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Thermodynamically Equivalent Hamiltonian for Some Many-Body Problems*
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A method which allows a rigorous treatment of the statistical mechanics of a superconductor (Bardeen-
Cooper-Schrieffer model) is generalized so as to be applicable to a wider class of many-fermion or many-boson
systems.

As an illustration, we study a degenerate boson gas, adopting the "pair Hamiltonian" of Girardeau and
Arnowitt. We con6rm their ending, for this model, that there is a "gap" in the energy spectrum of the lowest
excitations.

I. DESCRIPTION OF THE METHOD
' 'N the "reduced Hamiltonian" of the Bardeen-

Cooper-Schrieffer (8CS) theory of superconduc-
tivity, only two types of operators occur, namely, the
occupation number and the pair absorption (and emis-
sion) operators:

ttkt ttkt+zt kt zt kt =—Ski, tt k& ttkt =b ks. (1)

A general expression for the BCS Hamiltonian is then

H =Q kk (Ekkb kk+Ekk"'bkk*)

+V 'Zkk, k k Jkk, k k bkk*bk k', (2)

where
O'= —P'—' P kk k. k. Jkk k.k.rtkk*rtk. k z (6)

Gkk —E)„+V '—Pk k Jk —t;, kkttk k
* (7)

H', being bilinear in the operators a and u*, can be
diagonalized in closed form, e.g. , by a Bogoliubov
transformation, for any given set of functions p&z. The
free energy Ii' of the corresponding canonical ensemble,
defined by

Tr expP(F' —H') = 1,

can now be minimized by choice of the trial functions:

J1c,X, O'X' & 'Ic'X', kX )
i)F'/r)rt k=f)F'/I)tt "=0 (9)

(here E»=0). More generally, we will admit Hamil-
tonians of the form (2) where the operators bkk are
specified bilieear combinations of the a's and a~'s, not
necessarily those of the BCS theory, though subject to
certain conditions to be introduced later. We will also
allow the e and a* operators to refer to either fermions
or bosons, since our procedure can be described without
specifying the commutation relations. An example of a
boson gas problem will be discussed in Sec. II.

A method which was previously used' to set up the
statistical mechanics of the BCS model may be gener-
alized to apply to a whole class of systems, with
Hamiltonians of the form (2). The most convenient
approach is a variational one'. Define new operators,

&A;x= bA. )
—gI;)„

where ztkk(X=1, 2, ) are trial functions (c numbers,
not necessarily reaP), and subtract from the Hamil-
tonian (2) a "perturbation" defined as

H =I' 'Zkk, kk ~kkkk&kk*&kk" (4)

The remaining "unperturbed" Hamiltonian may be
written

Note that Ii' can be written as

F'= U+Fr(Gkg, Gkk"'), (10)

where U, Gkk, and Gk&,
*depend on zt according to (6) and

(7). It is then easily seen that (9) is satisfied by setting

rtkx c)F1/c)Gkx

Substituting this back in (7) leads to a set of coupled
integral equations4 for the functions GI,~, with solutions
depending on the given coefficients E~), and J~q A, q, and
on the temperature P '.

The essential point is, now, to prove that this varia-
tional solution is a rigorous one, in a certain sense. For
this purpose we note first that the thermal average (for
the unperturbed system) of bkk,

(bkk) =—Tr[bkk expp (F'—Hv) j= f)F,/r)Gk&„(12)

as is readily seen by substituting (10) and (5) into (8)
and then differentiating with respect to Gkk. ' From (11)
and (12) it follows that the thermal averages of the
quantities (3), and also of their conjugates, vanish:

(Bkk) =(Bkk*)=0. (13)

Having rigorously determined the free energy Ii' of
the unperturbed system H' (with (6), (7), and (11)],
we now investigate how the perturbation H'(4) affects
the free energy F of the system H=Ho+H'. We use a

H'=H H'= &+2k&, (Gkkbkk+G—kk*bkk*), (~)
*This work was supported in part by the U. S. Atomic Energy

Commission.
'N. N. Bogoliubov, D. B. Zubarev, Iu. A. Tserkovnikov,

Doklady Acad. Nauk. S.S.S.R. 117, 788 (1957) [translation:
Soviet Phys. -Doklady 2, 555 (1957)g.

2 G. Wentzel, Helv. Phys. Acta 33 (1960).' In reference 2, they were assumed real, but this is not nece
sary.

Of course, we consider the limit V —+ ~ so that V ' ZI, be-
comes a k-space integral.

s- Note: tt Trg(IIv)"j/BGu, =TrLbkqrz(IIv)" j, even if bkq does
not commute with other terms (like bq), *) in IP.
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well-known version of the perturbation theory in sta-
tistical mechanics (like in reference 1) and assume
convergence' of the series expansion (in powers of H').
Writing down the mth order correction to the partition
function, Tr exp) —p(Ho+H')], with H' given by (4),
one meets with expressions of the following type

V "Tr{exp(—PHo)

XP;=i...o Lexp(P;H')Ca; exp( —P,H')]}, (14)

where each CI; stands for one of the operators 8» or
Baa . (The P; are integration variables. ) At this point,
we want to assume that the commutation properties of
the bag&*& are such that, when H'(5) is written as
&+pa Ha,

LHa, Ha ]=0, (Iia,Ca ]=0 for

krak'.

(15)

It is then easily seen that the trace (14) vanishes, on
account of (13), if ore momentum k;, say ki, is different
from all the other momenta, k2 ~ ~ .k2, occurring in the
product. In order to obtain a nonvanishing term, one
has to have m pairs of equal k s so that, after multi-
plying with the appropriate factors J», A, z and then
summing over k& k2, the sum runs over only
m imdepersdent k vectors. If one then divides by
Tr exp( —PHo) and finally writes the sums as integrals,
the factors V™and V cancel out and the result be-
comes volume independent. Hence, to all orders in H'
(assuming convergence),

Tr exp) —P(H'+H')]
lim =finite

Tr exp( —PH')

lim V '(F—F')=0.
P=oo

We conclude that, subject to the assumptions made,
H' does sot agect the volume proportiomcIL pa-rt of the free
energy. H' alone determines the thermodynamics of the
system H accurately; it can be termed a "thermo-
dynamically equivalent Hamiltonian. " Its eigenvalues
are easy to calculate.

Incidentally, in taking first derivatives of F, like
S= —BFo/BT or P= BF'/BV, co—nsiderable simplifica-
tion results from the fact that the derivatives via the
qaa give no contributions, on account of (9). Of course,
this is no longer so in the second derivatives (speci6c
heat, compressibility) .

Finally, we remark that it may be possible to relax the
conditions (15) without altering the end result, (16).We
shall not discuss such possibilities since (15) is valid
both in the BCS theory and in the example we are going
to study now.

6 As to the dangers inherent in this assumption, see reference 2.
7 Here, the possibility should be mentioned that a term in-

volving, for instance, a product ~ BI,~ 8&),* ~ is actually an
in6nite sum (like Zz' ~ ~ ) and thereby introduces a new factor V.
This must, of course, be forbidden and is indeed, practically,
already ruled out by the condition (15) which limits br, z to a finite
number of terms ~a*a or aa. For example, bkq=ZI, al;+I*ay, is
not admissible.

II. DEGENERATE BOSON GAS

We consider a gas of spin-less bosons with (weak
repulsive) two-body interactions of spherical symmetry

H ~=2V 'Z &(q)~a*~a*~a

i(q) =v(~q~) (real).
(17)

fa'= k'/2m+ V 'EoLv(k)+e(0)],
ha'= V 'Eon(k).

(19)

The H problem is rigorously soluble. The main asset
attributed to this theory is the phonon character of the
lowest excitations.

However, we want to go one step further, following
Girardeau and Arnowitt. ' One observes that in the
ground state of H', not only the occupation numbers
lVA, =uA, *aj„but also the quantities @~*a I,

* and g I,gl,
have nonvanishing expectation values (they even be-
come large as k —+ 0). To obtain an improved approxi-
mation, one would then, in the first place, want to
include the interaction terms which are quadratic in
these operators:

H=H'+-', Paa Liaa'(aa*aa)(aa *ca)
+jaa '(~a*~—a*) (~-a ~a )], (20)

iaa'= V 'Lv(k —k')+v(0)],
=V o(k —k).

(21)

This H is what Girardeau and Arnowit. t call "pair
Hamiltonian. " They use a variational method, in con-
junction with a Bogoliubov transformation, to analyze
this problem, and they find that a "gap" appears in the
spectrum of excitations.

Our treatment of this problem will be more general in
that we allow thermal excitation. Then, the parameter
lVo in (18), (19) will become temperature dependent,
and it should finally be identified with the thermal
average of the operator

&o=&—Qa ~a*~a, (22)

8 N. N. Bogoliubov, J. Phys. (U.S.S.R.) 11, 23 (1947). In the
terms k/0, one should, strictly speaking, introduce the number-
conserving operators a&*a0%0 & and Ã0 40*aj„but these we may
safely re-name aI,* and a&, without changing anything essential.' M. Girardeau and R, Arnowitt, Phys. Rev. 113,755 (1959).

At sufficiently low temperatures, like in the free boson
case, a major fraction of the iV particles will be con-
densed in the lowest energy state, supposedly with
momentum 4 =0, so that the creation and annihilation
operators, ao~ and co, may be replaced by the c number
1Vo*())1). Retaining in (17) only the "largest" terms,
namely those quadratic and linear in Eo, one obtains the
"Bogoliubov Hamiltonian'":

Hr = -' V—'Ãoov (0)
+pa I fa'~a*~a+ioha'(~a"~ a*+~ a~a)], (18)

where k=0 is excluded from the sums, and
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H=pk ffk ak*ak+2lzk (ak*a k~+a kak)]
+-,' p kk fikk (ak*ak) (ak *ak )+jkk (aj.-*a, k')
X(a kak)+lkk (ak*a k*+a kak)(ak *ak)]

+-,'U 'Ã'v(0),

with the following meaning of the coefficients:

(23)

fk' =k'/2m+V '1Vv(k) Izk"= V 'Xv(k)

i k k V——'(v (k —k') —v (k) —v (k') ], (24)

jkkk= V v(k k ), lkki= V v(k).

Now, H (apart from the additive constant, and after
some relabeling in the lkk terms") has the form (2) if we
identify

bye= ap"aI;, bj 2=a I;a),. (25)

(k=p is again excluded from the sum) where E is the
given total number of particles. " An alternative pro-
cedure" is to substitute for 1VO, in H', the operator (22).
This is the course we shall follow because it fits well
with our treatment of the z, j terms in (20).

With the substitution (22) made in (18) and (19), the
Hamiltonian (20) becomes

(assuming
~ fk~ & ~kk~), with the result

HO=E'+Pk ekzzk, zzk=nk*uk(=0, 1, 2, ) (33)

E'= &+-,' Qk(~k —fk). (34)

The free energy of the corresponding canonical ensemble
is

We note

Fo=Eo+F,
F2= —P '+king kexp( P—ekzzk)

=P 'QklnL1 —exp( —Pek)].

(n, k)= T—rI zzk exp&(F' —Ho)]
= BF2/Bek= (expPck —1) '.

(35)

(36)

BF'/Dykey ——aE'/Oil kk+p k (zzk )Bek

/Dykey

0——(39)

Also, by use of (30) and (31):

(ak*ak) = zzk'(zzk)+v k'(zzk+1) = (fk/ek)((zzk)+ ,')-'
(38)

(a kak) =zzkvk(2zzk+1) = —(kk/kk) ((zzk)+-,').
It remains to find the trial functions (26) which

minimize F':

Introducing the trial functions

'llkl (i) gk2 Oker

Lsee (35) and (37)].Note that kk. (32) depends on $ and
q through f and Iz (29). The solution of (39) can be

(26) anticipated from (3), (13) and (38), and is indeed

U= ——,
' Qkk Likk pkgk +jkk gkrl. +2lkk zlkpk ]

+-', V 'A"'v(0), (28)

fk= fk"+2k (zkk &k+fk krak ),
(29)

kk=kkrr+Pk (fkk kk+ jkk nk).

As is well known, the diagonalization of H' is achieved
by the transformation'

ak = zzko'k+vk& —k, (30)

~"=k(&+ (fk/«)], »'= 2(—1+(jk/«)], (31)

~k= (fk' kk')**— (32)

' For the Hamiltonian HI(i, j =0), this determination of &0
is carried through with great care, by means of a grand ensemble,
in a recent paper by A. E. Glassgold, A. N. Kaufman, and K. M.
Watson, UCRL-9149 University of California Radiation Labora-
tory Report (unpublished). Since their results afford an oppor-
tunity to check our method we shall come back to the H& problem
in the Appendix.

"See, e.g., K. A. Brueckner and K. Sawada, Phys. Rev. 106,
Sr&7 (&957).

"Re-ordering of factors leaves the V-proportional part un-
changed.

which we may take rea/ without losing generality, we
can immediately write down H', as given by (5), (6),
(7):
EP=—H —H'= U

+&k Lfkak*ak+-,'kk(ak*a k*+a kak)], (27)

where

~.=("*")= (f./") ((")+l)—l,
rlk=(a kak) = —(kk/~k) ((zzk)+-').

(40)

This, together with (27), (28), (29), determines the
"thermodynamically equivalent Hamiltonian. " Its di-
agonal representation (33) makes it obvious that the
conditions (15) are satisfied, and we can trust F' to
describe the thermodynamics of the system without any
error.

Substitution of (40) into (29) furnishes two coupled
integral equations for fk and kk, nonlinear because of
(32). Contrary to the case of superconductivity (where
the terms corresponding to hk" and lkk in (29) are
zero), there is no "trivial solution" (kk ——0, gk ——0), and
an expansion in powers of i, j, and / may be possible,
depending on the density V 'lV and the properties of the
function v(k). All admissible solutions are subject to the
conditions

~ fk( &~
~
hk~ (for all k) and (Eo)))1 where

(&VO)=iV —Qk $k.

For the case of zero temperature ((zzk)=0), we have
verified that our method is equivalent to the variational
Ansatz of Girardeau and Arnowitt. ' On the other hand,
if one wants to study the thermodynamic properties of
the system, it is important to note that the coefFicients

fk and Izk, as given by (29) and (40), now depend on the
temperature through (zzk) (37). This is the same situa-
tion as in the theory of superconductivity where the
spectrum of elementary excitations (the gap) appears as
temperature dependent, in the equivalent Hamiltonian.
Since the condition (Eo))&1 precludes a study of the
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phase transition ((1Vp)/E —+ 0), we shall not here discuss
such matters in detail.

In conclusion, we add some remarks on the low-
momentum excitations. As was mentioned already,
Girardeau and Arnowitt' have found that, for their
model, the phonon law (ei/k —+ const&0, as k —+0) is
invalid. This statement is important enough as to
merit special consideration. From (24), (29), and (41),
one finds easily

limf p= V—
'(1Vp)v(0) —V—' P p. v(k')iIi:,

I-—+0

limhp= V '(1Vp)p(0)+V 'Qi, v(k')iI, .
(42)

Unless one of the two terms on the right-hand sides in
(42) vanishes, ei, (32) cannot fend Io sero Now v(. 0), or
the space integral over the two-body potential, can
hardly vanish, and would presumably be positive. For
an estimate of the other term, we use (40) with (m p) =0
(zero temperature) and her=hi" (24):

—V-' Z»Q)n. =-,'(V-'&) V-' Z. L~(k)1'/«(43)
This expression is certainly )0 (note that, then,

~ fi (
)

~
hi

~

for k ~ 0, as is desired for consistency). A
cancellation of the term (43) owing to the terms $, iI in
(29) cannot be expected although this might possibly
happen under very special circumstances. We therefore
arrive at the same conclusion as Girardeau and Arnowitt:

lim~A, &0,
k~o

for the system described by the Hamiltonian (20).
Their value for the energy gap agrees with (42) at zero
temperature.

It is a diferent question whether other interaction
matrix elements in (17) which we have deliberately
omitted in (20) can cause the energy gap to vanish,
independently of the density (and temperature). With
a perturbation treatment, for the case of weak inter-
actions, the necessary cancellations appear highly
unlikely, in view of the incongruity of the various energy
denominators coming in, but a convincing proof is
dlfFicult. ~3

"This would not exclude the possible existence of a phonon
spectrum extending through the gap, for there may be eigenstates

It would be daring to extrapolate our results to the
case of strong interactions or to real liquid helium where,
even if inconsistencies were avoidable, the meaning of an
analysis in terms of single particle states would be far
from clear, to say the least. More convincing are then
Feynman's'4 qualitative arguments concerning the
structure of the wave functions in configuration space,
from which the phonon law (for small k) appears to
follow.

APPENDIX: THE HI PROBLEM

Our method can readily be applied to the system
characterized by the Hamiltonian (18), just by changing
the meaning of the i, j coefficients:

ipse, '=0, ipse. = V—'L —p(0) —i(k) —i(k')],
(45)'=0, j =0.

The i and l terms in (23) have their origins now ex-
clusively in the substitution (22), and one should then
expect agreement with such calculations as those by
Glassgold, Kaufman, and Watson, who determine
Ep:(Ep) by other considerations. "Indeed, their values
for fi, and k& agree completely with those obtained by
substituting (45) in our Eqs. (29), etc., and also the
ground-state energies agree. This ending is not alto-
gether trivial because we have assumed convergence in
the perturbation treatment of II' (4), and the agreement
may be regarded as an indirect confirmation of this
convergence, at least in the case (45).

Incidentally, even in this case eA does not strictly tend
to zero as k —+0. Indeed,

lim(fy, —hp) = —hp() 0),

where Ap is defined in the paper quoted in reference 10,
Eqs. (3.11) and (3.12). Only if d,p is neglected does the
phonon law result. Of course, we regard H' as an even
less realistic Hamiltonian than our H (20).

of the complete Hamiltonian which are not even approximately
eigenstates of the pair Hamiltonian (20). Such a situation might be
compatible with the conclusions derived by X. M. Hugenholtz and
D. Pines, Phys. Rev. 116, 489 (1959).

'4 R. P. Feynman, Phys. Rev. 94, 262 (1954).


