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The method of Luttinger and Tisza for finding the rigorous minimum of a quadratic form subject to
certain strong constraints is generalized. In the extended method, one still minimizes the quadratic form with
respect to a single weak constraint, which however now contains adjustable parameters. In determining the
ground state for the classical Heisenberg exchange energy, some cases involving crystallographically non-
equivalent spins can now be handled. The following applications are made. The ground state for a linear
chain with two different types of spins is obtained. UVe then prove, that in the cubic spinel the Weel configura-
tion is the ground state if it is locally stable —that is, it is never metastable. This result was assumed in a
recent perturbation theory of spin configurations. Finally, a similar result concerning the Yafet-Kittel
triangular configurations in noncubic spinels is discussed. In the course of the analysis it is shown that the
ground state is always a spiral for any lattice in which the spins are equivalent.

nv, mp,

Jnv, mpS nv '
Smyth (2)

where J„„,„is the exchange parameter connecting sites
R„„and R „.The problem is to find the set of spins that
minimizes E subject to the constraints

w E are concerned in this paper with the problem
of finding the ground spin-state in complex

lattices. More precisely, we wish to determine the set of
spin vectors assigned to a set of atomic positions in a
crystal which minimizes the classical Heisenberg ex-
change energy. Ke use the following notation. Let R„
be the vectors of the direct lattice and

R „=R„+t~„, v=1, 2, , p; m=1, 2, , cV, (1)

be the positions of the magnetic atoms, so that there are

p spins per primitive unit cell, and cVp spins in the
lattice. If S „ is the spin at position R„„, the energy is

It is sometimes useful to think of the L-T method in
geometrical terms. For ease of illustration, consider an
Ising problem with two variables, p, & and p2. The energy
is then a function, 8(pi, p~), to be minimized subject to
the strong constraints p, =1, represented by the four
dots in Fig. 1. The weak constraint pP+pP=2 corre-
sponds to the circle in Fig. 1. It is clear that if 8(1,1),
say, is the minimum value of 8 for all (p, ,p,) lying on
the circle, then h (1,1) ~& 8 evaluated at the other strong
constraint points. This is the gist of the Luttinger-Tisza
method.

As Luttinger and Tisza showed, the favorable situa-
tion where the minimum-energy state for the weak
conditions satisfies the strong conditions occurs quite
often. In fact, as is well known (and as will be seen

explicitly below), the L-T method works whenever p = 1,
i.e., whenever all the spins are equivalent. ' It has been
generally felt that the method fails when p) 1, i.e., for

S.. S„,=S„', (3)

which fix the magnitude of each spin vector. Although
generally speaking this problem is difficult, Luttinger
and Tisza' (L-T) noted the following. If we sum the
"strong constraints" (3) over all the spins, we obtain

GENERALIZED WEAK

L-T WEAK

as a necessary, but not sufficient condition for the
validity of (3). Now consider another problem: that of
minimizing E with respect to the "weak constraint"
(4). This is a much simpler problem, the solution re-
lating the set of spin vectors to the lowest eigenstate of
the matrix of the quadratic form E. If this solution
should turn out to satisfy the strong constraints (3), it
then follows that this solution is the rigorous answer to
the original problem. If however (3) is not satisfied, then
no progress has been made towards solving the original
problem.

FIG. 1. Constraints for two-particle Ising problem. The strong
constraints are satisfied at the dots.

*Operated with support from the U. S. Army„wavy, and Air
Force.

' J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946);J. M.
Luttinger, Phys. Rev. 81, 1015 (1951).

2 This is true for the Heisenberg problem; it is also true for the
Ising model defined by I'=Z J;;S S,', where S,' is the s com-
ponent of a vector of fixed length; but it is not true for the Ising
model defined by j'=2 J;;p;p, ; where each p; has &1 as its
possible values.
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nonequivalent spins. We shaH show that this is only
partially correct, the I,-T method working for some
situations when p) 1; however, it does not work for
others.

It is, of course, desirable to find an extension of this
method capable of handling a larger class of problems.
We shall give such an extension based on the observa-
tion that letting

Q„J.,„(k)Qk„=XnPQk„.

Pkv &vQkvy

(14)

(15)

Hence the minimum 8 is obtained for the minimum )
for which solutions of (12) exist.

For the applications to be considered here, it is
sufhcient to choose the n, =o., independent of n, so that
A„(k—k')=nP8k, k. Then (12) becomes

err„„'S„„S„,=+ a„„ss„s, (5) (14) becomes
n, v n, v

also write
S„„=gkexp(ik R „)Q„„; (6)

n„„s=Qk exp(ik R„„)A„(k). (7)

The k are the rationalized reduced reciprocal vectors in
the first Brillouin zone. Then, since we can write

J„,, „=J„„(R„—R„)=J„„(R„—R„), (8)

we obtain for the energy (assuming periodic boundary
conditions)

where n„, are any real, nonzero numbers, ' independent
of the spin vectors, is also a necessary but not sufficient
condition for (3). That is, the class of all sets of spin
vectors { . S„„.. }=8 that satisfy (5) must include
all sets g that satisfy (3), but includes some g that do
not satisfy (3). Equation (5) represents a 3lVp-dimen-
sional ellipsoid, shown in Fig. 1 for the simple case con-
sidered there. Hence, again, if the solution to the
problem using the single weak condition (5) happens to
satisfy (3), the original problem will have been solved.
We shall show that a simple choice of the O.„„allows us
to solve physically interesting problems for which the
original L-T method fails.

To take advantage of the translational symmetry,
we transform to new variables Qk, as follows:

where
Q„Z„„(k)Pk„——) Pk„,

z,„(k)=p„p„L,„„(k)

(16)

(17)

—1v=&v

With this specialization, the weak constraint (10) is

Zpk Pkp Pkp gy cry Sp

and the energy in a state satisfying (16) is

8=X Q o.„sSP. (19)

The basic equation (16) reduces to that occurring in the
L-T method when P„=1, all v.

The procedure now is to find the lowest eigenvalue )
of the matrices Z„„(k) (one matrix for each k in the first
Brillouin zone). This minimum eigenvalue will, for a
given crystal, be a function only of the p, :

)=z(p, p) (20)

Let kp and —kp be values of k for which this minimum
occurs, with corresponding normalized eigenstates
gi=g, P„} and Q*, respectively. Note that these
states will also be functions only of the P„.According to
(16), minimum energy solutions of the weak constraint
problem are given by

S=E/E=Pg Q„,„l.„„(k)Qk,* Qk„,

and the weak constraint (5) becomes

(9) 0, kWWkp
Pk„' c,p„, k= kp, ——

.c,*it„*, k= —k,
(21)

g Q A„(k—k')Qk„" Qk „——P A, (0)S,s. (10)

Here

1.„„(k)= P expt ik (R „—R„„)7J„„(R—R„)

=L„„(k)*. (11)

In the state that minimizes h subject to the constraint
(10), it is easy to show (e.g. , by the method of Lagrange
multipliers) that the Qk„must satisfy

Q„I.„„(k)Qk„——X pk A„(k—k')Qk „, all k, (12)

where X is a constant independent of k. Using (12) and

(10), the energy becomes

8=X P.A „(0)S,s. (13)
' The restrictions on the coefficients in (5) were chosen in order

that the minimum of F subject to (5) be bounded.

where Pk„', i=@, y, z, are cartesian components of Pk„
and the c; satisfy

2 p, ~c, ~s=p n pS p, (22)

but are otherwise arbitrary. ' It follows from (6), (15)
and (21) that

S„„=p„P, tzciet p, x(ik Rp„„)

+c,*f,* exp( —ikp. R„„)7, (23)

giving, for di6'erent choices of the c, consistent with

(22), various minimum energy spin configurations for
the weak constraint problem.

' This procedure may be looked upon alternatively in terms of
the 3pX3p matrix 1.„„'&(k) =8;;1.,„(k), i, j=x, y, z. Then the 3p-
dimensional vectors kI ~

= ($,0,0), %'s = (0,$,0) and%'3 ——(0,0, Q)
are degenerate eigenvectors of 1.„„'&'(k) and so any linear combi-
nation Z c;%'; is also an eigenvector. Equation (23) follows
essentially from this consideration.
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We must now see if there is any choice of the P, (real)
and c, such that (23) satisfies the strong constraints (3).
At first sight, it appears that this will always be pos-
sible. For, if we choose c,=-c/2z, c„=c/2, c,=o, c=c ',

and write P„= ~f,
~
exp(iP„), (23) becomes

S„„=cp„~lk„~(i sin(ks R„+@„)
+j cos(ks R„+p„)}. (24)

Note that this represents a spiral, ' ' or rather a set of p
spirals, one on each sublattice v, having the phase p„,
respectively. ' Also, to within rotations of the plane to
which all of the spins are parallel, Eq. (24) is the only
configuration derivable from (23) giving (S,) inde-
pendent of ts. Using (24), the strong const;raints (3)
become p equations in the p unknowns Pi P~:

where f, ( P„)—= ~
P„~ . If these equations have finite

real P„as their solution, then the original problem will
have been solved. However, such solutions do not
always exist. For example, some of the f„might be
identically zero (see Example 3 below), so that if the
corresponding S„AO, there is no solution. On the other
hand, for a given lattice with definite exchange param-
eters J,, „, we see that there will always be some set
(or generally, sets) of spin-magnitudes 5„ for which
the spiral configuration (24) is the ground state.

In the discussion preceding Eq. (24), only the de-
generacy with respect to uniform spin rotations and the
transformation ks to —ks was utilized in attempting to
satisfy the strong constraints. If there is additional de-
generacy of the lowest eigenvalue, there is additional
freedom for the construction of a solution to the weak
constraint problem that will satisfy the strong con-
straints. In fact, an essential ingredient in discussing the
Yafet-Kittel triangular configurations (Example 3), is
to use the P„ to force some degeneracy.

Q~e conclude this general discussion by considering
the simplest case p= 1 (all spins equivalent). Then it is
seen in Eq. (24) that Pi adds nothing to the L-T method
since P, is arbitrary I 2,„ is now 1X1, and the eigen-
values are simply Z»(k) —=2 (k)]. Clearly Eq. (24) with

pi ~it'i
~

=St satisfies the strong conditions for any k, so
that the original L-T method always works for this case,
and the ground state is ahtays a spsral defined by the
k that minimizes Z(k).' It is important to realize in this

' A. Yoshimori, J. Phys. Soc. (Japan) 14, 807 (1959).
'T. A. Kaplan, Phys. Rev. 116, 888 (1959).' J. Villain, J. Phys. Chem. Solids 11, 303 (1959).

Such configurations have been studied in connection with
spinels by E. F. Bertaut, Compt. rend. 250, 85 (j.960).

~ Villain (reference 7) obtained essentially this result: He showed
that the minimum energy spiral [Eq. l24l] is locally stable, i.e.,
stable with respect to sufIIciently small spin deviations, for the
general lattice with p = 1 (Bravais lattice). Our result precludes the
possible existence of a lower state which differs from the lowest
spiral by large spin deviations. It is to be noted that this result
implies that, whenever the spins are equivalent, the only state
with nonzero total spin is the ferromagnetic state, which is a k=0
"spiral" (it is impossible to have a ferrimagnetic ground state) and

connection that the equivalence of the spins depends
entirely on the symmetry properties of the exchange
energy (2). In simple terms, in any physical problem,
one may determine whether or not the spins are equiva-
lent by the following recipe: first determine the exchange
parameters J„(which may be due to indirect exchange
via nonmagnetic atoms); then imagine the lattice with
all nonmagnetic atoms removed, assign the number S„
to the appropriate magnetic site, J„ to the line con-
necting (magnetic) sites e and ns; if the resulting picture
is invariant to any tra, nslation e —+ m, then the spins
are equivalent.

( cos2ka JP coska)

E JP coska P' cos2ka)

where we have taken J~g= Jiis ——1, J~ii ——J, P, =l,
Ps

——P and (a) as the nearest neighbor distance. For
definiteness, we assume the interaction parameters are
positive. The spin ratio 5=—Sii/5@ does not appear ex-
plicitly in Eq. (1.1) but will influence the choice of P.
The original L-T method corresponds to putting /= 1.
In this case, the eigenvectors of (1.1) are (1,1) and
(1, —1) for all k. Since in general these vectors are not
degenerate, the only spin ratio for which this approach
would work is S= 1. (See Eq. 25.)

For arbitrary P and fixed k, let X (P,k) be the smaller of
the pair of eigenvalues of (1.1), and let

(1 2)

If the eigenvector associated with Xs is (PgpPs), then we
have from Eq. (1.1),

lP~ cos2k pa+Pre JP coskpa =Xplf g, (1.3)

where we may take P~ and Pii real. The strong con-
straints as expressed in Eq. (25) become

& I
+~ I/I +~ I

=5
Combining this equation with (1.3) gives

cos2koa~ JS coskoa =Xp.

(1.4)

(1.5)

that, except for quite special degenerate cases, the spins are
necessarily all parallel to one plane. Any experimental deviations
from this must be due to deficiencies in the energy expression (2).

Example 1. The Linear Chain with
Nonequivalent Spins

We now consider in detail the linear chain ABAB
with nearest and second nearest neighbor interactions as
a simple illustration of the foregoing method and one for
which a complete solution is obtained. In the course of
the discussion we shall see clearly why the original L-T
method fails for the linear chain in the case of non-
equivalent spins and how the difhculty is overcome.

Letting v= 1, 2 refer, respectively, to the A and 8
sites, the matrices defined by Eqs. (11) and (17) are
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If we can now find a real value of P such that the ks and
) s defined'by (1.2) also satisfy (1.5), we will have shown
that the ground state is a spiral of wavelength 2m/ks, as
discussed in the first part of this paper. The determi-
nation of such a p is most easily done as follows. The
energy of a spiral of wavelength 2s./k is proportional to

h = (1jS') cos2ka —2JS coska.

Hence by differentiating (1.6), ks must satisfy

(1.6)

where
sinksa(cosksu —ii) =0,

p= Js/2(1+S').

(1.7)

A second differentiation of (1.6) shows easily that mini-
mum energy is obtained at kp= 0 for p, ~&1 and at
kpu= cos 'p, for p(1. These values of kpu may then be
seen to satisfy Eqs. (1.5) and (1.2) with the following
values of p and Xs.

Case I. p, ~&1, kpu=0.

TABLE I. Eigenvalues and eigenvectors for %=0.

(1,1,a1,a1,a1,a1)
(0, 0, 1, —1, 0, 0)
(0) 0, 0, 0, 1, —1)
(0, 0, 1, 1, —1, —1)
(1, —1, 0, 0, 0, 0)
(1~

1)a6)a6)a6)a6)

to give the derivation in terms of our extended L-T
method as a simple illustration. For the spinel there are
six spins per primitive cell (two A's and four B's); let
v= 1, 2 refer to spins A ~ and A2, v=3, 4, 5, 6 refer to the
8 spins. We restrict ourselves to normal cubic spinels,
the generalization to tetragonally distorted spinels in-
cluding A —A interaction to appear in a future publica-
tion." It is suKcient to choose our parameters P„as
Pi Ps 1——, P——3 P4 P5 Ps P The.n the matrix
9=3J&nB' defined by Eq. (17) is given by

JS'—S

J—S

~p= 1—JS.
Case II. p, (1, kpa=cos 'p

(1.9a)

(1.9b)

0 0 Pr)i Pris Pr) s

pt7i* prii o p'5 i » p'5 i »
pr)s* pcs PYiis o PYiss
Pr)s* Pris P'$'i» P'$'ass 0

.Pn4* pn4 p'Ai4 PYts4 p'5'is4

pi)4
pn4*

p'Ai4
, ( )

5'i s4

0

Ss+2psS4

S'+2p, '
(1.10a)

$'= 2$/3= 2Jiiii/3Jgn. (2.2)

where i)„and i „„reafunctions of k defined in reference
10, and

(1.10b)

Note that (1.9a) and (1.10a) are equal when ii= 1.This
completes the proof that the ground state of the linear
chain is rigorously a spiral with wavelength given by the
above formulas.

Examp1e 2. The Neel Configuration in Syinels

The chief result to be obtained in this example is a
proof that the Neel configuration Cp is the ground state
if it is locally stable (i.e., stable with respect to suffi-

ciently small spin deviations). In other words, Cs is
never a metastable state. This was explicitly assumed in
a recent perturbation theory" of the ground state in
cubic spinels, based on the behavior of the energy as a
function of small spin deviations from Cp.

Although a proof of this theorem for nearest neighbor
A B(JQJ5) and B —B(J») interactions ha—s alr'eady
been given, "using the original L-T method, it is useful

"T. A. Kaplan, Phys. Rev. 119) 1460 (1960). See also the
Fifth Conference on Magnetism and Magnetic Materials, Detroit,
Michigan, &59 )Suppl. J. Appl. Phys. 31, 364S (1960)j."T. A. Kaplan, Massachusetts Institute of Technology Lincoln
Laboratory Group Report 53-30-1, March 17, 1960 (unpublished).
The case of nonmagnetic A sites in cubic spinels is also considered
in this report. It is shown, using the original L-T method, that the
minimum Ising energy is the same as the minimum Heisenberg
energy. J. Kanamori (private communication) has obtained the
same result. This supports P. W. Anderson's important result

First consider k= 0; then the r)„=i „„=1, for all v, p. The
eigenvectors V and eigenvalues 'A„, (ii=1, 6) are
given in Table I where O'V„=X„V„,V„=Q„i,f„s P„s)
and

a„=X„/4P, ii=1, 6. (2 3)

Noting that ai(0 (taking P)0), we see that Vi repre-
sents the Neel configuration. The ratio of the 8-spin
magnitude to that for the A's is

s—=s,/s, =p[ a, [
=-', )),[. (2.4)

$' 1—ps
(2 5)

Note that ps= J»sn/Jzns&= the y parameter defined
in reference 10. Thus there is a satisfactory solution (P
finite, real) only for y(1. The nonexistence of a proper
solution for y&~ 1 is of no consequence, however, since

[Phys. Rev. 102, 1008 (1956)), based on an Ising model, con-
cerning the large degeneracy in the ground spin state.

n K. Dwight, T. A. Kaplan, D. H. Lyons, and N. Menyuk (to
be published).

The factor of P enters in accordance with Eq. (15)
because the components of V are the values of the P
variables. Using the value of Xi from Table I, (2.4) can .

be solved for p giving
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this occurs outside the region of stability of the Neel
con6guration,

(2.6)

as determined by the method of small deviations. "
An interesting check on Eq. (2.5) may be obtained by

noting that the value of y for which the Keel con6gura-
tion breaks down as deduced from the Yafet-Kittel
theory, "namely y=4, should come just from our k=0
modes. From (2.4) we have Xi independent of $ whereas
X2 monotonically decreases as $ increases. When Xi——X2,

it is easy to see that $S= 4.
So, by choosing P as in (2.5), and properly normalizing

Vi, we have represented the Neel configuration Co as an
eigenvector of 9'(0) (for k=0) that satisfies the strong
conditions for any S~ and Sg. Hence, whenever the
corresponding eigenvalue, ) ~= —4S, is the lowest eigen-
value of the matrices 9'(k), for all k, Co is the rigorous
ground state. Consider the matrices K(k) =9'(k) —Xii,
where I is the unit matrix; then Co is the ground state
whenever K(k) is positive definite for all k. But the
coordinate transformation P„=S jk.' for v=1, 2 and
Q„=Sip 'f„' for 2=3, 4, 5, 6, is easily shown to take
K(k) into the matrix M(k) studied in reference 10 in
connection with the small deviations. Hence" the signs
of the eigenvalues of K(k) are the same as those of the
eigenvalues of M(k), which were shown" to be positive
in and only in the range (2.6). This completes the proof
that the Neel configuration gives the absolute minimum
of E whenever it is locally stable.

To see how the original L-T method works in this
case, we put P= 1. Then (2.5) gives S as a function f(()
so that Vi can satisfy the strong conditions only if we

happen to be considering a spinel with Sii/S~ related to
JBii/JAB by S=f(f) Howev. er, by writing the energy
in terms of unit vectors, it is easy to see that the ground
state can depend only on y= tS. Letting S2 f(&2), it-—
therefore follows that C2 is the lowest state for all $ and
S such that $$= PpSp. The details" now work out simi-
larly to those given above.

Let us return to the generalized L-T method, with the
choice of the p„ leading to (2.1). When y=-22, there is
another eigenvector, W of 9 which is degenerate with
Vi. The state W arises from the critical value k2 of k
found in reference 10 (ko is in the cubic L110j, the
wavelength being roughly twice the primitive transla-
tion in $110)).When y&2, the lowest eigenvector will

be approximately W. W does not satisfy the strong
conditions since in W there are two different amplitudes

~
Qq

~

for the 8 spins. Thus the method with this choice
of the P„ fails when the Neel configuration becomes
unstable in the present case of a cubic normal spinel.

'3 Y. Yafet and C. Kittel, Phys. Rev. 87, 290 {1952).
~4This follows from the fact that if we write the coordinate

transformation as V= TV', then the quadratic form (V,KV)
= (V',T+KTV') = (V', MV'), another quadratic form, with matrix
T+KT= M.

SA

Fro. 2. Schematic diagram of
Yafet-Kittel triangular con-
figuration.

8$

Example 3. The Yafet-Kittel Triangular
Configurations in Spinels

(3.1)

since then Vi and V4 are degenerate, and any linear
combination,

bzV, +c*"V4 (3.2)

is an eigenvector of 9(0).'4 Equation (3.1) gives

P2/S2 —9/ (2$2S2) (3.3)

Equation (2.5) for y~&4 and Eq. (3.3) for y)42 define

P/S as a continuous function of y. The strong conditions

'5 For distorted spinels, the important %=0 states are as given in
Table I, with modified values for a~ and a6. The) will be different;
in particular the triply degenerate set will be split."In the sense of reference 4.

It has been shown' "that the Vafet-Kittel" triangular
configurations C~ do not minimize the exchange energy
in cubic spinels, but that " they are locally stable in a
class of tetragonally distorted spinels. It is therefore of
interest to prove rigorously that a member of C& is the
ground state in these distorted cases. In these cases, of
course, 9(k) will be different from (2.1). However, we
will not go into the details of the distortion here (they
will be given elsewhere" ), since the crux of the problem
lies in the construction of an eigenstate of Q(k), for some
k, that gives the Yafet-Kittel configuration. Hence the
essence of the application of our method will be illus-
trated by working with (2.1)."Consider the k= 0 states
given in Table I. We saw in the previous example that
when P was chosen to make Vi represent the Neel state,
Co, then X~ &~ ) 2 when y &~ ~. But Vafet and Kittel showed
that the triangular configurations are of lower energy
than Co when y)4, showing that the states p, =2, 3, 4
are closely related to C&. In fact it is clear that these
states give Ci in the case Sg =0 (since f i——f 2

——0), the
8 sites being antiferromagnetic. Since, however, we are
interested in S&40, these states cannot satisfy the
strong conditions.

But since P is in general a function of the parameters
$, S Le.g., Eq. (2.5)j, there is no reason to preserve (2.5)
when y) 4. Now C~, shown schematically in Fig. 2, is
clearly a linear combination of Vi and, say V4, with Vi
and V4 referring, respectively, to the z and x components.
This suggests we choose P to make
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may now be satisfied by (3.2) by choosing h= Sz/P and

then

Stt (3 )s
c=—1—

i

—
i

p (4y)
(3.4)

S *=S I:1—(5)'3', (3 &-'), (3.5)

in agreement with the Yafet-Kittel result.
If, with the value of P given by (3.3), the eigenvalue

(3.1) were the lowest of all the eigenvalues of (2.1), (for
all k), then Cr would have been shown to be the ground
state. This is not the case, for any y, giving consistency
with the small deviations result. ' " For distorted
spinels, "however, the same procedure yields a proof of
the fact that the appropriate Vafet-Kittel conGguration
is the ground state whenever it is locally stable. "

'7 Note added im proof. This result, as well as that of Example 2
and the result discussed in reference 9, is easily generalized: In
any lattice, local stability of a configuration of cop/emur spins

SUMMARY AND DISCUSSION

%e have shown that a straightforward generalization
of the method of Luttinger and Tisza' allows the slou-
tion of the ground spin-state problem in some new and
physically interesting cases. The extended method has
been applied elsewhere" to spinels for which neither the
Neel nor the Vafet-Kittel conGgurations is the ground
state. Using the device of "forced degeneracy" discussed
in Example 3, it has been shown" that the ground state
for an interesting class of such spinels is a new type of
spiral which is ferrimagnetic.
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implies that the configuration is the ground state. However, we
have found that metastable configurations of noncoplanar spins
exist for some interactions in spinels.
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Pulsed Field Measurements of Large Zero-Field Splittings: V+ in A120,
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Use of pulsed magnetic fields for determining large zero-field splittings of paramagnetic ions is considered.
Measurements of zero-Geld splittings of over 50 cm ' are feasible; a numerical example for S= 1 is discussed
in order to indicate the present range and limitations of the method. The method is applied to measurements
of the zero-field splitting of V'+ in A1203 at 4.2'K and 1.5'K. Assuming g~a= 1.92, D= 7.85 cm ' was deter-
mined from experiments with 4 mm and 8 mm wavelength radiation and pulsed magnetic Gelds of the order of
100 kilogauss. The magnitude and sign of D are in good agreement with earlier estimates from optical and
microwave measurements.

INTRODUCTION

~ NERGY level separations of paramagnetic ions of
& the order of 10 cm cannot in general be readily

observed with conventional paramagnetic resonance
techniques. The present technology of millimeter wave
generation and detection permits only a limited
coverage of the frequency range of 10 cm ' and above. '
If, however, a very large external magnetic Geld is
applied along preferred directions it is possible in many
cases to "tune" one or more of the Zeeman levels of
higher states so that transitions can be observed at a
convenient frequency v which is much less than the
zero-Geld splitting. ' Such large magnetic fields can
easily be obtained for short times. In this note we indi-
cate some of the possibilities as well as the limitations
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of pulsed magnetic Geld techniques as applied to such
measurements. In particular we shall discuss the zero-
Geld splitting of V'+ in corundum which we have meas-
ured using this technique.

PARAMAGNETIC IONS WITH LARGE
ZERO-FIELD SPLITTINGS

A large number of paramagnetic ions show Stark
splittings between 1 and 50 cm—'. The ions fall into
three classes.

(a) Ions with an orbital singlet as the lowest Stark
level, and with an odd number of electrons. These ions
have long relaxation times in octahedral symmetries
but usually show small zero-field splittings. In the few
cases where the zero-Geld splitting is larger than 1 cm ',
the separation among the various Kramers doublets can
be inferred from a careful study of the angular depen-
dence of the resonance spectra. This method is, however,
not very accurate for D)&Itv. Zeeman levels of diferent
Kramers doublets can be brought together by the


