nearly 4 in
the sample volume. Consequently, the changes in the
value of (Qw/Q)—1 could not be followed over such a
large range as in the other samples. The results are
shown in Fig. 10. The corresponding time constant is

=10
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Fic. 9. Variation of the recombination cross section with
temperature. o,=1/7(1?)4N 4; N 4 is calculated from the measured
conductivity corresponding to the extrapolation of the exponential
of Fig. 4 towards ¢=0.

3.4X 1078 sec, approximately three times smaller than
the result of Koenig' on the same sample.

From our data on #-WLB-28-6 it was impossible to
tell whether heating increased the apparent time
constant. To obtain breakdown in a time of the order
of microseconds larger fields had to be applied to this
sample than to BTL-1. It was also not possible to ob-
serve the nonexponential portion of the recombination.
This could be ascribed either to the fact that when the
breakdown field is sufficiently low and there is no ap-
preciable heating, then #o<V4, or to the fact that the
perturbation from both the wires and the sample pro-
duces changes in the field configuration of the cavity
(mode jumping). We shall compare our result on this
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sample with those of Koenig and try to explain the
corresponding discrepancies, assuming that they are due
to heating.

Light emitted during the breakdown of BTL-1 was
detected. The signal observed was in the form of a
large increase of noise when the value of the dc field
was such that intermittent breakdown was produced.
If the dc field applied to BTL-1 was increased, the
detected signal decreased, as is to be expected if the
sample’s temperature is slightly increased by ohmic
heating. The spectral distribution of the light was not
measured, but since it is ascribed to recombination light,
its energy cannot be much smaller than the binding
energy of Sb donors in germanium. Its lower limit

10 ——————————————r
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F16. 10. Variation of the conductivity as a function of time
after the removal of the breakdown pulse. Sample » WLB-28-6;
temperature 4.2°K. Field applied during breakdown: run 1
77 v/cm during 0.9 usec; run 2, 77 v/cm during 1.8 wsec; run 3
71 v/cm during 2 usec.

should be that corresponding to the transition between
the impurity band and the conduction band of our
detector.

Recently, Koenig® confirmed this observation. He
furthermore observed that the signal detected and at-
tributed to light is larger when the broken-down sample
was antimony-doped germanium and the detector was
arsenic-doped germanium, rather than vice versa, as
would be expected from energy considerations.

V. DISCUSSION OF RESULTS

We shall first discuss the rate of change of density
resulting from thermal effects and explain the reasons

% S. H. Koenig and R. D. Brown, III, Phys. Rev. Letters 4, 190
(1960).
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that lead us to attribute to them the longer observed
time constant shown in Fig. 6. Assume that during
breakdown the temperature of part of our sample is
slightly changed by Joule heating. Differentiating Eq.
(2) with #<<N 4, we have

1 dT)

T dt

1dn e

For small changes of temperature, 7/e¢ can be
considered nearly constant, and the rate of change of
the logarithm of the density will be approximately
proportional to that of the logarithm of the tempera-
ture: 1/7y¢. Classically, 77 is determined by the specific
heat of the sample, its thermal conductivity, and the
sample dimensions.

If we wish to use phonons to describe the transport
of thermal energy we should introduce the idea of
phonon mean-free path A as suggested by Casimir.?
The random-walk problem applied to this case allows
us to compute the number of collisions that a particle
whose mean-free path is A experiences before diffusing
out the sample: N¢=3A%/\ where A is the diffusion
length of the sample. In the case of a parallelepiped

A—2—1(-+- )
4\a p?

a, b, and ¢ are equal to one-half the sample dimensions.

The time between successive collisions is A\/v, so that
the average time necessary for particles to diffuse out
of the sample is

rp=Nc\/v=3A2/\v.

It is well known that at very low temperatures the
phonon mean-free path will be limited by sample
dimensions; A should then be taken as of the order of
the smallest sample dimension. This is borne out, in the
case of germanium, by the measurement of thermo-
electric power at very low temperatures,??¢ and in a
more direct fashion by the measurements of the thermal
conductivity below 10°K made by Geballe and Hull.?”
Accordingly, this will mean that 7, varies proportionally
to sample dimensions, and not proportionally to the
square of sample dimensions, as expected from the
usual diffusion theory. This fact is verified experi-
mentally by the halving of the time constant measured
on sample BTL-2 as compared with that on BTL-1.
In the case of an isotropic distribution of phonons, the
time constant can be calculated from the preceding
formula by using an average of the velocities of longi-
tudinal and transverse phonons in the different direc-

n dt

24 A, B. Casimir, Physica 5, 495 (1938).

25 A. P. R. Frederickse, Phys. Rev. 92, 248 (1953).

26 T. H. Geballe and G. W. Hull, Phys. Rev. 94, 1134 (1954).

21T. H. Geballe and G. W. Hull, in Proceedings of the Fifth
International Conference on Low Temperature Physics and
Chemistry, Madison, Wisconsin, 1957, edited by J. R. Dillinger
(University of Wisconsin Press, Madison, Wisconsin, 1958), p. 380.
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tions. The result, calculated with ¥=3.0)X10% cm/sec,
77=2X1077 sec, is in reasonable agreement with the
experimental result (4.1X10~7 sec).

If the phonon distribution is not isotropic and/or
there is not equipartition of energy between the longi-
tudinal and transverse modes (as is expected in the
case of breakdown pulses of very short duration), 7,
should be different from the calculated value. The fact
that our phonons are largely produced by electrons
with a net drift velocity along the axis of the sample
tends to produce a phonon beam directed in the same
direction as the electron drift velocity and conse-
quently leads to an increase of the time constant that
is necessary for the decay of the phonon density. On the
other hand, our electrons mainly produce longitudinal
phonons whose propagation velocity is somewhat
greater than the previously assumed average velocity.
This consideration tends to decrease our estimate of 7.
The fact that the calculated thermal-decay time
constant is shorter than the experimental value tends
to support the idea that the phonon distribution has
been changed.

Two other observations support this interpretation
of the origin of the longer time constant: its independ-
ence of the electric field and temperature in the range
covered. This is in contrast with the electric field
dependence of the intercept of the thermal exponential
with the ordinate axis. (This intercept is proportional
to the density of high energy (=1X10~% ev) phonons
achieved during breakdown.) Both of these properties
are to be expected. When A is limited by sample size, the
only term in 77 that presents a variation with tempera-
ture is the sound velocity, ». This variation is expected
to be very small and was not detected with our type of
measurements. For the same reason, 7 is independent
of the applied field as long as the effects of the anisotropy
and nonequipartition of energy of the phonon distribu-
tion do not change very much. The variation of the
initial phonon density distribution with electric field is
also to be expected. The density of the energetic phonons
that can produce electrons is related to the electric field
applied to the sample. Summing up, it can be said that
the long observed time constant can be attributed to a
variation of 7, with time; this variation is due to a
variation of the lattice temperature 7.

We can now draw some conclusions on the re-
combination of electrons and donors. As we stated in
the introduction, there are, basically, three different
calculations for the recombination cross section. Sclar
and Burstein® calculate the recombination probability
for a radiative transition by scaling the well-known
result for the hydrogen atom. Their result predicts a
recombination probability proportional to T';%¢, where
¢ is the ionization energy of the donor level. The same
criticism that is important for the case of hydrogen
atoms can be applied here?: No provision is made for

28 R. G. Fowler, in Handbuck der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1956), Vol. 22, p. 230.
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an easy way to dispose of the momentum of the incident
electron that must be given to the crystal as a whole.
Gummel and Lax® calculated the recombination
probability characterized by the emission of a single
acoustical phonon. They predict a recombination
probability proportional to g¢*7*e5, where g¢o is the
momentum of the emitted phonon whose energy is equal
to the binding energy of the electron.

Finally, Lax!? proposed a theory in which the
electron decays from the conduction band into the
ground state of the impurity through its excited levels.
The temperature dependence of the recombination
probability should be 7-7/2 and should be independent
of the binding energy of the electron to the impurity.
The measurements of Koenig'* were interpreted by Lax
as confirming this theoretical calculation; the flattening
of the measured time constants toward the low-
temperature end of the range of measurements (Fig. 11)
was attributed to the overlap of the excited levels of
different impurities at which the electron recombines:
This would effectively decrease the number of re-
combination centers.

At 4.2°K we again measured the recombination time
constant of sample 7 WLB-28-6 used by Koenig,*
obtaining the point shown by a black triangle on Fig. 11.
The discrepancy between our measurement and
Koenig’s can be explained in terms of heating. The
temperature-independent value of the time constant
represented by the broken straight line is obtained by
means of the previous theory of thermal decay. When
the temperature is increased, in the presence of im-
portant thermal effects, the measured time constant
should vary continuously from pure thermal decay
to pure recombination. As we saw previously (Fig. 6),
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F16. 11. Variation of the measured time constants for the de-
cay of the conductivity as a function of temperature. Sample
n WLB-28-6 and the equivalent one reported in reference 12. The
microwave measurement of the time constant clearly lies on the
tangent to the high temperature, measurements of Koenig.
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if the decay of the density is not followed for a few
orders of magnitude it is not possible to recognize the
existence of heating, and the recombination time
constant will appear longer than in the absence of
heating.

Koenig’s measurements,** in which the variation of
the sample resistance was displayed on an oscilloscope,
have the characteristic of having a relatively small
range over which the sample’s resistivity could be
accurately followed. In that type of measurement, a
greater weight is given to the long times, when heating
is expected to be more important if 77> 7. This condi-
tion is found at the lowest temperatures.

More recent measurements by Koenig, as reported
by Lax,? on a sample having the same impurity con-
centrations as # WLB 28-6 tend to confirm this view;
they are shown by squares on Fig. 11. Some of these
measurements, as well as our own, on # WLB 28-6, fall
on a straight line tangent to the high-temperature
measurements given in reference 14. The slope of this
line is approximately 2, as is expected from our
measurements.

If we take our result for the value of the time constant
for recombination at 4.2°K, and take the value 5.10%/
cm?® quoted by Koenig! for the value of the compensa-
tion, there is a large disagreement in the value of the
cross section for recombination for BTL-1 and » WLB
28-6. This discrepancy can be very much decreased if we
calculate the compensation with the Brooks-Herring
formula for ionized impurity scattering corresponding to
the mobility measured by Koenig?® (7.5X 105 cm?/v-sec
at 4.2°K).

To explain the observed magnitudes of the cross
sections, their dependence on the binding energy of the
donor ground state, and their lattice temperature, we
propose a mechanism by means of which an electron is
initially trapped in a highly excited state® and then
decays radiatively to the ground state.

Assume that a low-energy electron initially emits a
phonon being captured into a p state of the impurity
whose energy is of the order of 27 below the edge of
the conduction band.*+2: From this bound state the
electron can either be scattered back into the conduc-
tion band, into a neighboring bound state with approxi-
mately the same binding energy, or it can decay into
the ground state. If the electron is scattered into another
highly excited bound p state, we have again the same
possibilities, if it is instead a state with some other
angular momentum the probability of radiative
transition to the ground state decreases very much and
only phonon induced transitions to other excited states
or the continuum are possible. Finally if the electron
gains an energy of the order of 27" it will be excited into
the conduction band and the process can repeat itself.

20 W. Schillinger (private communication, April, 1959).

3 The large cross sections obtainable if an electron is trapped
insan excited state were pointed out to us by A. Rose, March,
1959.
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For the sake of simplicity in such a qualitative calcu-
lation we treat in the same way all electrons excited
out of the p state. We shall call a,, the probability that
the electron in the excited state scattered by a phonon,
and ap: will be the probability that an electron will
make a radiative transition to the ground state.

The cross section for the capture of the electron in the
excited state o, will be estimated to be equal to the
geometrical cross section of the corresponding classical
orbit:

62 T 62 2
—=kT; ae=1rr02=-(;z—-‘) ~2X107° cm?

K?’o K2
at 4.2°K.
The total recombination cross section will be
QA pt A pt
O,=0¢ 0o
apt+apn Apn

apn can be estimated from conductivity measure-
ments 23 q,,~109; «,; can be evaluated from a
calculation similar to the calculation used for the
transition between bound states in a hydrogen atom?:

e fn\3
Qpt=— —) cos?0| x| 432,
h \¢

where # is the index of refraction of germanium and
Zap, 1s the matrix element of the coordinate x.

An order of magnitude of |x|4s can be obtained by
substituting it by @, the Bohr radius of the electron
in the ground state of the impurity :

oCene( )
ap=m){ — = — | —) —
#* & 137/\ ¢/
vid
10Ty,
(137K

In our case »=~3X102 cps, so that a,;~3X105 and
at 4.2°K o,=0q(apt/apn) =6X 10~ cm?2.

This order-of-magnitude calculation should be con-
sidered a lower limit of ¢.. The quantity a,; might be
increased by the contribution of states other than the p
states considered in this “hydrogen-like” model—from
both the effect of the ellipsoidal effective mass and the
valley orbit interaction. The value of ¢, could also be
appreciably increased by the fact that when we take
apn equal to the inverse of the conductivity mean free
time for phonon scattering, we overestimate it. Such
a choice of a,. would not have a “minimum exchanged
energy”’ as is necessary for changing the state of the
electron. This calculation allows for the possibility of

3L F. Morin and J. P. Maita, Phys. Rev. 34, 1525 (1954).
2W. Heitler, The Quantum Theory of Radiation (Oxford
University Press, New York, 1954), 3rd ed., p. 178.
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some dependence of the recombination cross section on
binding energy, as well as the emission of light as
observed by us and by Koenig and Brown.?
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Ranges of 7.5- to 52-kev H,*, D,*, He*, and Ne* Ions in Quartz*

R. L. HiNEs
Northwestern University, Evanston, Illinois

(Received July 11, 1960)

Experimental values of penetration depths of positive ions in quartz obtained from measurements of
reflection coefficient versus wavelength are compared with theoretical predictions. Measurements of the
change in refractive index of quartz as a function of the energy dissipated per unit volume are shown to give
experimental values for the ratio of energy loss due to displacement collisions per unit thickness to the energy
loss due to ionization per unit thickness. The energy loss due to displacement collisions per unit thickness
agrees with theoretical predictions. From the experimental values of energy loss due to ionization, it is found
that the cross sections for scattering of valence electrons by the field of the incident atoms are an order of

magnitude larger than the geometric cross sections.

I. INTRODUCTION

HE penetration in solids of atoms with energies
below 50 kev is of current interest in connection
with investigation of radiation effects in solids. Most
of the information available!? deals with energies above
50 kev and contains very little concerning the pene-
tration of medium weight low-energy atoms such as are
formed in solids by fast neutron bombardments.
Experimental determination of the ranges of the low-
energy atoms of interest here are hampered by the very
small penetration distances (1075 c¢m) involved.
However, a variety of techniques have been successfully
employed to obtain range information at these low
energies.*7 In this paper, some recent determinations
of ion ranges in quartz® are compared with the theo-
retical predictions.
The theoretical analysis of low-energy atom pene-
tration is limited to approximate methods which are

* Supported by the U. S. Atomic Energy Commission.

1H. A. Bethe and J. Ashkin, Experimental Nuclear Pshyics,
edited by E. Segré (John Wiley & Sons, New York, 1953), Vol. I,

166.

p.

2 S, K. Allison and S. D. Warshaw, Revs. Modern Phys. 25, 779
(1953).

3J.R. Young, J. Appl. Phys 27 1 (1956).

4J. Koch, Nature 164, 19 (19 )

5R. A. Schmitt and R. A. Sharp, Phys. Rev. Letters 1, 445
(1958).

6 U. F. Gianola, J. Appl. Phys. 28, 868 (1957).

7K. O. Nielsen, Electromagnetically Enriched Isotopes and Mass
Spectrometry, edited by M. L. Smith (Academic Press Inc., New
York, 1956), p. 68.

sR. L. Hines and R. A. Arndt, Phys. Rev. 119, 623 (1960).

valid over only small energy regions. In general the
atoms lose energy both by ionizing atoms of the stopping
material and also by making elastic collisions with
atoms of the stopping material. The general framework
of the theory of penetration of energetic particles is
presented by Bohr.® More specific discussions of the
penetration of low-energy atoms are given by Nielsen?
and by Seitz and Koehler.1

2. THEORY
a. Energy Loss by Elastic Collisions

Following the treatment outlined by Seitz and
Koehler," the collision problem can be treated classically
as long as

b/x>1, (1)

where X=7%/uV and where b=21Z:¢%/1uV? is the
classical distance of closest approach in pure Coulomb
scattering. Z; is the atomic number of the incident
atom, V its velocity, and e is the electronic charge. Z,
is the atomic number of the stationary atom. M, and
M are the atomic masses of the incident and stationary
atoms, respectively, and u=M:My/(M+Ms) is the
reduced mass of the system. In all the cases of interest
here, the classical approximation is justified.

9 N. Bohr, Kgl. Danske Videnskab. Selskab. Biol. Medd. 18,
No. 8 (1948)

0F. Seitz and J. S. Koehler, Solid-State Physics, edited by F.
Seitz and D. Turnbull (Academxc Press Inc., New York, 1956),
Vol. 2, p. 305.



