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A method which allows a rigorous treatment of the statistical mechanics of a superconductor (Bardeen-
Cooper-Schrieffer model) is generalized so as to be applicable to a wider class of many-fermion or many-hoson

systems.

As an illustration, we study a degenerate boson gas, adopting the “pair Hamiltonian” of Girardeau and
Arnowitt. We confirm their finding, for this model, that there is a “gap” in the energy spectrum of the lowest

excitations.

I. DESCRIPTION OF THE METHOD

N the ‘“reduced Hamiltonian” of the Bardeen-
Cooper-Schrieffer (BCS) theory of superconduc-
tivity, only two types of operators occur, namely, the
occupation number and the pair absorption (and emis-
sion) operators:

aptart oo n=br, 0_rar=0b. 1)

A general expression for the BCS Hamiltonian is then

H=3 i(EnbintEn*bmn®)
FVA3 o en T wabin¥own,  (2)

Jin v =T en,

(here E;2=0). More generally, we will admit Hamil-
tonians of the form (2) where the operators bz, are
specified bilinear combinations of the ¢’s and a*’s, not
necessarily those of the BCS theory, though subject to
certain conditions to be introduced later. We will also
allow the ¢ and &* operators to refer to either fermions
or bosons, since our procedure can be described without
specifying the commutation relations. An example of a
boson gas problem will be discussed in Sec. II.

A method which was previously used!? to set up the
statistical mechanics of the BCS model may be gener-
alized to apply to a whole class of systems, with
Hamiltonians of the form (2). The most convenient
approach is a variational one?: Define new operators,

Bix=bm—nm, 3)

where nm(A=1, 2, ---) are trial functions (¢ numbers,
not necessarily real®), and subtract from the Hamil-
tonian (2) a “perturbation” defined as

H=V13 v T v B B, 4

The remaining “unperturbed” Hamiltonian may be
written

H=H—H =U~4Y i (Gidin+Gun*btn®), (O)
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where
—_ — *,
==V i mn Jion v e, (6)
Gin=Ein+V2 2 on Jion, mnmwn ™. (7

H° being bilinear in the operators ¢ and a&* can be
diagonalized in closed form, e.g., by a Bogoliubov
transformation, for any given set of functions . The
free energy F° of the corresponding canonical ensemble,
defined by

Tr expB(FO—H") =1, (8)
can now be minimized by choice of the trial functions:
AFY/ Onin=0F%/dnp\*=0. 9)

Note that F° can be written as
F=U+F(Gun,Gn™), (10)

where U, G\, and Gin* depend on  according to (6) and
(7). It is then easily seen that (9) is satisfied by setting

'I]k)\=(9F1/6Gk)\. (11)

Substituting this back in (7) leads to a set of coupled
integral equations* for the functions G, with solutions
depending on the given coefficients E and J g, xa, and
on the temperature 8%

The essential point is, now, to prove that this varia-
tional solution is a rigorous one, in a certain sense. For
this purpose we note first that the thermal average (for
the unperturbed system) of bz,

(biny=Tr[bp expB(F'—H*) 1= 0F./0Gr, (12)

as is readily seen by substituting (10) and (5) into (8)
and then differentiating with respect to G.> From (11)
and (12) it follows that the thermal averages of the
quantities (3), and also of their conjugates, vanish:

(Bry=(Bn*)=0. (13)

Having rigorously determined the free energy F° of
the unperturbed system H° [with (6), (7), and (11)],
we now investigate how the perturbation H’'(4) affects
the free energy F of the system H=H'4+H’'. We use a

4 Of course, we consider the limit ¥V — o« so that V-1 2} be-
comes a k-space integral.

5 Note: 9 Tr[ (H®)"1/0Gm="Tr[bun(H?)" 1], even if bz does
not commute with other terms (like bz /*) in HO.
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well-known version of the perturbation theory in sta-
tistical mechanics (like in reference 1) and assume
convergence® of the series expansion (in powers of H').
Writing down the mth order correction to the partition
function, Tr exp[ —B(H+H')], with H' given by (4),
one meets with expressions of the following type

V= Tr{exp(—BH°)
XHi=1-n2m[eXp (B:H°)Cr; exp(—B:H) 1},

where each Ck; stands for one of the operators By, or
B *. (The 8; are integration variables.) At this point,
we want to assume that the commutation properties of
the 8\ are such that, when H°(5) is written as

U+ v Hy,
[Hk,HkJIO, [Hk,Ckr]=0 for k—'-#:k' (15)

It is then easily seen that the trace (14) vanishes, on
account of (13), if one momentum k;, say ki, is different
from all the other momenta, k- - - ksm, Occurring in the
product. In order to obtain a nonvanishing term, one
has to have m pairs of equal ks so that, after multi-
plying with the appropriate factors J,wx and then
summing over ki---k2m, the sum runs over only
m independent k vectors. If one then divides by
Tr exp(—pBH®) and finally writes the sums as integrals,
the factors V—™ and V™ cancel out and the result be-
comes volume independent.” Hence, to all orders in H’
(assuming convergence),

Tr exp[ —B(H'+H')]
lim =finite,
V= Trexp(—BHY)

lim =4 (F— 1) =0.

(14)

and
(16)

We conclude that, subject to the assumptions made,
H' does not affect the volume-proportional part of the free
- energy. H® alone determines the thermodynamics of the
system H accurately; it can be termed a ‘‘thermo-
dynamically equivalent Hamiltonian.” Its eigenvalues
are easy to calculate.

Incidentally, in taking first derivatives of F?, like

=—09F%/9T or p=—9dF°/dV, considerable simplifica-
tion results from the fact that the derivatives via the
7kx give no contributions, on account of (9). Of course,
this is no longer so in the second derivatives (specific
heat, compressibility).

Finally, we remark that it may be possible to relax the
conditions (15) without altering the end result (16). We
shall not discuss such possibilities since (15) is valid
both in the BCS theory and in the example we are going
to study now.

6 As to the dangers inherent in this assumption, see reference 2.

7 Here, the possibility should be mentioned that a term in-
volving, for instance, a product - B ---Bm*- - - is actually an
infinite sum (like 2 - - -) and thereby introduces a new factor V.
This must, of course, be forbidden and is indeed, practically,
already ruled out by the condition (15) which limits bz to a finite
number of terms ~a*a or aa. For example, bin=2 1 apyr*asr is
not admissible.
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II. DEGENERATE BOSON GAS

We consider a gas of spin-less bosons with (weak
repulsive) two-body interactions of spherical symmetry

Hint:%V—'l Z v(q)ak*ak’*ak’~qak+ ay
v(g)=2(|g]) (real).

At sufficiently low temperatures, like in the free boson
case, a major fraction of the IV particles will be con-
densed in the lowest energy state, supposedly with
momentum %,=0, so that the creation and annihilation
operators, ao* and @y, may be replaced by the ¢ number
Not(>>1). Retaining in (17) only the “largest” terms,
namely those quadratic and linear in N, one obtains the
“Bogoliubov Hamiltonian’’$:

H'=1V-1N¢(0)
+2 1 Lfelarart+3hit (ar a—r*+a_rar)], (18)
where k=0 is excluded from the sums, and ‘
=R/ 2m+VINo[v(k)+v (Q)],
hit=VNow(k).

(7

(19)

The H! problem is rigorously soluble. The main asset
attributed to this theory is the phonon character of the
lowest excitations.

However, we want to go one step further, following
Girardeau and Arnowitt. One observes that in the
ground state of HY, not only the occupation numbers
Ni=ar%ar, but also the quantities a,*a_:* and a_;as,
have nonvanishing expectation values (they even be-
come large as £ — 0). To obtain an improved approxi-
mation, one would then, in the first place, want to
include the interaction terms which are quadratic in
these operators:

H=H"%3 1w Lirw'(er*ar) (ar*ar)
+jkk'1(dk*a_k*) (a_k:ak;)]’
irpt=V"[v(k—k)42(0)],
Jewr=V"0(k—F).

(20)
€2y

This H is what Girardeau and Arnowitt® call “pair
Hamiltonian.” They use a variational method, in con-
junction with a Bogoliubov transformation, to analyze
this problem, and they find that a “gap’ appears in the
spectrum of excitations.

Our treatment of this problem will be more general in
that we allow thermal excitation. Then, the parameter
Ny in (18), (19) will become temperature dependent,
and it should finally be identified with the thermal
average of the operator

!V():N—Z k dk*dk,

8 N. N. Bogoliubov, J. Phys. (U.S.S.R.) 11, 23 (1947). In the
terms k3£0, one should, strictly speaking, introduce the number-
conserving operators ax*aoNo~* and Ny %ao*ax, but these we may
safely re-name a;* and ar, without changing anything essential.

9 M. Girardeau and R, Arnowitt, Phys. Rev. 113, 755 (1959).

(22)
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(k=0 is again excluded from the sum) where & is the
given total number of particles.’® An alternative pro-
cedure! is to substitute for N, in HY, the operator (22).
This is the course we shall follow because it fits well
with our treatment of the 7, j terms in (20).

With the substitution (22) made in (18) and (19), the
Hamiltonian (20) becomes

H=3% i [filar*ar+3hi' (ar*a—i*+a_rar)]
43 2 kw Linw (@r™ar) (@r¥ar)+ Jow (ar¥a—i®)
X (a—war)+lrw (@ ai*+a—rar) (ar *ar) ]

+3VIN%(0), (23)
with the following meaning of the coefficients:
=R/ 2m+VNov(k), hitl=V"Nu(k),
ipw=V[v(k—k)—v(k)—2(k) ], (24)

Gew=V0(k—k), Liw=—V-"10(k).

Now, H (apart from the additive constant, and after
some relabeling in the /5, terms'?) has the form (2) if we
identify

bk1=ak*ak, bro=a_iay. (25)
Introducing the trial functions
Ner=Ek,  Nr2=1, (26)

which we may take real without losing generality, we
can immediately write down H, as given by (5), (6),

(7):
H=H-H'=U

—{—Zk[fkak*ak+%hk(ak*a~k*+a_kak)], (27)
where
U= —% Zkk' [’L.kk’gkgk’+jkk"’7k7].c’+21kk’77kgk’]
+1V-IN%(0), (28)
o= 1T e+l e
fe=1k +2 % CrwEr+lome), (29)

=l 2k Qe b+ Jrene)-

As is well known, the diagonalization of H°is achieved
by the transformation?®

ar=urtvie_r*, (30)

with
Cw=i (e, ve=i—14+(/e)], (D)
&= (f—h?)?, (32)

10 For the Hamiltonian HI(z1, j1=0), this determination of N,
is carried through with great care, by means of a grand ensemble,
in a recent paper by A. E. Glassgold, A. N. Kaufman, and K. M.
Watson, UCRL-9149 University of California Radiation Labora-
tory Report (unpublished). Since their results afford an oppor-
tunity to check our method we shall come back to the HI problem
in the Appendix.

1 See, e.g., K. A. Brueckner and K. Sawada, Phys. Rev. 106,
1117 (1957).

12 Re-ordering of factors leaves the V-proportional part un-
changed.
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(assuming | f| 2 | ki), with the result
H'=E+3x e, (33)
E'=U+3 2 1(ex—f#). (34)

The free energy of the corresponding canonical ensemble
is

nk=ak*ak(=0, 1, 2, . '),

F'=E'4-F,, (3%5)
Fo=—F7 3k In 3" nexp(—PBens)
=B 2« In[1—exp(—Bex) ]. (36)
We note
(nry="Tr[n: expB(F'—H")]
=6F2/6ek= (expﬂek—-l)_l. (37)
Also, by use of (30) and (31):
(ar*ary=uidm+oiXm+1)=(fr/ex) (nr)+3)—3, 39)

(@—rar)y=wi2nr+1)=— (h/ex) (nr)+3).

It remains to find the trial functions (26) which
minimize F°:

OF/ ia= 0L/ dnin+2_kni)der/dnin=0 (39)

[see (35) and (37) . Note that e (32) depends on ¢ and
n through f and % (29). The solution of (39) can be
anticipated from (3), (13) and (38), and is indeed

Gr=(ar*ar)= (fr/ex) (n1)+3)—3,
ne={a_rar)=— (hr/ex) (nr)+3%).

This, together with (27), (28), (29), determines the
“thermodynamically equivalent Hamiltonian.” Its di-
agonal representation (33) makes it obvious that the
conditions (15) are satisfied, and we can trust F° to
describe the thermodynamics of the system without any
error.

Substitution of (40) into (29) furnishes two coupled
integral equations for fj and A, nonlinear because of
(32). Contrary to the case of superconductivity (where
the terms corresponding to /4, and Ilxw in (29) are
zero), there is no “trivial solution” (%;=0, ,=0), and
an expansion in powers of 4, j, and ! may be possible,
depending on the density V1V and the properties of the
function v(k). All admissible solutions are subject to the
conditions | fx| 2> kx| (for all k) and (Vo)>>1 where

(Ny=N—Y4 & (41)

For the case of zero temperature ((zx)=0), we have
verified that our method is equivalent to the variational
Ansatz of Girardeau and Arnowitt.® On the other hand,
if one wants to study the thermodynamic properties of
the system, it is important to note that the coefficients
frand kg, as given by (29) and (40), now depend on the
temperature through () (37). This is the same situa-
tion as in the theory of superconductivity where the
spectrum of elementary excitations (the gap) appears as
temperature dependent, in the equivalent Hamiltonian.
Since the condition (Ng)>>1 precludes a study of the

(40)
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phase transition ((Vo)/N — 0), we shall not here discuss
such matters in detail.

In conclusion, we add some remarks on the low-
momentum excitations. As was mentioned already,
Girardeau and Arnowitt? have found that, for their
model, the phonon law (ex/k — const%0, as £ —0) is
invalid. This statement is important enough as to
merit special consideration. From (24), (29), and (41),
one finds easily

lkig})fk= VYNW(O0) =V 1 v(B ),

(42)
lkln%hk= V—l<1Vo>7) (0)+ V-1 Zk’ v(k/)’r],u.

Unless one of the two terms on the right-hand sides in
(42) vanishes, € (32) cannot tend to zero. Now v(0), or
the space integral over the two-body potential, can
hardly vanish, and would presumably be positive. For
an estimate of the other term, we use (40) with (#;)=0
(zero temperature) and zi=h;'! (24):

=V vk (VIN)V 2k [o(k) /e (43)
This expression is certainly >0 (note that, then,
| k| >|hs| for k— 0, as is desired for consistency). A
cancellation of the term (43) owing to the terms ~ £, 9 in
(29) cannot be expected although this might possibly
happen under very special circumstances. We therefore
arrive at the same conclusion as Girardeau and Arnowitt :

lime;>0, (44)
k—0

for the system described by the Hamiltonian (20).
Their value for the energy gap agrees with (42) at zero
temperature.

It is a different question whether other interaction
matrix elements in (17) which we have deliberately
omitted in (20) can cause the energy gap to vanish,
independently of the density (and temperature). With
a perturbation treatment, for the case of weak inter-
actions, the necessary cancellations appear highly
unlikely, in view of the incongruity of the various energy
denominators coming in, but a convincing proof is
difficult.’

13 This would not exclude the possible existence of a phonon
spectrum extending through the gap, for there may be eigenstates
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It would be daring to extrapolate our results to the
case of strong interactions or to real liquid helium where,
even if inconsistencies were avoidable, the meaning of an
analysis in terms of single particle states would be far
from clear, to say the least. More convincing are then
Feynman’s"* qualitative arguments concerning the
structure of the wave functions in configuration space,
from which the phonon law (for small k) appears to
follow.

APPENDIX: THE H! PROBLEM

Our method can readily be applied to the system
characterized by the Hamiltonian (18), just by changing
the meaning of the 7, j coefficients:

e =V[—0(0)—v(k)—v(k') ],
Jew'=0, frr=0.

1rl=0,

(45)

The 7 and / terms in (23) have their origins now ex-
clusively in the substitution (22), and one should then
expect agreement with such calculations as those by
Glassgold, Kaufman, and Watson, who determine
No=(No) by other considerations.!” Indeed, their values
for fi and /&, agree completely with those obtained by
substituting (45) in our Egs. (29), etc., and also the
ground-state energies agree. This finding is not alto-
gether trivial because we have assumed convergence in
the perturbation treatment of H’ (4), and the agreement
may be regarded as an indirect confirmation of this
convergence, at least in the case (45).

Incidentally, even in this case €, does not strictly tend
to zero as £ — 0. Indeed,

]]jg})(fk—hk)= —Au(>0),

where Ap is defined in the paper quoted in reference 10,
Egs. (3.11) and (3.12). Only if Au is neglected does the
phonon law result. Of course, we regard H! as an even
less realistic Hamiltonian than our H (20).

of the complete Hamiltonian which are not even approximately
eigenstates of the pair Hamiltonian (20). Such a situation might be
compatible with the conclusions derived by N. M. Hugenholtz and
D. Pines, Phys. Rev. 116, 489 (1959).

4 R. P. Feynman, Phys. Rev. 94, 262 (1954).



