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Quadratic Deviations from Ohm's Law in n-Type InSb

R. J. SLADEK

Westinghouse Research Laboratories, Pittsburgh, Pennsylvania

(Received August 1, 1960)

Measurements of the resistivity of n-type InSb of various carrier concentrations have been made as a
function of electric Geld strength at low temperatures. The electric Gelds were kept small enough so that
only a slight heating of the electron distribution occurred and the electron mobility p, satisfied the relation

I =I 0(1+PF'),
where p, o is the ohmic mobility and Ii the electric field.

Analysis of our experimental values of P yield information about the processes by which electrons lose
momentum and energy and about the inQuence of carrier degeneracy and electron-electron scattering upon
these processes. For example, at 4.2'K, piezoelectric scattering is responsible for most of the energy loss,
while near 77'K polar optical scattering, enhanced by strong electron-electron scattering, is responsible for
energy loss, at least in zero magnetic Geld.

A novel means of changing the sign of the deviation from Ohm's law near 77'K was observed by applying
a strong magnetic Geld.

I. INTRODUCTION The regime where (1.1) holds has been studied in
germanium having few enough carriers so that classical
statistics are applicable. ' Since germanium is nonionic,
the charge carriers lose energy to the lattice via scatter-
ing due to the strain Geld potentials associated with
acoustic or optical vibration modes of the lattice atoms.

We shall be concerned with a slightly ionic semi-
conductor, InSb. This aftords the possibility of studying
energy loss via scattering due to the polarization
associated with lattice vibrations. Of course, scattering
due to the strain field potentials is still operative, but
it has been shown that lattice scattering in e-InSb may
be almost completely via the polar interaction, ' e.g. ,
above 200'K polar optical mode scattering along with
electron-hole scattering determines the mobility. Our
measurements were made at temperatures &~ 90'K
where the mobility has not been fully explained so that
the deviations we observe can be used to determine
which type of lattice scattering is important and
whether it limits the mobility signiGcantly. Limitation
of the mobility by lattice scattering is to be expected
only in the purer samples in the temperature region
from 50'K to 90'K perhaps.

At lower temperatures (1.2 to 20'K) ionized impurity
scattering is expected to be predominant in limiting the
mobility for all samples. However, since scattering by
impurity ions ordinarily causes insignificant energy loss
by the carriers, the lattice vibrations are still responsible
for energy loss. At liquid helium temperatures, only
acoustic modes of vibration are probably important,
but, in an ionic material lacking a center of symmetry
like InSb, there is a piezoelectric polarization as well
as a deformation potential associated with these modes.
Which of these interactions is important in the energy
loss process will be deducible from our data.

The effects of carrier distribution degeneracy can
also be studied in e-InSb. This is because the small

~ 'HE mobility of charge carriers in a semiconductor
becomes dependent on the strength of the applied

electric 6eld at moderate Geld strengths. '' This phe-
nomenon is due to the charge carrier distribution no
longer being in thermal equilibrium with the lattice.
To a certain approximation at least, the carriers can be
thought of as being in an energy distribution having a
temperature higher than that of the lattice, and thus
have been called "hot" carriers.

Hot carrier eGects are observable in semiconductors
because the high mobility of the charge carriers results
in high power gain per carrier from a given electric
Geld, while the relatively small number of carriers
(compared to that in a metal, for example) allows the
total power input to remain small,

We shall be concerned with small rises in carrier
temperature T, such that (T, T)/T&1 whe—re T is the
lattice temperature. For such "warm" carriers the
mobility is given by'

p =uo(1+p~'),

where p, p is the Ohm s law mobility, F is the electric
field strength, and p is a quantity which depends on the
energy gain and loss rates of the carriers. In the relaxa-
tion time approximation'

ip(-pisg o, (1.2)

where pl, p is the lattice scattering mobility associated
with the energy loss process for F—+0 and pp ls the
Ohm's law mobility as before. The sign of P is positive
when the momentum relaxation time r increases with
increasing carrier energy, e.g. , ionized impurity scatter-
ing, and negative when 7. decreases with increasing
carrier energy, e.g., for certain types of lattice scattering.

~ H. Ehrenreich, J.Phys. Chem. Solids 2, 131 (1957).

' W. Shockley, Bell System Tech. J. 30, 990 (1951).' J. 3. Gunn, Progress in Semiconductors, edited by A. F.
Gibson Uohn Wiley R Sons, Inc., New York, 1957), Vol. II, p. 213.
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electron mass permits Fermi energies greater than the
thermal energy to be achieved for quite small carrier
concentrations. We have studied the eGects of de-
generacy by making measurements at liquid helium
temperatures on samples having various carrier
concentrations.

A novel way to change the sign of P in e-InSb
suggested itself because of the possibility of quantizing
electron motion by a magnetic field and thereby, under
appropri. ate conditions, changing the energy dependence
of the relaxation time from a decreasing to an increasing
function of energy. We looked for and found that the
sign of P could be changed by application of a strong
magnetic field. 4

For a scattering mechanism causing momentum loss
which is not describable by a relaxation time at electron
energies of importance, the above remarks have to be
recast in terms of scattering rates. In addition, if the
momentum loss mechanism has a steep maximum at
some energy much greater than thermal energy, kT,
strong electron-electron scattering may completely alter
the otherwise expected value of P. Such a case involving
polar optical scattering has been studied theoretically
by Stratton. ' Some of our experimental results require
such an explanation incorporating strong e—e scattering.

II. THEORY

The theory of mobility variation due to slight heating
of carriers above the lattice temperature has been
worked out in detail for a number of cases. ' ' The
principles involved in any case are the same. Some
forms for the distributions of the carriers in energy
and momentum must be calculated or assumed. The
parameters characterizing these distributions are deter-
mined by equating the rates at which momentum and

energy are gained by the carriers from the electric field

to the respective rates at which they are lost due to
scattering. When the carrier distribution functions have
been thus determined, the dependence of the mobility
on electric field strength can, at least in principle, be
calculated.

A. Momentum Loss by Ionized
Impurity Scattering

For interpreting some of our data it is useful to
extend theory to cover the case of impurity scattering
determining the momentum relaxation time, piezo-
electric scattering7 being responsible for energy loss,
and the carrier distribution having arbitrary statistical
degeneracy. Before doing so we shall summarize some

4 R. J. Sladek and F. S. Slack, Jr., Bull. Am. Phys. Soc. 3, 378
(1958).

P R. Stratton, Proc. Roy. Soc. (London) A246, 406 (t958).
M. S. Sodha, Phys. Rev. 108, 1375 (1957) and Phys. Rev.

10?, 1266 (1957}.
7 H. J. G. Meijer and D. Polder, Physica 19, 255 (1953}.

theoretical results of Greene for a similar case" since
they can be used in our extension.

Greene assumed that the electron energy distribution
function is given by

f 1/(—e(E r'&Ik—Tey 1) (2.1)

7-
) (2 3)

where E is electron energy and s is a numerical constant,
the mobility is given by'

p= pp(1+5)'+'*F,+;(f'/kT, )/F, +i(f/kT), (2.4)

where
s"dS

~—= (T.—T)/T, Fn(n) =
e' "+1

and l is the Fermi energy for carriers when the electric
field is equal to zero. For a constant concentration of
charge carriers Greene found that for 8«1 Eq. (2.4)
becomes,

(2.5)

where the F„'s are functions of g/kT. For energy loss
due to acoustic deformation potential scattering

u'(0)~~. ' '(o)
6~,= p',

3$
(2 6)

where s is the velocity of longitudinal sound waves, P
is the electric field strength, pr (0) is the ohmic impurity
scattering mobility, and p&, '(0) is the ohmic acoustic
scattering mobility when electron-electron scattering
is much stronger than the acoustic scattering. More
precisely for strong e—e scattering we have by following
Keyes'0

El (r)fp/r)E)dE

p~.'—'(0)=-
tE—

2rA 0
—1(gf /r)E) dE

(2.7)

R. F. Greene, J. Electronics and Control 3, 387 (1957}.
R. F. Greene (private communication)."R. W. Keyes, J. Phys. Chem. Solids 6, 1 (1958}.

where E is the electron energy, T, is the electron
temperature and l' is the Fermi energy for carriers
heated by the applied electric field, and that the high
temperature or classical approximation, holds for the
phonon distribution, i.e.,

X,=1/(e"p'"~—1) —& kT/Aqs ——,', (2.2)

where q is the phonon wave number and s is the velocity
of sound. Under these conditions he found that when
the momentum relaxation time is given by
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where co*——effective Bohr radius, a,= (3/4srst) I, rt is the
electron concentration, and X& is the Debye screening
length. Equation (2.8) is for a statistically degenerate
electron distribution Q»kT) in which case

Ito' ——
I

—
I

O'K/4e'sttg' = 1.35 X10 ' cm', (2.9)
rtt/rrto

where K is the dielectric constant (= 16 for InSb) and
m is the effective electron mass (=0.013stto for InSb
near the band edge). The right hand equality in Eq.
(2.9) holds when the electron concentration is in cc '.

An average mean-free path for phonon scattering,
lJ, is obtainable from the lattice scattering mobility
pl. deduced from our measured deviations from Ohm's
law by means of the relation

(2srtf') '
ll, = p, z,

=3.57X10—"(1/k)'(tcz, ), *,-~,-~ cm. (2.10)

For energy loss via piezoelectric scattering we
modified Greene's treatment' (which is for energy loss
via deformation potential scattering). The resultant
energy loss rate via piezoelectric scattering is

pdEq

dl J pF kTtpE

25$$ ft'IkI'( 2T )—kT+
T. )

XL1—fj, (2.11)

where k is the electron wave vector, 7pp is the mo-
mentum relaxation time for piezoelectric scattering, '
and f is given by Eq. (2.1). The quantity s' is the
velocity of sound weighted by the polarization and
averaged over crystallographic directions. '

"H. Jones, Encyclopedia of Physics, edited by S. Fliigge
(Springer-Verlag, Berlin, Germany, 1956), Vol. 19, Part I, pp.
227-9.

where e is the electronic charge, m is the eGective
electron mass, ~~, is the momentum relaxation time for
acoustic scattering, and fs ——1/Le&~ r'" +1).

The reason for expressing 5 in Eq. (2.6) and later in
Eq. (2.12) in terms of a lattice scattering mobility
calculated for strong electron-electron scattering is
two-fold. First, in calculating the total energy loss rate,
it is 1/r (times a function of energy) which must be
averaged over the electron distribution Lsee Eq. (2.11)
for examplej, and, second in our samples at low tem-
peratures the mean free path for electron-electron
scattering, 1„, ca1culated from theory turns out to be
much smaller than the mean-free path for scattering
by phonons. (See Sec. IV.) The theoretical expression
for l,, is"

1 f f ) (srtto*'i s ( its* p
s

I +I I, (2 8)
4rrrtliri' (kT) 0 2a, ) &a~i))

Averaging the right-hand side of (2.11) over the
electron distribution and equating the result to the
power gained from the electric field we obtain

(o) '(o)
~pz=—

3 $
(2.12)

where tspE '(0) is the ohmic piezoelectric scattering
mobility when electron-electron scattering is much
stronger than piezoelectric scattering or, more precisely,
is defined by a relation similar to Eq. (2.7) with rpg
replacing 7-p„.

For energy loss to phonons via either the strain or
polarization fields associated with acoustic modes when
f»kT the mobility given by Eq. (2.5) reduces to

(kT) 'ter(0)ter, '—'(0)
lit=ter(0) 1+&I I

&', (2 13)&f) s'

where C is a constant which depends on the value of
s, pr, ™(0)stands for either ttz, '(0) or p, pp (0). In
the first case $' stands for the square of the velocity of
longitudinal sound waves and in the second case for $".
For 2, = 1 and electron-electron scattering much stronger
that lattice scattering C=5m /18.

From Eq. (2.13) it can be seen that the coefFicient
of F', i.e., P, has an explicit inverse dependence on the
Fermi energy, f Thus a. sample with more carriers and
hence higher Fermi energy, should exhibit a smaller
relative deviation from Ohm's law for a given electric
field. In addition P also depends on f' through ttr, '(0),
because, in contrast to the case of classical statistics,
tsr, '(0) depends on the Fermi energy, as we shall see
presently.

The above equations for the variation of mobility
with electric field strength were derived from energy loss
relations which neglected the eGect of screening of the
lattice scattering potential by the mobile electrons even
though an appreciable eGect due to screening is expected
for carrier concentrations large enough so that f)kT.
The reason for this neglect is that great complication
would attend the inclusion of screening in the energy
loss equations. However, the essential features of the
screening can, we believe, be reproduced if the lattice
scattering mobilities in the above relations are replaced
by mobilities in which the eGects of screening have been
included so we shall consider these mobilities next.

Since even the transport integrals for the pertinent
lattice scattering mobilities cannot, in general, be
expressed in a simple analytic form, when screening
eGects are included, we shall first give expressions for the
mobilities neglecting screening and then derive correc-
tion factors due to the latter which are exact only for
the case of complete degeneracy.

By adapting deformation potential theory for the
mobility" to the case of arbitrary degeneracy and

rs W. Schocldey, Electrons and Poles irt Semscortdlctors (D. Van
Nostrand Company, Inc. , Princeton, New Jersey, 1950), p. 278.
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strong e—e scattering, we obtain when the classical
approximation holds for phonons, i.e., when Eq. (2.3)
holds,

3e ps'mh4 1 F;(i/kT)
p".' '(0) = (2.14)

4%2EP m& (kT)&F~(f/kT)

(2.16)
13(c44+4 e~4'/E)

where E is the dielectric constant, e~4 is the piezoelectric
constant, and the c;,'s are elastic constants. For
n-InSb c~~= 6.66&&10", c~2= 3.35)& 10", and c44=3.14
X10"dynes/cmo. Thus

.-- (0)=
1.80X10" 1 F)(l/kT) cm'v's' (217)

e&4' T& Fp(t/kT)

where e&4 is in (dynes) l/cm. Unfortunately the value of
e~4 has not been measured in InSb. It is possible to
calculate a value for e~4 by means of the relation"

E.—E
e~4'= (cgo c44)c44/c]Q,

kr
(2.18)

where the E, is the static and E the optical dielectric
constant (for InSb, E,= 17.5 and E= 16) and the c;,'s
are elastic constants (given above for InSb). For InSb
Eq (2.17) yi. elds a value for e'4 of 5.2X10'(dynes)&/cm,

Now we shall consider the effect of screening on the
acoustic and piezoelectric scattering mobilities. Since
our samples are moderately degenerate we shall obtain
a correction factor to apply to each of the mobilities
given by Eqs. (2.15) and (2.17) by ending an expression
for the screened momentum relaxation time for each
type of lattice scattering, dividing it by the respective
unscreened relaxation time, and evaluating the resultant
ratios at the Fermi energy. The way the screened

'3%. G. Cady, I'iesoelectricity (McGraw-Hill Book Company,
Inc. , New York, 1946), p. 743.

where p is the density and E& the deformation potential
constant. For I-InSb with p=5.8 g/cc, E' 7.2 e=v,

s=3.7X 10' cm/sec, and m=0.013mo, we obtain

pg, '(0) =2.60X 10"T='F;(f/kT)/
F'Q/kT) cm'v —'s—'. (2.15)

Sy using the relaxation time for piezoelectric scatter-
ing given by Meijer and Polder, we obtain the theo-
retical piezoelectric scattering mobility for the case of a
classical phonon distribution,

3&2 O'E' 1 F;(f/kT)
"PE '(0)=

167r m&ee~4' (kT)'Fp(t/kT)

16
X

13(c„+c„+4c,4+1&ireg4o/E)'

relaxation times were obtained was to include a factor
of 1/L1+XD'q') in the q'th Fourier component of the
matrix element of the scattering potential which is then
squared and integrated over the phonon distribution

(q is the phonon wave number). The degenerate form
was used for XD. The screened momentum relaxation
times are given by

(1q t 1)3(E')&
E,~.) 8&E)

and
XL2(E/E, )'*—arctan2(E/E, )-'*], (2.19)

1 1 E,
ln(4E/E, +1), (2.20)

KrpE), &cpm' 4E

where E, is the screening energy=h'/2mho' with XD
being the Debye screening length.

pp. '=p,. '(0)L1+A(ro)F'/FoPj (2.21)

provided F&(Fp/gA, where

Fo= (1/e)(& ' E')me'ke/A', —

3~L(1+vo)&'(vp/2) —37p o(vo/2)g
A(yo) =

8&p''ro' exphp)&o(7p/2)xl(Vo/2)]'

B. Polar Oytical Scattering

Since polar optical mode scattering has been found
to be very important in limiting the mobility in m-InSb
above 200'K, ' this mechanism may be at least partjy
responsible for momentum and energy loss by the
electron distribution in our samples at temperatures in
the vicinity of 77'K. Thus we shall quote the theoretical
results of Stratton' for the case of polar optical mode
scattering being responsible for both momentum and
energy loss. His results are for nondegenerate statistics
with either weak or strong electron-electron scattering.
For lattice temperatures much smaller than the optical
phonon temperature, 0, he found that, when electron-
electron scattering is weak, there are no quadratic
deviations from Ohm's law. This is because the mo-
mentum relaxation time due to polar optical scattering
7-p is independent of energy at energies small compared
to the optical phonon energy, kP, and moderate heating
of the carriers doesn't alter 7 p Hence the mobility,
which depends on a weighted average of wp, over the
electron distribution, is independent of electric Geld.

strength.
YVhen electron-electron scattering is strong, Stratton

found that quadratic deviations from Ohm's law do
occur even when T(&8. He gives the following expression
for the mobility for T&0 when electron-electron
scattering is strong enough to determine the momentum
and energy distributions of the electrons and polar
optical scattering determines the momentum and energy
loss rates of the electron distribution,
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TABLE I. Sample characteristics.and ys ——T/8, T=lattice temperature, ¹=[e'~~—1] '
and the E s are Bessel functions. Stratton gives a plot
of A (ys). When T/e +0,—Eq. (2.21) reduces to Electron

concen-
tration
(cc ')

Hall
mobility

at 4.18 K
(cm'v 's ')

Hall
mobility
at 77'K

(cm' v 's ')2II [~" '(0)j'
1s~ ~'=ps, ~'(0) 1— Fs . (2.22)

3T k(I/res

SourceSample

3.3—13 National .
Bureau of
Standards

Westinghouse
Research
Laboratories

Ohio
Semiconductor

Westinghouse
Research
Laboratories

Ohio
Semiconductor

Westinghouse
Materials
Engineering

Chicago
Midway
Laboratories

Westinghouse
Materials
Engineering

3.3X10» 112 000 8790
3.7—13

3.7X10»

2.8X 10'4

111000

522 000

201 000

279 000

2.8—14

3,0—14

37 6003 OX10'4

6 5X10'4
6.5—14

Nz~(eFskg/27re*4)(T, /8)' exp( —0/T, ), (2.23) 9.4—14

where e* is the effective charge of the lattice ions, or at
least greater than

9 4X10'4 82 000 18 700
3.9—15

54 5003 9X 10'5 130 000e„=res (T,/t)) [exp(e/T —II/T, )]—'. (2.24)

Equations (2.23) and (2.24) give the electron concen-
trations above which energy or momentum, respectively,
is lost to other electrons faster than it is lost directly to
the lattice via polar optical scattering.

146 000 1100008.7X10"

zero magnetic p~, would be negative

Note that P, the coefficient of F', is negative in contrast
to the case when ionized impurity scattering dominates
the momentum loss process.

In order for electron-electron scattering to be strong
enough for Eq. (2.21) and hence Eq. (2.22) to be valid,
Stratton finds that the electron concentration must be
greater than

C. Quantum Limit

When the motion of electrons in a nondegenerate
distribution is quantized by a magnetic field, 8, strong
enough so that Ace) kT, where ~=eB/rlc, the so-called
quantum limit has been. reached. In this regime the
momentum relaxation times for certain lattice scattering
mechanisms have an energy dependence opposite to
that in zero magnetic field. "When this is true, accord-
ing to a relaxation time model at least, quadratic
deviations from Ohm's law should be of opposite sign
in the quantum limit compared to the zero magnetic
6eld case.

The only quantitative theoretical result for the
variation of electron mobility with electric field strength
in the quantum limit has been worked out by Yafet
for the case of acoustic lattice scattering causing
momentum and energy losses. "Although this type of
scattering is probably not the important one in n-InSb
near 77'K, where we have quantum limit data, we shall
quote the theoretical expression for the mobility
because it will be useful in interpreting our data. It is

[ps,n(0) js kT
p~ n=ya n(0) 1+s F', (225)

s AM

where the 8 superscripts indicate the presence of a
strong longitudinal magnetic field. Note that in Eq.
(2.25) the coefficient of F', P~,n, is positive whereas in

'4 P. N. Argyres and E. N. Adams, Phys. Rev. 104, 900 (1956)
and E. ¹ Adams and T. D. Holstein, J. Phys. Chem. Solids 10,
254 (1959)."H. Yafet (private communication).

{ps.-—[» ~.(0)3'/s')

The kT/Ace factor in Eq. (2.25) arises because quanti-
zation forbids electronic transitions involving phonons
having less than a certain minimum momentum.

III. EXPERIMENTAL DETAILS

A. Specimens

The specimens were all e-type InSb cut, lapped, and
etched to about 10&2.5)& j. mm in size. Each had only a
few large grains. Two current and four potential leads
of No. 36 or No. 40 copper wire were attached with
InSb solder.

Some pertinent properties of the specimens are given
in Table I which also identi6es their source. Note that
the number identifying a sample is an abbreviation for
the carrier concentration. To minimize extraneous
effects, e.g., sample inhomogeneity, only samples in
which measurements of Hall e6ect and resistivity on
diGerent sets of leads agreed well were used and in
which there was no anomalous rise of Hall coefficient
with magnetic field strength, such a rise having been
correlated with sample inhomogeneity by Bate."

B. Experimental Technique

Measurements were made by means of a dc poten-
tiometer system with the samples immersed in a bath
of liquid helium, hydrogen, nitrogen or oxygen. Tem-
peratures were determined from the vapor pressure of
the baths. Magnetic fields were provided by an auto-

~6 R.T. Bate, R. K. Willardson, and A. C. Beer, Bull. Am. Phys.
Soc. 5, 152 (1960).
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l 54.0—

l 53.5

b l53.0

l 52.5—

36,6

0
36.0—

36.3
E

b

.52 K

33'K

l.27'K

liquid hydrogen temperatures in Figs. 1 to 4. The
conductivity o-, for a fixed lattice temperature has been
plotted versus the square of the electric Geld strength, I .
Straight lines of positive slope resulted at low electric
fields except for sample 3.3—13 at 4.2'K. (Note that
sample 3.3—13 has the smallest carrier concentration
which may make the electron temperature approxi-
ination a poor one. )

The linear dependence of cT on F' indicates variation
of the mobility due to moderate heating of the carriers
by the electric field as predicted by Eq. (1.1). That o.

increases with field strength is to be expected when
ionized impurity scattering determines the momentum
loss rate of the electrons. Other evidence for the latter
is provided by the fact that the magnitude and tem-
perature dependence of the observed Ohmic mobility
at the temperature in question are explainable using
available theory for ionized impurity scattering. '~

The deviation of 0- versus F' from linearity at the
higher electric fields reached in samples 3.0—14 and

.20—

35.7
0 .00l

F~(v~cm ~)

l

.002 .003 .l6

7 FIG. 1. Variation of electrical conductivity, o., with electric
Geld, Ii, for n-InSb samples having 8.7&(10'5 and 3.9&10"
electrons/cc. 0. is plotted versus Ia for various liquid helium
temperatures.

E .l2

b
~ 08

matically controlled A.D. Little Electromagnet and
measured with a rotating coil Quxmeter.

24

2,2

2.0

E
(3

l.8

b
l.6

14

1.2
0 ,Ol .02 .03

F (v crn )

04 .05

FIG. 2. Variation of electrical conductivity, 0-, with electric
held, F, for g-InSb having 3.0)&10'4 electrons/cc. 0 is plotted
versus F' for various liquid helium temperatures.

IV. RESULTS AND DISCUSSION

A. Low-Temperature Region

The dependence of the electrical conductivity of
m-InSb samples of various carrier concentrations on
electric field strength is given for liquid helium and

04

.02
0 .02 .04 .06 .08

F~ (v~crn ~3

.IO .l 2

FIG. 3. Variation of electrical conductivity, a, with electric
field, Ii, for n-InSb having 3.3&(10" electrons/cc. 0 is plotted
versus E' for 1.32'K and 4.19'K.

3.3—13 are due to terms in the conductivity dependent
on higher powers of the electric held. Such terms
become effective when 8 = (T, T)/T is not smal—l
compared to one. Using Eq. (2.5) and the observed
values of P (given by the slopes of o- versus J') we note
that for sample 3.0—14 at 4.2'K 5=1 when F'=0.027
v' cm '. Ke shall not discuss nonquadratic deviations
from Ohm's law. (Putley has observed such deviations
in ss-InSb at liquid helium temperatures and attempted
to fit calculated curves to the experimental cr versus Ii'
curves with some limited success. )"

The smaller rate of increase of 0- at the highest fields
in sample 3.3—13 at 1.32'K and sample 3.0—14 at
liquid hydrogen temperatures suggests that an addi-
tional energy loss mechanism is becoming important.
A rough estimate indicates that this mechanism may

"See for example, F. J. Blatt, Sold State Physics, edited by
P. Seitz and D. Turnbull (Academic Press, Inc. , New York,
1957), Vol. 4, p. 343R."E'. H. Putley, Proc. Phys. Soc. (London) A73, 280 (1959).
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3.0 —l4

4.8—

b
3.8

20.3 K

3.6

3.40 .0 I .02 .05 .04
F2(v~cm

FIG. 4. Variation of electrical conductivity, 0., with electric
field, F, for m-InSb having 3.0&(10'4 electrons/cc. o is plotted
versus F for two liquid hydrogen temperatures.

.06.05

be polar optical mode scattering in the case of the
liquid hydrogen temperature data. In our analysis we
shall be concerned only with deviations in 0 which are
proportional to Ii' as F—+ 0.

A summary of the liquid helium and liquid hydrogen
results for various samples is presented in Fig. 4 where
P=&p/IJsI"'' is plotted versus lattice temperature. The
parameter p was determined from the slope of the
linear part of the a- versus Ii' curve for the sample in
question. Values of P are also given for an additional
sample besides those for which data were given in
Figs. 1 to 4. From Fig. 5 it can be seen that P is
smaller the higher the carrier concentration. This
suggests the presence of the effect contained in Eqs.
(2.5) and (2.13) due to the carrier distribution being
more degenerate in samples having more carriers.

To test this hypothesis we have plotted P/ps versus
carrier concentration in Fig. 6. The carrier concen-
trations were obtained from the Hall coeKcient and are
listed in Table I. The Ohm s law mobility, p, o, is calcu-
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Fro. 5. Dependence of P on temperature for samples of n-InSb
with various electron concentrations. P—=Lo (F)—0 (0)j/0 (0)Fs
when 0. versus F' is linear.

105

scattering mobility connected with the energy loss
mechanism, for each of our samples at liquid helium
temperatures and also for sample 3.0—14 at liquid
hydrogen temperatures. The resultant values of p, &

at 4.18'K are plotted versus carrier concentration in
Fig. 7. From these p~ values we calculated the value of
the associated average mean free path /I. by means of
Eq. (2.10). These mean-free path values are listed in
Table II and are quite large (of the order of 1 cm).
Indeed the mean-free path for energy loss may be even
longer (as discussed by Greene). ' Both /I and the asso-
ciated m.f.p. for energy loss can be longer than the
sample dimensions because the electron suffers many
changes of direction between phonon scatterings due to
the very short m.f.p. for scattering by ionized impurities,
lr (see Table II). Specifically the net rms distance

lated from the measured conductivity and the number
of carriers. Data for a lattice temperature of 4.18'K
are used rather than lower temperature data because
the classical approximation for the phonon distribution,
i.e., Eq. (2.3), applies at 4.2' but not at 1.3'K, and it
is for this approximation that the relations given in
Sec. II were obtained. At 4.18'K the Fermi energy of
all samples having more than 3&(10r4 carriers/cc is
large enough so that the simpler Eq. (2.13) rather than
Eq. (2.4) can be used to interpret our results. From
Fig. 6 we see that our experimental P/ps varies roughly
like 1/e. The behavior predicted by Eq. (2.13) is
p/p, s-p, r,/f's, and since f mi, if pl. were independent of
n, this would give I(I/ps 1/e&. The somewhat low value
of P/p, p for the 3.0—14 sample may be due to incomplete
statistical degeneracy. At any rate the 1/fs factor
accounts for the general dependence of the experimental
p/F, s on e.

Using our experimental values of P along with Eqs.
(2.5) and (2.6) or (2.12) we deduced pr„ the lattice

)
tO

IO

l0 1015

n (cc')

I I I

1016

FIG. 6. Dependence of the experimental p jp0 at 4.2'K on
electron concentration. p, 0 is the Ohm's law mobility. For corn-
parison a straight line of slope= —1 has been included.
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TABLE II. Characteristic energies and lengths for degenerate samples T=4.18'K.

Sample

3.0—14
9.4—14
3.9—15
8.7—15

3.2
7.4

19.4
33

(10 'cm)

0.46
2.4

18.5
49.3

(10 ' cm)

56
105
313
425

(10 ' cm)

4.6
3.7

17.5
46.3

(44,)'

(10 ' cm)

0.51
0.62
2.34
4.43

(10 ' cm)

5.0
4.1
3.24
2.85

('K)

13
20.3
32.5
42.1

1.0
1.5
2.5
3.3

lOio—
T= O. ls'K

&cous.

traversed between scatterings by phonons is f(ll/li)]-'l~
= (ll.lr) ', since ll,/li gives the average number of scatter-
ings by ionized impurities between scatterings by the
phonons. Table II lists the values of (lz/lr)*' for the
various samples. It is satisfying to note that for each
sample (l~lI) l is much smaller than the sample dimen-
sions. Since scatterings by impurities are so much more
frequent than scattering by phonons, the question arises
as to whether a small but ordinarily neglected energy
loss due to ionized impurities may be important. Greene
has estimated the energy loss via scattering by ionized
impurities. ' It turns out to be small compared to the
energy loss to acoustic phonons under the present
conditions.

To determine the type of lattice scattering responsible
for energy loss, we have plotted in Fig. 7 the theoretical
mobilities for screened acoustic and screened piezo-
electric scattering along with the lattice mobility
deduced from our experimental values of p. The theo-
retical mobilities were calculated by applying a screen-
ing factor correction given by Eq. (2.19) or (2.20), in
which we set E=l, to the mobiHty given by Eq
(2.15) or (2.17), respectively.

Note that pL, deduced from the experimental p
varies with carrier concentration in about the same way
as the "piezo" curve and is closer to it than to the
"acous" curve. To obtain more quantitative agreement
between pr, from p and the theoretical piezoelectric
scattering mobility would require e~4 be smaller than
the theoretical value by about a factor of two. Such a
smaller value of e~4 is quite reasonable, since it is known
that in ZnS the measured value of e~4 is a factor of
about five smaller than the theoretically calculated
one."Kith a value of e~4 of ~ the theoretical one all the
energy loss at 4.2'K can be accounted for by piezo-
electric scattering alone.

Next we deduced the temperature dependence of
p&. from our experimental values of P by using Eqs.
(2.5) and (2.6) or (2.12). The results are presented in
Fig. 8. From this figure we can see that at liquid
helium temperatures the deduced p, i, varies about like
l "for three of the samples and about like T ' for
sample 9.4—j.4. The reason for the different temperature
dependence of pl, in sample 9.4—14 is not known,
although it may be noted from Table I, that this sample
has a lower ohmic mobility than would fit the general
mobility versus e pattern.

The temperature dependences of pr, deduced from p
are greater than expected from theory using the classical
approximation for the phonon distribution which
predicts a 1/T variation for either acoustic or piezo-
electric scattering when the electron distribution is
statistically degenerate. A possible explanation of the
strong temperature dependence of pi is that since
Eq. (2.3) fails to hold somewhere below 4.2'K in the
samples of interest (see Table III) there are fewer
phonons available to scatter the electrons and hence
a higher pL, than otherwise. Although the mobilities
and energy loss rates could be calculated for the case
when Eq. (2.3) fails, we have not done so because it
would require a prohibitive amount of numerical
integrations.

TABLE III. Temperature at which maximum phonon
energy' equals thermal energy.

io'
)ol4 to"

n (cc')
(
o(6

Sample

Fio. 7. Lattice scattering mobility at 4.18'K as a function of
electron concentration. The circles give the values of yr, deduced
from the experimental values of P. The curves are calculated from
theory for piezoelectric and acoustic scattering assuming strong
electron-electron scattering and include a correction for screening
of the lattice potential by the electrons.

3,0-14
9.4-14
3.9—15
8.7—15

Calculated from As@max =2{2ms23')&.

1.2'K
1..7
2.8
3.6
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B. Vicinity of 77'K

The variation of the electrical conductivity of a
number of samples at 77'K with electric 6eld is pre-
sented in Fig. 9. The ratio of the conductivity to that

. at zero electric Geld is plotted versus the square of .the
electric field. For each sample the data fall along a
straight line. The slope of the line depends on the
sample in question. For sample 3.3—13 which has the
lowest mobility the slope is positive while for the other
samples with higher mobilities the slopes are negative,
being more negative the higher the mobility.

The linear dependence of the conductivities on the
square of the electric Geld are interpretable by means of

1 pl 0

O
II

b

b

1.01

1.00

.99

.98
0

T=77 K
l!2 000 cm v' s'

522 000

I

.03 .06
F (v cm j

.09

FIG. 9. The relative conductivity versus the square of the
electric field for a number of n-InSb samples at 77'K.

1P9

Slope =-1.75

Slope =-P.l

ip'—

tp7

\

\

~ 3.3-13
3.0-14
9.4-14
3.9-15
8.7-15

1 i t 1

2 10
T ('K)

20 40

FIG. 8. Temperature dependence of the lattice scattering
mobility, pl„deduced from experimental values of P. Slopes of
straight lines drawn through some of the data are indicated.

Eq. (1.1) as variation of the mobi1ity due to small
amounts of carrier heating by the electric field. The
effects in the various samples can be interpreted
qualitatively as follows.

The positive deviation from ohm's law for sample
3.3—13 is due to the mobility in this sample being
determined by ionized impurity scattering. Evidence for
the latter is provided by the low value of the mobility
(112 000 cm' v ' s ') compared to that of other samples
and the fact that the mobility of this sample is an
increasing function of temperature around 77'K. (See
Fig. 12.)

The different amounts of negative deviations from
Ohm's law for most of the samples are due to lattice

90'K
77
73
65

14.6&(10'» cc '
7.76
6.2
3.62

4.54)&10'4 cc i
2.06
1.56
0.81

scattering being important to different degrees (with
impurity scattering accounting for the remainder of
the momentum loss). Evidence for the importance of
lattice scattering is provided by the fact that in these
samples the mobility is a decreasing function of tem-
perature around 77'K (e.g. , see Fig. 11).

As yet it is not known what types of lattice scattering
are important in e-InSb around 77'K. However the
value of the mobility calculated when scattering is due
either to the deformation potential or to the piezo-
electric polarization associated with acoustic modes is
much higher than observed in the purest material. Thus
we shall consider polar optical scattering which has
been shown to predominate in n-InSb above 200'K.'
Calculation shows that polar optical mode scattering
also gives much too high a value for the mobility at
77'K to be important when electron-electron scattering
is negligible. However, as noted in Sec. II, the eftective-
ness of polar optical mode scattering in limiting the
mobility is greatly enhanced when there is strong
electron-electron scattering. To see whether we should
expect strong electron-electron scattering in our
samples we have used Eqs. (2.23) and (2.24) to calcu-
late the critical electron concentrations for which
momentum and energy transfers to other electrons
equals that to polar optical modes. These critical.
concentrations are given for a number of temperatures
in Table IV. The samples we measured in this tempera-
ture range had electron concentrations between
3.3&&10" and 6.5)&10"cc '. Thus at 77'K e„at least

TABLE IV. Minimum electron concentrations needed for
electron-electron scattering to determine energy distribution, nz,
and momentum distribution, I„,when polar optical scattering is
operative.
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FIG. 10. Comparison of the variation of the relative conduc-
tivity of e-InSb, sample 6.5—14, in a strong longitudinal magnetic
field and in zero magnetic field at temperatures between 65'K
and 90'K.

falls within this range of concentrations indicating
that e—e scattering may be quite important.

With the inclusion of strong electron-electron
scattering, the negative deviations from Ohm's law
which we observe at 77'K can be explained quali-
tatively as due to polar optical mode lattice scattering.
(For weak e—e scattering there should be no quadratic
deviations from Ohm's law due to polar optical scatter-
ing when 2'((0.)' The higher the mobility the more
negative the deviation is, in general accord with the
theoretical Eq. (2.21) or (2.22). For a quantitative com-
parison with the theory we note that for sample
2.8—14 with the highest mobility and thus with the
most nearly pure lattice scattering, P at 77'K has a,

value of —0.53 v ' cm'while Eq. (2.21) predicts a value
of —0.0087 v ' cm'. Thus P, ~=60/&&,» and the energy
loss rate in our sample is almost two order of magnitude
smaller than predicted by theory. This large discrepancy
raises the question as to whether the theory is at all
applicable. If it is, the discrepancy may be due to
electron-electron interaction being relatively less eQ'ec-

tive in enhancing the energy loss than the momentum
loss to polar optical modes in our samples. Perhaps this
might occur because the electron concentrations in our
samples lie between the critical concentrations at which
e].ectron-electron scattering determines the energy and
momentum distributions of the electrons.

The variation of the conductivity with electric field
strength for sample 6.5—14 at various temperatures is
presented in Fig. 10 both for zero magnetic field and
for a longitudinal magnetic field of 27 kgauss. In each
case o./o (F=0) is plotted versus F'. When no magnetic
Geld is applied, the data for a given temperature fall
along a straight line of eegative slope. However, in the
presence of a magnetic Geld of 27 kgauss, which is
sufhcient to quantize electron motion, the data for each
temperature fall along a straight line of positive slope.
This change of sign of the deviation from Ohm's law
by the magnetic field we interpret as due to the energy
dependence of the momentum loss rate in the strong

magnetic Geld case being opposite to that in zero
magnetic Geld.

The observed temperature dependence of P for sample
6.5—14 is plotted in Fig. 11. For zero magnetic Geld
between 65'K and OO'K P remains negative and
decreases in absolute value as the temperature as
increased. This is expected since in this temperature
range the mobility of the sample decreases with in-
creasing temperature. (See Fig. 11.) However the size
of the observed temperature dependence is much
smaller than predicted by theory as given by Zq. (2.21).
The reason for this discrepancy may be the same as that
suggested to explain the discrepancy between the
observed and theoretical magnitudes of P at 77'K.

To interpret our data in the strong magnetic Geld
case we shall resort to Eq. (2.25) even though the latter
is for acoustic (deformation potential) scattering which
is probably not the important type of lattice scattering

3

6.5 —
I 4.

.6—

B= 27KG

.2

O
ll—

I

0
65

i l t p
75 85 9 i 65 75 85 9 I

T(oK} T( K)

FIG. 11.Temperature dependences of ~P ( and the (Ohm's law)
mobility in e-InSb, sample 6.5—14, between 65'K and 90'K in a
strong longitudinal magnetic QeId and in zero magnetic field.

in I-InSb at 77'K. To make Zq. (2.25) more applicable
to the case of polar optical mode scattering we replace
s' by k8/m. In addition, because of the presence of some
impurity scattering we shall replace Ltd, n(0)$' by the
product of the observed Ohmic mobility of the sample
in question and that of the most pure sample, the latter
giving a rough (under) estimate of the lattice scattering
mobility. Using Eq. (2.25) in this manner we calculate
for sample 6.5—14 at 77'K a value for P of about
0.66)&10 ' cm' v ' which is five orders of magnitude
smaller than the observed value of 0.42 cm' v '. Since
there is some evidence that piezoelectric scattering may
be important at 77'K at least in high purity e-InSb
when a strong magnetic Geld is present, "we shall now
use Eq. (2.25) without replacing s' by kg/m. (Rather s'
should be replaced by s" which however is expected to
be similar in value to s'.) Upon doing so, we calculate

"R.J. Sladek, I. Phys. Chem. Solids (to be published).



QUADRATIC DEVIATIONS FROM

OHM�
'S LA W IN e —TYPE InSb 1599

for P a value of 0.21 v ' cm' which is only a factor of
two smaller than the observed value. It should be noted
that, for zero magnetic field, piezoelectric scattering
could not be the important type of lattice scattering
because, if it were, a negative P would be impossible.

The temperature dependence observed for P in a
strong magnetic field in sample 6.5—14 is reasonable in
that P decreases as the Ohmic mobility decreases
(see Fig. 11) and also presumably the lattice scattering
mobility decreases. A more quantitative comparison
with theory represented by Eq. (2.25) is ambiguous
because of our not knowing very well what mobility
values to use in the latter.

For sample 3.3—13 P and the (ohmic) mobility
between 65' and 90'K are plotted versus temperature
in Fig. 12. Note that both p and the temperature
derivative of the mobility, dfj/dT are positive, while
for each of the purer samples, in zero magnetic held,
both P and dIJ/dT are negative (e.g. , see Fig. 11).
Actually the sign of p should be the same as that of
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Fro. 12. Temperature dependences of P and the (Ohm's law)
mobility in n-InSb, sample 3.3—j.3, between 65'K and 90'K.

dfj/dT, since the signs of both these quantities depend
on the process by which momentum is lost from the
electron distribution. Thus the observed correlation
between the signs of P and dp/d T is reasonable although
not actually required by the above considerations
since dp/dT might in principle have a different sign
than dp/dT~.

For sample 3.3—13 Fig. 12 shows that P increases
with increasing temperature between 65'K and 90'K.
This is consistent with Eq. (1.2) in that the observed

ohmic mobility also increases with temperature in this
range. However Eq. (1.2) also states that p should be
proportional to the mobility associated with the energy
loss process, p, L,. Since the latter presumably decreases
as the temperature is increased while p, o increases only
slightly with increasing temperature, it is not clear
that the observed dependence of p on temperature can
be accounted for by means of Eq. (1.2).

V. CONCLUSIONS

By measurements of quadratic deviations from Ohm's
law in n-InSb at low temperatures, the types of scatter-
ing which are important for both momentum and energy
loss can be deduced and the eftects of carrier degeneracy
can be studied.

At liquid helium temperatures impurity scattering
limits the mobility, piezoelectric scattering is largely
responsible for energy loss by the carriers, and carrier
degeneracy effects occur.

At liquid hydrogen temperatures impurity scattering
again limits the mobility. Energy loss to polar optical
modes may be important after a certain electric field
strength is reached.

In the vicinity of 77'K the value of p can be explained
qualitatively in terms of the magnitude and tempera-
ture dependence of the Ohm's law mobility. Quanti-
tative conclusions from our data in this range are less
certain because of the lack or inapplicability of existing
theory. Among these conclusions are that (1) polar
optical mode scattering enhanced by strong electron-
electron scattering is the important type of lattice
scattering in zero magnetic field, and (2) that a strong
magnetic field changes the sign of deviations from
Ohm's law by altering the energy dependence of the
momentum loss rate.
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