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Spin-Wave Spectrum of Yttrium Iron Garnet*
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The spin-wave spectrum of yttrium iron garnet is treated using a Hamiltonian involving nearest-neighbor
a-u, d-d, and u-d isotropic exchange interactions. Values of the exchange constants are estimated from the'
molecular Geld constants of Pauthenet. Anisotropy and magnetic dipole-dipole interactions are neglected.
Twenty spin-wave modes are found, and their energies calculated at points of cubic symmetry in k space.
The dispersion relation of the single "acoustical" spin-wave mode is found to agree with the value previously
reported by Meyer and Harris.

INTRODUCTION

A QUANTUM-MECHANICAL spin-wave treat-
ment of the ground and low excited states in

antiferromagnets has been given by Anderson, ' using
a set of approximations whereby the s components of
spin operators are expanded in terms of the transverse
(x,y) components. His treatment depends upon, and
provides some justification for, the approximation of
the antiferromagnetic ground state by a simple arrange-
ment in which spins on diferent sublattices are anti-
parallel. This scheme was used by Kaplan in a calcula-
tion of the spin-wave spectrum of a normal spinel
ferrite. ' Previous semiclassical calculations had given
the dispersion relations of the two modes of lowest
energy. ' 4 YVe have used the approximations of Anderson
in calculating the spin-wave spectrum of yttrium iron
garnet (YIG).

YIG has a body-centered cubic lattice. The conven-
tional cubic unit cell contains 40 magnetic Fe'+ ions
distributed over 24 d sites and 16 a sites. Neutron
diffraction and saturation magnetization experiments
show that spins on a and d sites point in opposite
directions. It has been shown that, on the basis of the
theory of Yafet and Kittel, canted spins should not
occur in the ground state. ' References and a further
description of the structure are given by Geller and
Gilleo

There is believed to be an antiferromagnetic super-
exchange interaction between nearest-neighbor Fe'+
ions on nonequivalent sites. ' Antiferromagnetic coupling
of neighboring Fe'+ ions on equivalent sites is also found
experimentally. ' We shall assume that all interactions
are isotropic, and are con6ned to nearest-neighbor pairs
on equivalent and on nonequivalent sites.

METHOD OF CALCULATION

PS;„Sg„]=tMAt, S (3)

In Eqs. (2) and (3) the factor M, is plus one if j desig-
nates an a site, minus one if j designates a d site.

Now consider the operators defined by

f. += (2SN) 'E "-'0;(S;.+iS;,), (4)

LAgp, Ay~ pl+(= o plgg~5ppl, (5)

and the adjoint of Eq. (4). Here r; is the position of
the jth spin, ir is one of N wave vectors which are
uniformly distributed throughout the erst Brillouin
zone, and X is the number of primitive unit cells in
the sample. The subscript P will designate the different
spin-wave modes. The coeKcients $p; are the same for
two spins which occupy identical sites in different
primitive unit cells, and Eqs. (3), (4), and (5) imply
the orthonormality condition,

magnetic moments p& ———2ttttS&, and along which they
are quantized. The Hamiltonian takes the form

X=P;Ptf;tS,"St+2ttttII, +sSg, .

Each index is summed over all spins in the crystal, so
that each pair interaction occurs twice in the double
sum. The exchange constant J;; takes on the values
J,d, J„, Jdd, or zero, depending upon the relative
locations of the ith and jth spins. Following Anderson,
we approximate the s components of the spin operators
as

S *=i' tP' —(St*'+Syo' S)/—2Sj (2)

This should be a rather good approximation for YIG,
since 5= ~ is large. Only terms quadratic in spin oper-
ators are retained in the Hamiltonian. To the same
degree of approximation we may use the commutation
relation

(6)Zt~tbt*b ~
= ap4p—

We assume the presence of a magnetic 6eM in the
s direction with which the spins interact through their

*This work was supported by the National Science Foundation.
' P. W. Anderson, Phys. Rev. 86, 694 (1952).' T. A. Kaplan, Phys. Rev. 109, /82 (1958).
3 H. Kaplan, Phys. Rev. 86, 121 (1952l.
4 J. S. Kouvel, Technical Report 210, Cruft Laboratory,

Harvard University, 1959 (unpublished).' P.-G. de Gennes, Phys. Rev. Letters 3, 209 (1959).' S. Geller and M. A. Gilleo, J.Phys. Chem. Solids 3, 30 (1957).
~ R. Pauthenet, Ann. phys. 3, 424 (1958).

where the sum is over different sites in the primitive
cell. The sign factor o.

p will, according to (4) and (5),
determine whether the excitation of the /th spin-wave
mode increases or decreases the s component of total
angular momentum.

Using relation (6), we can invert (4) to obtain the
spin operators as functions ofthe A~p and their adjoints.
Upon substitution of these functions, the Hamiltonian,
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apart from constant terms, will take on the diagonal
form

5C =Qg Q p ,'Pi—eip(k)+0p2priHsf

X (A~pAsp++Asp+Asp), (7)

provided the $p; are properly chosen. The $p; must be
components of the eigenvectors of a Hermitian matrix
whose structure depends upon the spin couplings in the
primitive unit cell. The dimension of this matrix is
equal to the number of magnetic ions in the primitive
cell; hence, we get as many modes as we have magnetic
ions in the primitive cell. For a body-centered cubic
lattice, the primitive cell has half the volume of the unit
cube, so YIG has 20 modes. It is possible to satisfy the
orthogonality requirement (6) and simultaneously to
diagonalize this matrix; the solution gives the coe%-
cients $p;, the sign factor a p, and the frequencies tep(k).
There is no guarantee that the frequencies are all posi-
tive, since the matrix is not positive definite, but the
occurrence of negative frequencies would indicate a poor
choice for the ground-state alignment.

In the present calculation the problem has been
treated in terms of a simple cubic lattice, and the con-
ventional cubic unit cell was used as a primitive cell.
Thus, there were 40 modes, and the Brillouin zone had
half the volume of the one appropriate to the bcc lattice.
The same eigenvalues occur in both approaches, though
half of the energy surfaces near k=0 on the sc picture
would appear near the corners of the first Brillouin zone
on the bcc picture.

Since the matrix reQects the symmetries of the space
group of the crystal, the problem of solution is simplified
for wave vectors lying along the (111) direction of k
space. The eigenvectors must then transform according
to irreducible representations of that part of the space
group which leaves this direction unchanged. ' The com-
ponents gp;(k) are thus restricted to such an extent
that it was possible to solve the eigenvalue problem
algebraically for all 40 modes at k=O.

A formal perturbation solution shows that the energy
of a mode which is not degenerate at k=0 is expressible
as a power series in components of k. The cubic sym-

metry of the problem restricts this series to the form,
ap(k)=cup(0)+Apk'+0(k'). The functional form of the

energy of modes degenerate at k=0 has not been
determined.

RESULTS

The dispersion relation of the single acoustical spin-
wave mode was found to be

keep (5/16) (5J,s—8J„—3Jgg) (ka)'+0(ka)', (8)

where a= 12.3 A is the lattice constant and the exchange
constants are as given in the Appendix. The same result

L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev.
50, 58 (1936).

has been recently reported by Meyer and Harris. ' For
k=O the components of the eigenvector b are all equal
and 0.~= j,, which is consistent with the usual picture
of ferromagnetic spin waves, "

The dispersion relation (8) can be simply derived by
expanding the Hamiltonian (1),now taken as the energy
of a system of classical spins, for small deviations from
perfect spin alignment. Thus we obtain the Landau
exchange stiGness 2 which occurs" in the phenomeno-
logical dispersion relation Aa&t

——2A 0 /(spin per unit vol-
ume). Using values inferred from the molecular field
constants for the exchange constants, the results are

A= (5J,&
—8J«—3J&d)S'/2a=2. 2X10 r erg/cm.

(9)
A%i ——a'Ak'/4S=4. 1X10 "k' erg.

Experimental values of A result from measurements
of the spin-wave contribution to low-temperature heat
capacity. Expressed in terms of A, the results reported
thus far are 2.5X10 erg/crn, ' 2.7X10 erg/cm, i' and
4.3X10 ' erg/cm, " the last value being derived from
measurements made at a single temperature. The total
specific heat results differ considerably from one another,
and it has been suggested that the larger specific heats
(and smaller A' s) are the result of magnetic impur-
ities.'" Although present results are somewhat am-
biguous, the theoretical value is at least seen to be of
the correct order of magnitude, and any discrepancy
is probably due to inaccuracies in values of the J's.

Since our assumption that the a-u and d-d interactions
are between nearest neighbors on equivalent sites seemed
rather arbitrary, it was thought to be of interest to
repeat the calculation using next-nearest neighbors. The
simple classical calculation showed that the new results
are obtained by multiplying the coeKcients of J„or
Jqq by 8/3 or 7/3, respectively, in formulas (8) and (9).
These factors include the changes in values of exchange
constants, i.e., we should still use the exchange con-
stants given in the Appendix. On the basis of this model
then, large interactions between next-nearest-neighbor-
ing spins on equivalent sites seem unlikely, since they
lead to very low values of A.

The other modes have finite energy at k=O. The
simplest of these has energy Aco2= 10J,q. The frequency
~2 is equal to the exchange resonance frequency derived
for a ferrite by Kaplan and Kittel using a two-sublattice
model. "The components of the eigenvector b take the
values $s, and ps~ for a and d sites, respectively, where
3$ss= 2ts, , and as ———1.The exchange resonance is not
expected to be directly observable, due to the equality
of gyromagnetic ratios of spins on a and d sites.

The remaining energy eigenvalues are given in Table

' H. Meyer and A. B.Harris, J.Appl. Phys. 31, 49S (1960).
is C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951).
'D. T. Edmunds and R. G. Peterson, Phys. Rev. Letters 2,

499 (1959).
~ J.E.Kunzler, L. R. Walker, and J. K. Gait, Phys. Rev. 119,

1609 (1960).
rs J.Kaplan and C. Kittel, J. Chem. Phys. 21, 760 (1953).
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Rp Sc Acop

0
10J g

20J,d —40Jqq
20J,g—30Jdd
20Jad 20Jdd
20Jad —10Jdd

30J,g —80J„
30J,d —40J„

SU + (SJad+10Jdg —20J„)
5 U& —(5J,d+10Jdd —20Jaa)
SV&+ (5J,d+SJgd —20J )
SU&—(5Jad+5 Jdd —20Jaa)

TABLE I. Spin-wave energy levels at the center and extreme corners
of the first Brillouin zone of the bcc lattice.

H, = —88j,—6(46.6)je,
He ———4(46.4)j.—80je.

(A.1)

Letting p; be the magnetic moment of the ith ion,
we may write the energy of the system of spins in terms
of these 6elds:

x= —-', g; y;.H;. (A.2)

The Harniltonian (1) may be written in the following
form:

absence of an applied magnetic field the spins are acted
upon by the following molecular 6elds, where j, or j&
designates the magnetic moment of a mole of Fe'+ ions
on a or d sites, respectively':

" U = L17Jad2 —20Jad(Jdd+2 Jaa) +4(Jdd+2 Jaa) j.
b U = [17Jad —10Jad(Jdd+4Jaa) +(Jdd+4Jaa) j.

I, along with their degeneracies at the center (eo) and
corners (I,) of the first Brillouin zone of the body-
centered cubic lattice, and sign 0-p of the unit contribu-
tion of the spin wave to the z component of angular
momentum of the sample. Some modes have energies
which do not depend upon J„.The excitation of these
modes involves distribution of a unit spin reversal over
the d sites, since those components of the eigenvector
which refer to a sites are zero. Corresponding modes
occur in which spins on d sites are unaffected and the
energy does not depend upon Jqd, . Other modes involve
excitation of spins on both a and d sites. The large
numerical coeS.cients seem reasonable in view of
the fact that the Hamilton (1) gives energies of
(30J',e—407„) or (20J,q

—20jqq) for a localized unit
spin reversal on an a or d site, respectively.
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APPENDIX

R. Pauthenet Gnds that the paramagnetic suscepti-
bility of YIG can be explained if we assume that in the

Comparison of (A.1) with (A.4) gives the exchange con-
stants in terms of the molecular field coefficients. For
YIG we take z„=s, z,~=6, z~, =zd~ ——4, giving

Ja~= J~.=4.8X10-"erg)

J,=1.1X10 "erg,
J~~——2.1X10 "erg.

(A.5)

These values agree with those quoted by Meyer and
Harris. '

Note added irl proof After this .paper had been sub-
mitted, the author became aware that a similar calcula-
tion had been performed by L. R. Walker. Walker's
results, which have not been published, agree with those
of Table I. However, he has derived the exchange con-
stants from a Gt to the spontaneous magnetization curve
rather than the paramagnetic susceptibility, thus ob-
taining somewhat diferent values.

(A.3)

In Eq. (A.3) we may put No@,=j, and Nope= jg, where
Xo designates Avogadro's number. Letting z ~ be the
number of nearest-neighbor d sites about each u site,
etc. , a comparison of (A.2) with (A.3) gives

H~= —(s„J„/2tig'N p)j. (s.eJ~e/2—IJa'No))g.,
(A.4)

Hg ———(sg.Je./2tiB No)1a (sdd Jdd/2tiB No)3d


