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Linear Decrease in the Magnetocrystalline Anisotropy~
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(Received July 18, 1960)

In a previous paper, an attempt was made to reduce the theoretical coercive force by assuming that the
magnetocrystalline anisotropy constant vanished in a certain region. A modification of this assumption
was made in the present work, namely, the magnetocrystalline anisotropy was taken as zero in a part of
the "imperfection" region and assumed to increase linearly to its constant value in the remaining part. The
coercive force is calculated as a function of two parameters: the dimensions of the zero and linear parts of
the imperfection region. A further reduction in the coercive force was obtained with respect to the previous
case, but there is still a large discrepancy between the calculated and experimental values, for reasonable
defect size.

n, =0, n„= since, o.,= costs,

where co is a function of x only. Minimizing the energy,
one obtains the following differential equation for ~.

2A d'cu/dx' K (x) sin2ar ——III,'sin&a =0. (1a)

Here A is the exchange constant and I, the saturation
magnetization. E(x) is assumed to have the symmetry
property

E(x)=E( x), —

I. INTRODUCTION

'HE present work is based on Rathenau et al. 's

suggestions, ' that domain walls might nucleate
at regions where, for some defect of structure, the local
magnetocrystalline anisotropy constant is low. In a
previous paper, ' it was shown that it is not sufhcient
for X(x), the magnetocrystalline anisotropy, to be a
step function, with a jump from zero to E. A gradual
change from zero to E seems to be needed. Therefore,
a linear change is assumed here.

More specifically, a ferromagnetic material, infinite
in all directions, which has an uniaxial magnetocrystal-
line anisotropy K(x), is considered. The external field
is in the direction of the s axis, which is taken also as
the direction of easy magnetization.

This implies that the direction cosines of the mag-
netization vector are:

d'~/dP+ T'h since+ T'f (1—i)/2m j sin2&u =0,
1&t&1+m,

d'cd/dt'+ T'h sin&a —i2 T' sin2~ =0, 1+m & f,

where

(2b)

(2c)

t =x/d, h = III,/2K—, T=dK'A '. (=3)

&u and its derivative are continuous everywhere (includ-
ing the points t= 1, f= 1+m), while the boundary con-
ditions are:

(u'(0) =(u'(~) =0. (4)

The reduced field h defined in (3) is given in terms of
2K/I„which is the coercive force for perfect material.
Therefore, solutions of (2) are sought only for h(1.

II. THE NUCLEATION FIELD

If one starts with a material magnetized in the +s
direction, reducing the field subsequently, a value h„
of h is found, at which the saturation solution co=0,
becomes unstable. Since any change is small when it
just starts, (2) may be written at nucleation in the form:

(u"+T'h(v=0, 0&1&1, (Sa)
m~"+T'(1+ kmt)M =0, 1 &(—& 1+m, (5b)

~"+T'(h 1)&u =0, 1+m—& t. (Sc)

The solutions of (5) for which the boundary conditions
(4) hold, are:

and to be of the form
P

0 if 0&x&d

co =C cosTh't, 0 & t & 1

(1+mb —t) ' (2mT 1+mb t *q—
) 'L3 m )

E(x)= ~ K(x d)/md if —d&x&d+md. (1b)

if d+md&xE
Using (ib) one can write the differential equation (1a)
in the form:

d'cv/dt'+T'h since=0, 0(t&1, (2a)
* This work will be included in a thesis by C. Abraham to be
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1(t&1+mb, (6bl)

)1+mb —tq l t'2mT 1+mb —t *'y

m ) l 3 m )
p2mT 1+mb —

& 'i
+82' 'E3 m )

1+mb& t&1+m, (6b2)
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co=D expL —T(1—h)lt), 1+m&t. (6c) l.0

Here, A, , B;(i=1,2), C and D are constants, and J is

the Bessel function of the first kind. From the con-
tinuity of rd and rd' at t= 1+mh, we get for (6b):

Ai — Ag —A) Bi=By=B

so that

f 1+mb t~—l )2mT-I+mh —t- -'~

AJ
m ) i 3 m

f 2mT 1+mb —t '~
+BJ;!

3 m

1&t & 1+mb, (7b1)
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FIG. 1. The nucleation field in terms of the coercive force of
perfect material, 2E/I, as function of the defect size parameters
T and m defined in the text.

)2mT-t —1—mh —:q

3 m i

Inverting (9),

h=9+(0/~)*) ', (11a)

I+mh& t& 1+m. (7b2)

TABLE I. The reduced nucleation field h as function of the two
defect size parameters T and m defined in the text.

0.546
0.265
0.152

0.388
0.171
0.098

0.305
0.136
0.080

0.224
0.104
0.063

Here I is the modified Bessel function of the first kind.
Using again smoothness of ru at the points t= 1, t= 1+m,
the following equations are obtained:

m= (3~/47) L1+ (0/~) ') (11b)

T= LI+ (0/~) ")*'. (11c)

The form of (10) compelled us to proceed as follows:
Arbitrary values of cr and P were introduced in (10)
subject only to the restriction that the values of p
found in this way should belong to the same branch of
tang.

Some graphs of T versus m were plotted, where only
those triplets (u,P,y) were considered, for which
P/rr= const Lthat is h= constant, as seem from, (11a)).
From these graphs, h„was plotted as a function of T,

C cosv=h'LA J*(n)+BJ (rr)),

C siny=hlLAJ *, (rr) —BJ', (n)], t=1 (8a) t

D exp! —T(1—h)l)= (1—h)l

XL—AII(p)+BI I(p)), t=1+m (Sb)

D exp L
—T (1—h) l) = (1—h) l

X LAI=*, (P)—BI*,(P)],

where

D
L

a 0
+

rr = 2mTh~/3, 49= 2mT(1 —h) ~/3, y = Th*'. (9)

Equating to zero the determinant of the coefFicients of

A, B, C, and D in (8) yields the following transcendental

equation for rr, P, and y:

QJ0 —+

FIG. 2. The auxiliary function f+ (in arbitrary units) in terms
of the initial parameteis ~0, for diHerent values of the reduced
f~eld Ig and for T=2, m = 1.
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Here cn is the cosine amplitude function, ' and

k= sin(rao/2), k'= (1—k') l,

where coo is the value of or at t=0 and is a parameter of
the integration. For t&1+m (2c) reduces to the
equation

(&u')'+ 2T' cos2co —2T'h cos~ =D, (12c)

where D is a constant.
Since co,=0 and co,= co are the envelope singular solu-

tions for all values of 3, the constant D may be deter-
mined from the conditions

0
0.20 0.25 0.30

I

0.35 0.40

M&=0& 7f'& GO& =0.
It follows that the following equations have to be

considered:

FIG. 3. The values of co at t= 0, as found from the zeroes of f+,
plotted as function of the reduced field ttz, for T= 1 and different
values of m shown in the figure. The value of h at coo=0 is the
reduced nucleation field 1z . The reduced coercive force h, is the
value of h at the turning point of coo=coo(h).

(co')'= T'Lsin'a+ 2k(cos"—1)], for co, =O, (13a)

(a&')'= T'Lsin'cv+2h(cos&u+1)), for ~,=~. (13b)

each plot corresponding to a certain value of m. The
results are plotted in Fig. 1 and summarized in Table I.

III. SOLUTIONS OF THE DIFFERENTIAL
EQUATIONS

Depar ting from the nucleation field, the stationary
states of the physical system are represented by the
solutions of the nonlinear equations (2), with co and co'

continuous everywhere and fulfilling (4).
The solution of (2a) and (4) is:

&o= —2 arctan((k/k') cn(Th't, k)) (12a)

C-which is equivalent to (14a) of the previous paper'].

T= 2
o
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FIG. 5. Same as Fig. 3 for T=3.

0
O. I 0

FIG. 4. Same as Fig. 3 for T=2.

0.25

The solutions of (13) are, respectively;

2(h ' —1)*'

p$ —T(1—h)-'(t+D, )]
or =2 arctan co, =0,

1+expL —2T(1—h) '*(t+Di)]
(14a)

co = 2 arctan((h/1+k) *
sinhLT(1+k) (t+D2)]),

(14b)
Here D~ and D~ are constants.

Since the solutions of (2b) cannot be expressed in
terms of known functions, a numerical solution was
undertaken, using the fourth-order Runge-Kutta
method. The numerical solution was started at t =0,

' P. F. Byrd and M. D. Friedman, handbook of Elliptic Integrals
for Engineers and Pjzyszczsts (Springer-Verlag, Berlin, 1954).
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since this was considered easier than the programming
of the solution (12a) for the first region. The Runge-
Kutta method requires initial conditions, therefore
zoo=co(0) was used as a parameter while &v'(0) is given
in (4). The computations were done on the WEIZAC,
the electronic computer of this Institute. In the actual
computations, the following definitions were found
useful:

f+= T'I sin'~+2It(cos~ —1)]—(co')', for ~,=0, (15a)

f = T'Lsin'co+2h(cosa&+1) j—(&u')', for a&, =m.. (15b)

m=0

For given values of T, . h, and m, the values of cop fol
which f+ or f vanish at t=1+m give solutions of (2),
according to (13).The values of f+(1+m) and f (1+m)
were plotted as functions of ~p. An example of this plot
is given in Fig. 2. From this and similar plots, the
zeroes of f+ were read. These are plotted as function as
cop in Figs. 3—6. No zeroes were found for f

0
O. I5 0.25

I~l I

0.55 0.4l 0.45 0.55

h~
FIG. 7. Same.as Fig. 3 for m=0 and different values of T.

TABLE II. The reduced coercive force h, as function of the
two defect size parameters T and m.

Qm

1
2
3

0.546
0.339
0.283

0.403
0.253
0.199

0.321
0.186
0.136

4

0.230
0.125
0.089

o

0.06 0.07
h

0.08
I

0.09

FIG. 6. Same as Fig. 3 for T=3, kg=4.

Starting from nucleation, the solution can follow the
values of coo in Fig. 3 (the case T=1) for increasing
values of h, until it reaches the turning point in which
it must jump to the solution cv—=~. This value of h is
therefore the coercive force, since the magnetization
in the finite defective regions does not inAuence the
average magnetization and remains +1 up to this
point, the hysteresis curve being rectangular. In
Fig. 4 the case T=2 is plotted. Here, for m=4 one
obtains 2 branches (a) and (b) (which appear together
in constant It plots similar to Fig. 2). However, these
start at different nucleation field and since the one for
(a) is lower, the physical system starts on it and can
never reach the solution (b), as is seen from the figure.
The case T= 3, m = 2 in Fig. 5 is similar, while for m = 1
one obtains a single branch. More complicated is the
case T=3, m=4 (Fig. 6). Here the branch (b) starts at
a higher nucleation field than (a) but appears above (a)
at the turnin0; point of the latter, so that the jump

could in principle be to (b) rather than to the solution
a& =—vr. However, the (b) solutions in this case were
found out to be related to negative values of co in
t=1+m which is impossible according to (14a). The
curve (b) is therefore a parasitic solution introduced
because of the form of (15a) and has no physical mean-
ing. The coercive force in Fig. 6 is therefore the turning
point of (a) as in previous cases. In Fig. 7 the case m= 0
is plotted, i.e., the case discussed in the previous paper.

The coercive force thus calculated is given in Table II.

IV. CONCLUSIONS

The addition of linear region to the step function in
E does not change considerably the nucleation field.
However, the coercive force is considerably reduced.
One order of magnitude reduction of the theoretical
coercive force is obtained for rather small defect size.
Yet this model does not seem to be sufficient to explain
the experimental data. Only if superposition of imper-
fections of similar type will prove to reduce the coercive
force much further can this model be expected to
approach the physical case.
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