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Effect of Target Gas Temperature on the Scattering Cross Section*
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If a beam of particles is scattered by a gas or plasma, the differential scattering cross section that is observed
experimentally may, in some cases, be altered a discernible amount by the random thermal motion of the
target particles. In order to explore the feasibility of using this effect as a means of measuring high tempera-
tures, or to correct for the temperature of the target in the event that the desired cross section must be
measured at high temperatures, this work presents a theoretical study of the temperature dependence of the
cross section. A general expression is obtained for the observed differential scattering cross section in the
laboratory frame in terms of the differential cross section in the center-of-mass frame for the general case of
arbitrary initial motion of the target. Detailed results for the temperature dependence are given for hard-
sphere scattering {which is also applicable to low-energy neutron scattering) and for Coulomb scattering,
in the approximation in which the projectiles are light and rapidly moving, compared to the targets. For
hard-sphere scattering the case of equal projectile and target mass is also considered.

C. INTRODUCTION

'N ordinary scattering phenomena, the thermal
~ ~ motion of the scattering centers can usually be
neglected, in comparison with the much larger velocity
of the incident beam projectiles. This is quite fortunate,
inasmuch as scattering experiments are usually used to
determine the physical properties of one or the other
colliding particles, or to study the interaction between
the two, and it would be much more difficult to extract
the desired information from the data, were there an
additional set of random variables (speeds and direc-
tions of the targets) to complicate the initial conditions.

However, in some cases, it may be necessary to
conduct the scattering experiment with the target at
relatively high temperatures. As an example, if it is
desired to study the collisions of various projectiles with
atomic hydrogen as the target, the target gas of pressure,
perhaps a micron, would have to be maintained at
2400'K in order to insure that it is fully dissociated.
For low-energy projectiles, the temperature effect might
well be appreciable. At any rate, it would certainly be
desirable to know, in advance, the order of magnitude
of the effect and to be able to correct the data where
necessary. A second example is the scattering of low-

energy neutrons by protons, an experiment which has,
in fact, been conducted. '

There is also an additional, and perhaps more
important reason for studying the temperature
dependence of the observed differential scattering cross
section. The possibility exists that a suitable beam of
particles at the proper energy could be used as a probe
to measure the temperature and density of a gas or
plasma as a function of position. Thus, if the differential
scattering cross section is known in the center-of-mass
system, for given projectile and target, two families of
curves can be computed giving the number of particles
scattered per unit solid angle as a function of angle of

* This work was supported by the Ofhce of Ordnance Research,
U. S. Army, through the Ordnance Materials Research 0%ce at
%atertown and the Boston Ordnance District.' W. B.Jones, Jr., Phys. Rev. 74, 364 (1948).

scattering, with target gas temperature and density
as parameters. AVith these, the temperature and density
of the target gas at a given point can be obtained by
measuring and plotting this quantity and comparing the
measured curve with the two families of computed
curves.

At sufficiently low densities, the density dependence
of the number of particles scattered per unit solid angle
is such that the shape of the curve, plotted as a function
of angle, remains unchanged, with only the ordinate
scale factor varying. In contrast to this, the primary
effect of a change in temperature is to alter the shape
of the curve without much changing the average height.
Thus, even if only the temperature is desired, measure-
rnents at at least two angles are necessary, in order that
lack of precise knowledge of the density shall not cause
an incorrect temperature determination,

Of course, the practical utility of this method of
measuring temperature depends on the sensitivity of
the differential cross-section curve to a change in target
gas temperature. The method will, in any event, be
relatively cumbersome, but this disadvantage is offset
by the advantages that (1) the technique may be
feasible at the very high temperatures where other
methods fail and (2) it can be made to give
instantaneous temperature readings as a function of
position, and might, therefore, become an important
tool for studying nonequilibrium phenomena. Figure 1
shows how the collimation of the incident and scattered
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FIG. 1. Geometrical arrangement. This shows how collimation
of the incident and scattered beams selects a small region of
observation.
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beams selects a very small region of observation. To
obtain instantaneous temperature determinations, it is,
of course, necessary to measure the scattered beam
intensity at several angles simultaneously. The speed
of the temperature determination would essentially be
limited by the admissible intensity of the incident beam
in relation to the size of the cross section, the target
density, and the sensitivity or efFiciency of the detector.

The purpose of the present study is to determine
theoretically the dependence of the target gas tem-
perature in terms of the (presumed known) cross
section in the center-of-mass frame. Gryzinski, '
Chandrasekhar' and Chandrasekhar and Williamson4
have considered scattering problems in which the
targets were randomly moving with non-negligible
velocities, but all three of the above treatments were
restricted to Rutherford-type scattering and did not
obtain the temperature dependence of the differential
scattering cross section.

In the following section a general expression is
derived for the quantity a(T,8), which gives the ob-
served differential scattering cross section in the
laboratory system as a function of target gas tempera-
ture, in terms of the differential scattering cross section
in the center-of-mass frame. This result is rather
complicated. Therefore, in Sec. 3, the approximation for
light projectiles incident on slowly moving targets is
considered. This case is a good approximation to the
scattering of moderate energy electrons, protons, or
neutrons by most gases at any temperature that would
be of interest. Two special cases, Rutherford and hard-
sphere scattering, are considered in detail. The latter
case is also applicable to the elastic scattering of low-

FIG. 2. A velocity diagram in the laboratory frame. Here v, is
the velocity of the center of mass, v& the velocity of the target, v„
the relative velocity.

2 M. Gryzinski, Phys. Rev. 115, 374 (1959).' S. Chandrasekhar, Astrophys. J. 93, 285 (1941).
4S. Chandrasekhar and R. E. Williamson, Astrophys, J. 93,

308 (1941).

FIG. 3. Relation between the angle of scattering 8 in the labora-
tory frame and the angle of scattering 0 in the center-of-mass
frame. In order not to complicate the figure, this shows the special
case in which 4 =0, but the analysis in the text is perfectly general.

energy neutrons. Inasmuch as scattering experiments
with low-energy neutrons incident on protons have
already been performed, the special case of target mass
equal to projectile mass is considered for this type of
collision.

Section 4 presents some numerical results and con-
clusions drawn from the analysis.

2. GENERAL FORMULATION

For a gas at sufficiently low densities so that multiple
scattering can be neglected, we denote by o(T,H) the.
number of particles scattered per unit time, in the
laboratory system, into a unit solid angle making an
angle 0 with the incident direction per target particle
for unit intensity beam. This is the usual definition,
but we are here taking formal cognizance of the fact
that o. is a function of the target gas temperature T. In
most applications the 7=0 isotherm is understood.

In order to calculate a(T,e), let us first consider the
scattering produced by a target moving with velocity
v~, in a direction making an angle o. with the direction
of motion of the incident projectile. We choose a
coordinate system such that the projectile is traveling
in the positive s direction and the target is moving in
the g-s plane (see Fig. 2). We take it for granted that
the cross section in the center-of-mass frame, 0,(O)
is known. (It is independent of azimuthal angle C for
central forces. ) Here 0, C give the scattered direction
in the X, Y, Z coordinate system of the center-of-mass
frame (see Fig. 3). Also, 8 gives the angle that the
relative velocity v„makes with respect to the s axis,
n, and P are, respectively, the speed and direction of
motion of the center-of-mass in the laboratory system.
Finally, I, 0, p represent the final speed and direction of
motion of the projectile, in the x, y, s coordinate system
fixed in the laboratory frame (see Fig. 3). In order not
to clutter Fig. 3, it shows only the special case 4 =0, but
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f0, Cy
dOdc =JI

Eg,
(3)

where J is the Jacobian of the transformation (1),
we have

sinO (0, C')

sing t. 8,

Now, 0- is the cross section, in the laboratory frame,
for the special case in which the target is moving in a
direction which makes an angle o. with respect to the
direction of motion of the projectile. No azimuthal
angle is used since we have chosen our coordinate
system such that the target is moving in the x-s plane.

The desired cross section is obtained by averaging
0- over all directions and speeds of the targets. Insofar
as the azimuthal angle is concerned, this can be ac-
complished by averaging over all orientations of the
x axis about the s axis, i.e., integrating over p and
dividing by 2z. Averaging over n and v& is straight-
forward. Thus:

the analysis below and in the Appendix is completely
general.

If, in the center-of-mass frame, the projectile is
scattered into the direction (), 4, it is possible to solve
for the angles 0, q describing the direction of scattering
in the laboratory frame of reference. Thus:

0~ —Ow(g p n)

C =4 (g, t0,n),

where we suppress explicit mention of the dependence
of 0 and 4 on v„and v&, since these will remain un-

changed in the operations performed below.
To obtain the cross section in the laboratory frame,

0. (g, p), in terms of the cross section in the center-of-
mass frame, the connection is given by

0,(0) sinOdOdC =o.(g, q) singdgdp. (2)

Since

with

V~=v„(1+q) '(1 2$—cosn+P)l,

n, =v„(1+g) ' (vP+ 2&q cosn+ P) l,

(7a)

(7b)

A = (q'+ 2$rt cosn+ P) '

X [g(sing cos00 sinn+cosg cosn)+q cos8], (7c)

u =A v,+[V„'+0,'(A' —1)]'*,

where
(=t,/t „g=m„/I, .

(7cl)

(7e)

The quantities defined in Eqs. (7a-d) have physical
significance. Thus, V„ is the velocity of the projectile
in the center-of-mass frame; v, is the speed of the center-
of-mass in the laboratory frame; 3 is the cosine of the
angle between the final projectile velocity and the
velocity of the center-of-mass, both being measured in
the laboratory frame; finally, I is the final projectile
speed in the laboratory frame. The particular choice
of the dimensionless quantities $ and g, defined in

(7e), is dictated by the fact that for slowly moving
targets and light projectiles, $ and g will be small, and
it is this case that is next considered in detail.

3. SLOWLY MOVING TARGETS

A. Light Projectiles

In the case of light projectiles and slowly moving
targets, q and $ are small. A Taylor expansion of the
right-hand side of Eq. (6) with only the first few terms
retained will then yield a good approximation. It is
necessary to carry out the expansions to order P, since
the contribution of the terms linear in $ to the differ-
ential cross section vanishes. Carrying out the expansion
is straightforward, but tedious. The result is given in
Eqs. (S).

sinO~ )0", 4't

sinS

=E0+$[Ei,cosn+Ei, sinn cos00]+P[E0„cos2n

+(E0 "cos'y+E, "sin'p) sin'n~(T,8) = f(t,)dt, —,
' sinndn

I

0 0

t' 1 'sinO t'0
x i" —d&p JI

"0 2m sin8 ( 8,

+E sin2n cosn]+ . , (Sa)

Here, f(tt,) is the distribution function of the speeds and
it must be remembered that the quantity in square
brackets is a function of v&. In order to formally exhibit
0- as a function of temperature, the function in the square
brackets would have to be expanded as a power series
in v& and the various moments of v& expressed in terms
of T. This will be done in the following sections.

It is shown in the Appendix that

(Sb)

(Sc)

(Sd)

Ei,= 2 cosg+q (3 cos'8+2 cosg —1)+
Ei, 2sing+g3 sing cos——g+

E&,„——(1/2) (3 cos'8+4 cosg —1)
+g2 (3 cos'8+ cosg —1)+ (Se)

E2 "——(1/2) (—3 cos'8+2) —
q cosg+

Cq
I&.(0) (3) which explicitly exhibits the dependence on $, n, and t0.

q) Here,

E0 1+il2 cosg+rP(1/2) (3 c——os'8 —1)+

sill 0~ t' 0~ 4& 't Q

sing ( 8, q J V/[V '+t '(A' —1)]'
E2„&'= —1/2 —g cosg+

(6)
K2„ is not needed. The contribution of that term to the
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cross section will vanish to order P because of the n and
pp dependence. The coeKcient of each power of P is
given as a power series in p, with only the first two terms
retained (except that in the expansion of the coefficient
of P, the first three terms are retained). This somewhat
strange presentation of the series expansion of J sinO~/

sin8 is motivated by the fact that it is necessary to go
to order P to get a nonvanishing correction to the cross
section. This is shown in paragraph C of this section.
It is moreover necessary to go to order Pq to get an
indication of the mass ratio dependence of that correc-

Here,
Z. Collomb Scattering

(Z„Z,e')' 1
o, (O) =-

ni 'V ' (1—cosO)'

where

=zp+$[zi cosa+Xi cos&p sinn]

+$[Zp„cos'n+Z2, .Cos'q sin'a

+Zp„cos&p sinn cosa], (13a)

o,=a' a= (R„+R,)/2.
Zp„——S[1—cos0—2 cos'8

+g(1+cos0) (3 cos'8+7 cos8—6)], (13f)

S= (Z„Z,e')'(1+q)'/rn„'v„'(1 cos8—)' (»g)
Z2„ is not needed, since it does not contribute to the
cross section. Substitution of Eqs. (13) along with Eqs.
(8) into Eq. (5) and carrying out the indicated inte-
grations yields, upon simplification of the final result:

a (8,T) =S([1—2q+ (1/2)rlP (5+2 cos8—cos'8))
—(2g'kT/E„) (1—cos0)'}. (14)

This cross section is also valid for elastic scattering of
neutrons at low energies. ' In that case, a is known as the
"scattering length. "

Substitution of Eq. (9) along with Eqs. (8) into
Eq. (5), and then carrying out the indicated integrations
yields:

o (T,0) =a'([1+2' cos0+g'-,'(3 cos'8 —1)+ ]
+ (gkT/E„) [cos8+rl(3 cos'8 —1)+

+ ), (10)

tion. Terms, therefore, of order $g', which are of the ~ S[1
same order have not been retained, since they do not

it'(2 cos'8 5 cos8 3contribute to the cross section.
Z„=S[2(1—cos0) +g4 (cos'8—1)7, (13c)

1. Hard Sphere -Collisions
Zi, ——S[—2 sin8+g sin8(4 cos8+6)], (13cl)

I.et the radii of projectile and target be denoted by Zp„——S 2 cos'0 —5 cos0+3—il3 1+cos0„an i, t en
&& (cos'0 —3 cos0+2)], (13e)

(9)

where E„is the energy of the projectile in the laboratory
frame. In deriving the result (10), the usual dehnition
of T is used:

3kT 3k'
f(vi) Pdvi =

I f(vi) dvi —— =— . (11)
0 "0 ~„' m&~„' 2E„

The first moment of $ is not needed, since, as mentioned
before, the terms linear in f vanish upon integration
over the angles. It should not be inferred from Eq. (10)
that, in the limit q —+0 the temperature-dependent
term vanishes, since E„also goes to zero. The ratio
nkT/E„remains finite and is equal to 2kT/ni, v„'

Integrating over all solid angles to find the total
cross section, we find that all terms in g and T drop out,
leaving

Again, Eq. (11) was used to express the second moment
of v& in terms of target gas temperature.

o.,= f(V„, cosO), (15)

and then substituting for V„ the expression given by
Eq. (7a) and for COSO from Eq. (24c) of the Appendix.
It is instructive to expand this as a power series in V„
and cos(),

(16)o,= Q A„„V„"cos 0,
7L f m

and to expand the expressions (7a) and (24c) for V„and
COSO~ in terms of $ and n.

3. The General Case

The general case can be treated by expressing
o( vO~) as a function of U„and COSO~,

0 toy 471 a
y

2 (12) Vv= vv(1+q) '(1—$ cosn+P-,' sin'n+ ) (17a)
which is the same result as is obtained for initially
motionless targets: T=0. This is not surprising,
inasmuch as the motion of a target cannot affect the
total area it presents for collision; it only affects the
distribution in angles of scattering of those collisions
that do occur.

' See, e.g. , R. D. Present, Eieetic Theory of Gases (McGraw-Hill
Book Company, Inc. , New York, 1958), pp. 140—142.

J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley R Sons, New York, 1952), pp. 56—65.

cosO = cp+ $[ci~ cosn+ cia slna cosip]

+P [C2„cos'n+ cp „sin'n+ cp„sinn cosn],
where

cp
——cos8—q sin'8 ——,'rlP sin'8 cos8+

ci = —sinP0[1+q(1+cos0)+ ' ' '],
ci,= sin8(cos0 —1)[1+q cos8+ ],

cp„———sin 8[(1+-', cos8)+q(2 cos0+1)+ 7,

(17b)

(17c)

(17d)

(17e)

(17f)
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Fzo. 4. Temperature dependence of the differential scattering .

cross section for hard-sphere scattering and for Coulomb scatter-
ing. Here a is defined in Eq. (9) and b = Zowie'(1+re)s/m„s„'.

cs„=(cos8—1)L(—sill p+s cos8(1—cos8) cos y)
+r) cos8(cos8+1) cos'ie+. ]. (17g)

The coefficient c2„ is not needed. It will be noted from
Eqs. (17) that the coefficients of P in both V~ and cosO
are independent of both o. and q. Moreover, the
coefFicients of P vary as cosn and sinn cosy. It then
follows that the terms linear in $ in both U„"and cos 0
and, therefore, in the product V„"cos 0 will be a
combination of cosn and sinn cosy (multiplied by
things independent of n and q). It will be further noted
from Eqs. (8) that the terms in P and P in J sinO/sin8
have similar dependences on o. and p. As a consequence,
the expansion of the integrand in Eq. (5) has the form

fi(8,rl)+$[fs(8,ri) cosn+ fs (8,r)) sinn cosine] plus higher
order terms, Upon integration over o, and rp, the second
term vanishes, leaving the first term unaltered (the
zero-temperature result) plus terms in P which give a
correction linear in T.

B. Projectile Mass Equals Target Mass

The case in which g=1 will also be considered for
hard-sphere scattering, since this result is applicable
to the scattering of low-energy neutrons by protons.
In this case, the expansion of (6) and its subsequent
substitution, along with o, (O) given by (9), into Eq.
(5) yields:

rhe differential cross section is plotted as a function of
angle with target. gas temperature as a parameter.
It is seen that for light projectiles, Coulomb scattering
is quite insensitive to the temperature. As a matter
of fact, it can be seen from Eq. (14) that in the limit

q
—+ 0, the temperature-dependent term vanishes

entirely. On the other hand, hard-sphere scattering
(which describes the elastic scattering of low-energy
neutrons) exhibits a much more detectable temperature
dependence. It should not be immediately concluded
from Fig. 4 that a neutron beam is always a more
sensitive probe of temperature than a proton beam.
The cross section for low-energy protons on neutral
atoms is of the shielded Coulomb type, which should
behave more like the hard-sphere case than the simple
Coulomb case. However, at the high temperatures at
which one would consider using this method, the target
gas atoms would most certainly be at least partially
ionized and would give rise to Coulomb-type scattering
even at low projectile energy. Consequently, the
remaining calculations all deal exclusively with hard-
sphere scattering.

Figure 5 shows how a measurement of the fraction
of projectiles scattered per unit solid angle at two
angles 0' and 180' suffice to determine both temperature
and particle density. The curves rising to the right

8= 180' ———
8= 0'

Q = 0.25

.42

1.0

0.9

0.8

ir(T8) =4 cos8[1+(kT/2E„)(1+cos '8)]. (1g)

This result is not valid near 8=7r/2.

0~7 0.2 0.4 0.6 0.8 1.0
kT
F„

1.2 IA

4. NUMERICAL RESULTS AND CONCLUSIONS

Figure 4 presents some numerical results, computed
from Eq. (10) for hard-sphere scattering and from Eq.
(14) for Coulomb scattering, for the case in which the
mass of the projectile is one tenth that of the target.

FIG. 5. Diagram illustrating how a measurement of the fraction
of the projectiles scattered per unit solid angle at two angles 0
and 180' suffices to determine both temperature (given in dimen-
sionless units along the abscissa) and particle density (given along
the ordinate). The solid lines pertain to the measurement at 0',
while the dashed lines pertain to the Ineasurement at 180'. The
numbers associated with each of the curves are the values of the
quantity (lVpta') 'dX/des.
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establish the relation between temperature and particle
density determined by an experimental determination
of (Vota') ' dX/da& at angle of scattering of 180' in the
laboratory frame. Here, Eo is the number of projectiles
incident, t the target gas thickness, dÃ/d&g the number
of particles scattered per unit solid angle, and a is
defined in Eq. (9). Similarly, the curves rising to the
left establish another relation obtained by a similar
measurement at 0' scattering angle. (In practice,
angles of say 5' and 175 would be chosen so as to
eliminate interference with the incident beam. ) The
hatched regions show how such measurements, with an
error of 2.5% determine the density with an error of
5% and kT/E„with an error of 18%. For a target gas
at 10' 'K, the energy of the incident beam of neutrons
required to obtain this accuracy would be 78 ev; on the
other hand, a 0.78-ev neutron beam could measure a
temperature of 104 'K with the same accuracy.

As a final point, it may be remarked that the experi-
ment reported in reference 1 considered the scattering
cross section of neutrons incident on protons at energies
of from 0.003 ev to 100 ev. At energies of 0.03 ev and
lower, the alteration in the angular dependence of the
differential cross section becomes appreciable. Un-
fortunately, that particular experiment measured only
the total cross section, not the angular dependence.
It is mentioned here only to illustrate that measure-
ments in a range in which the temperature dependence
is important are indeed feasible.
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6. APPENDIX

The functional dependence of 0 and 4 upon 8, y, vv,
v, and n, indicated in Eq. (1) will now be explicitly
determined. In order to avoid confusion, it is best to
point out that three coordinate systems are employed:
an I, Y', Z system fixed in the center-of-mass system
and both an x, y, s and an x, y, s system, each fixed in
the laboratory. The two barred systems are moving
relative to each other but have parallel coordinate
axes. The x, y, s and x, y, s systems are merely rotated
with respect to each other by the angle 8 in the x-s plane.

From Fig. 2, the direction and magnitude of the
initial relative velocity is easily determined. This will
be denoted by v„.

v„= (v„'—2vvv, cosn+vP)**=v„(1—2$ cosn+P)'*, (19a)

v„sin8= v& sinn.

The velocity of the projectile in the center-of-mass
system, denoted by V„, follows directly from the
definition of the center of mass, and is given by

Vv=m, v„/(mv+m, ) =v„/(1+ii)

The final velocity of the projectile will have, in the
center-of-mass frame, the same magnitude as before col-
lision, but will have a direction described by the angles
O~, 4 in the I, Y, Z system fixed in the center-of-mass
frame. The final projectile velocity in the x, y, s system
fixed in the laboratory is then obtained by adding the
velocity of the center of mass to this velocity. Now, by
the definition of center of mass, the direction and
magnitude of its velocity in the laboratory system is
determined by

(v,),=v, sinp=v„(1+q) '$ sinn,

(v,),=—v, cosP =v„(1+ii) '(g+ $ cosn),

v, =v„(1+'q) '(g'+2$g cosn+P)'*

Moreover, from Fig. 3, it is clear that

(v,);=v„sin(p+6),

(v.).-=0,

(v,);=v, cos(p+6).

(21a)

(21b)

(21c)

(22a)

(22b)

(22c)

Thus, we obtain the final velocity of the projectile
in the x, y, z coordinate system of the laboratory frame.

u-= V„sinO cos4+v, sin(P+8),

u„-= V„sinO sin4,

u; = V„cosO+v, cos(p+6).

(23a)

(23b)

(23c)

uv= uy =u(sin8 siny)

u;=u, cosh —u, sinb

(24b)

=u(cos8 cosh —sin8 cos y sin6). (24c)

Substituting (24) into (23) and transposing the terms
involving v, :

Uv sinO cos4 =u(sin8 cosy cos6+cos8 sinb)
—v, sin(P j8), (25a)

V„sin 0 sin@= u(sin8 sin y), (25b)

V„cosO= u(cos8 cos5—sin8 cosy sin8)
—v, cos(P+8). (25c)

Finally, we must solve for u in terms of 8, y, P. This
can be done by squaring each of the equations (25)
and adding:

V„'=u'+vP 2Auv„— (26)

A = sin8 cosy sinP+cos8 cosP.

This quadratic equation can be solved for u to give:

u=Av +LV '+v '(A' —1)$' (27)

where the nonphysical solution has been discarded.

In order to find 0 and 4 in terms of Hand q we must
express the components u-, u„-, u; in the laboratory
coordinate system in terms of u, u„, u, .
u;= u, cos8+u, sin6

=u(sin8 cosy cos8+cos8 sinB), (24a)
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The Jacobian of the transformation is found from
the following identity:

(clO cle aO ciC )
!cosO sinO~

E ci8 ff(p ffq 88)

l (~—=
(
—sinOcosc )( sinOsinC'

)

t,riff ) Efip

f' ci ) (fl—
(

—sinO cosC [ (
—sinO sinrI ~. (28)

t. ap ) &alai )

Equation (28) is easily proved by carrying out the
differentiations indicated on the right-hand side,
collecting terms and simplifying.

Substituting Eqs. (25a) and (25b) into the right-
hand side of (28) and dividing through by V„sin0 and
V„cosO~ given by Eq. (25c), we get, after much
simplification:

sinO~ t'O~, I'
Ji i

=—,(29)
sin8 ( 0, p) V„$V '+n, .s(A' —1)]:

which is Eq. (6) of the text.
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Starting with the Boltzmann equation, a theoretical expression is developed for the electron drift velocity
in a binary gas mixture. The theory reduces to that of Morse, Allis, and Lamar in the absence of one of the
gases. The theory is applied to pure argon and to mixtures of A—0.1% CO2, A—0.16% CO&, A—1.0% COu,
A—0.1% N2, A—0.5% Ns, and A—1.0% Nz. The theoretical drift velocity curves for A—CO& are in close agree-
ment with experimental data, whereas the A—N2 curves differ from experimental data. Possible reasons for
this discrepancy are discussed.

I. INTRODUCTION

S MALL amounts of nitrogen or of carbon dioxide,
when added to argon, alter appreciably the value

that the electron drift velocity has in pure argon.
Experimental studies of A—C02 mixtures have been
performed by English and Hanna' and by Errett. ' Ex-
perimental studies of A-N2 mixtures have been per-
formed by Kirshner and Toffollo, ' Colli and Facchini, 4

Engligh and Hanna, ' and Errett. ' "Pure" argon curves,
which in reality may be A—X2—? mixtures, have been
published by Allen and Rossi, ' Kelma and Allen, ' and

*This work was supported in part by Avco Corporation, Re-
search and Advanced Development Division, Wilmington,
Massachusetts.

' W, H. English and G. C. Hanna, Can. J. Phys. 31, 768 (1935).' D. Errett, doctoral thesis, Purdue University, 1951 (un-
published).' J. M. Kirshner and D. S. Toffollo, J. Appl. Phys. 23, 594
(1952).' L. Colli and U. Facchini, Rev. Sci. Instr. 23, 39 (1952).' J. Allen and B. Rossi, PB 50914, Manhattan Engineers Dis-
trict L. A. Report 115—Series B MDDC Report 448, July, 1944
(unpublished).' E. D. Kelma and J. S, Allen, Phys. Rev. 77, 661 (1950).

Hudson. ' Pure argon has been studied experimentally
by Nielsen, ' Herreng, ' Colli and Facchini, ' Kirshner and
Toffollo, ' and Errett' and theoretically by Allen"
and Howe"

In this paper a theoretical expression for the electron
drift velocity in a binary gas mixture is derived and
applied to A—Co& and A—N~ mixtures. In the limit of
one gas the theory accurately predicts the drift velocity
curve of pure argon. The agreement between theory
and experiment for A—CQ2 mixtures is quite good, lend-
ing strong support to the theoretical approach. For
A—N& mixtures the theory is not in good agreement with
any of the published experimental data. There are,
however, significant differences between the experi-
mental data reported by different workers. It is postu-
lated that either (1) the A—Ns mixtures may contain

' D. Hudson, Atomic Energy Commission Report, DDC 524,
1946 (unpublished).' R. A. Nielsen, Phys. Rev. 50, 950 (1936).
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