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We consider the spatial Fourier transform pI„-, for wave vector k of the charge distribution of the electrons in
a plasma with particle density n, electron and ion temperatures T and T; and Debye length D. We assume the
absence of a magnetic field, neglect collisions and assume nD'))1. The statistical average of

~
pr-, ~' is calcu-

lated as a function of n= 1/kD assuming complete thermodynamic equilibrium; that component of
~ pr, ~'

which keeps in phase with the ion charge density fluctuations is also calculated.
The frequency spectrum of the time-varying function pf.-, is obtained at thermal equilibrium and simplified,

assuming the ion mass to be much larger than the electron mass, for general values of e and T/T, . For small
o. the main component of the spectrum has the characteristic Doppler broadening shape corresponding to the
electron's thermal velocity. For large e we have a component with narrow width corresponding roughly to
the ion velocity Doppler spread and very narrow side bands at plus and minus the frequency of electrostatic
plasma oscillations.

I. INTRODUCTION

'N the last decade or two many calculations have been
~ - carried out on the time development of fluctuations
of charge density in an ionized gas under a variety of
conditions. For a given volume V containing iV elec-
trons and E/Z positive ions of atomic charge Z quanti-
ties pI„and pI„-, have been introduced, mainly for
mathematical convenience, which are essentially the
spatial Fourier transforms for wave vector k of the
electron and ion charge densities. More specifically

X/2
Pe, (t) = eg e-'"—', P„(t)=Ze P e-"",

pi i=pi~+prr, (1)

where r(t) and R(t) are the positions, as a function of
time t, of the jth electron and ion, respectively, and k
is a constant wave vector.

The use of backscattering of a radar beam from the
ionosphere at great heights or from the exosphere has
been proposed recently by Gordon' for measuring elec-
tron density and temperature at various heights. Radar
frequencies of 50 to 1000 Mc/sec are used which are very
large compared with the electron plasma frequency co„
(of the order of 0.1 to 10 Mc/sec),

oi „=(4irnes/nt) l,

where n= LV/V is the particle d—ensity of the electrons
alone, e is the charge (in cgs units) and m, the mass of the
electron. Standard magneto-ionic theory replaces the
electrons by a continuous medium, whose refractive
index is close to unity at these high frequencies, and
would not lead to reflection or attenuation if the density
of the medium is assumed to be smooth and varying
slowly. The actual amplitude of radiation scattered
through a scattering angle 8 from a volume V of ionized
gas (dimensions of the order of 1 km) is then simply the

* Supported in part by a joint contract with the U. S. Atomic
Energy Commission and the Office of Naval Research.

'%. E. Gordon, Proc. Inst. Radio Engrs. 46, 1824 (1958).

sum of the Thomson scattering amplitudes from each of
the iV electrons in the volume (Thomson scattering
from the positive ions is negligible because of their
large mass). Since the electrons are highly nonrelativ-
istic, we can neglect retardation effects and the scat-
tering amplitude from each electron contains a phase-
factor like those appearing in Eq. (1) with the wave
number k given by k=4ir sin(-', 8)/X, where X is the
wavelength of the electromagnetic radiation. The total
amplitude of backscatter as a function of time is thus
proportional to the quantity p&, (t), defined in Eq. (1),
for a fixed value of k. For low enough intensity of the
radar beam and for radar frequency large compared
with ~„we can neglect altogether the effect of the
electromagnetic radiation on the quantity p&,.

I.et D be the Debye length, defined for the electrons
alone,

D = (ir T/4rrne') ' (3)

where e is the electron particle density and T the
electron temperature, and let A be the dimensionless
ratio

A =nD' (e'nt/ir T) *' Dir T//e'. (4)

We shall only consider cases throughout this paper
where A))1, i.e., where a sphere of radius equal to the
Debye length contains very many electrons and where
the Coulomb interaction energy between "nearby"
electrons (separations n:) is small compared with the
thermal energy ~T. This inequality certainly holds for
densities and temperatures encountered in the ionosphere
and exosphere, as well as for many laboratory experi-
ments. We further assume throughout that the gas is
ionized enough so that collisions with neutral gas atoms
or molecules can be neglected. This assumption is invalid
for the lower ionosphere but holds for heights of about
300 km. and higher. For a highly ionized gas with A))1
the main collision process for electrons and ions is
multiple Coulomb scattering through small angles and
the effective mean free path / for appreciable deRections
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is' of the order of DA/logA))D. We shall assume that A

is sufficiently large for the mean free path / to be large
compared also with our effective scalelength k ' and we
shall neglect collisions altogether. We shall calcu 1a te p I

in this paper only in the absence of any magnetic fiel d.
For the ionospheric applications the neglect of the
earth's magnetic field is not justified at the lower fre-
quencies of about 50 Mc/sec and is expected to give a
moderately good approximation at radar frequencies of
about 400 Mc/sec or higher. In many calculations in
this paper we assume complete thermodynamic equi-
librium but we shall also discuss some limited deriva-
tions from such equilibrium .

In al 1 our calculations the following dimensionl ess
parameter n will be of importance

n = 1/kD = (one'/k «D) l =g (ne'/4vr~ T) 2 (sin~ 8) ' (5)

In the limit of n —+ 0 the collective effects of the Coulomb
interactions, which become important only over dis-
tances as large as the Debye length D or larger, are
negligible over distances as small as the scale length k
and the electrons are randomly distributed in space. In
this case we have completely incoherent scattering from
ea,ch of the electrons, at least at thermodynamic equi-
librium, i.e., in evaluating

~ p q,
~

all the cross-terms
average to zero and we simply obtain iVe' for this
quantity. In the ionospheric applications for a radar
frequency of 450 Mc/sec, for instance, n & 1 at heights of
1000 or 2000 km and higher and this case of e ~ 0 has
been treated in detail by Gordon. ' We shall carry out
calculations in this paper for arbitrary values of n for
which the spatial correlations between al 1 the electrons
and ions have to be taken into account.

In Sec. 2 we evaluate the time average of the intensity
of the electron density fluctuation, ( ~ p &,

~

'), , for arbi-
trary values of the parameter OI and the atomic charge Z
of the positive ion s at complete thermodynamic equi-
librium. We shall calculate these averages from first
principles, although they could be obtained more easily
using results from the Debye-Huckel theory. Such a
calculation does not give the time development of p i,.(/)
or its frequency Fourier transform, but the intensity can
be divided into two parts with different characteristic
frequency spreads if the ion mass M is very large com-
pared with the electron mass m. The ions move very
slowly compared with the electrons and, if we consider
the ions fixed, we can evaluate the average correlation of
the electron density distribution with that of the ions .
Such a calculation will give that part of p ~, which varies
very slowly with time (characteristic of ion thermal
velocities) . The remaining part of p &, varies rapidly with
time (characteristic of electron thermal velocities) .

In Sec. 3 we derive formulas for
~ Q ~, (&u)

~

' where

Q &.(&u) is the frequency Fourier transform of p &,(t)e
in the limit of p —+ 0. This quantity is relevant if a
frequency spectrum is observed over a long but finite

L. Spit zer, Physics of Fully I

onion

ed Gases (IIIter scieII ce p ub-
ishers, New York, 1956), Chap. 5.

time period . The calculations are carried out for con1-
plete thermodynamic equilibrium except tha, t the elec-
tron and ion temperatures T and T; need not be equal .
In Sec. 4 the general results are simplified and ap-
proximations evaluated, using the fact that the ion mass
M is much larger than the electron mass m. In Sec. 5 a
special kind of deviation from equilibrium is discussed
where we assume that an external agent suddenly alters
the degree of ionization in a nonuniform manner at some
time but the medium is allowed to rel ax to equilibrium
after this time .

2. SOME TIME AVERAGED INTENSITIES

pai=ps. +Pa'=P~« '& (6)

where each p, and 6 is real and positive. We shall need
the electrostatic potential p (r) and electric field E(r)
due to the given distribution of electrons and ions. After
carrying out a Fourier transformation of the Coul omb
potential —e/

~

r —r,
~

due to the jth electron (and of its
gradient) and summing over all electrons and ions, we
fili d

g(r) =P„(8m/Vk)p„, cos(k r—6„,),
E(r) =P g k (8m / Vk')p g, sin (k r 6„,)—(7)

where the k summation is carried only over half of all
the possible k vectors (those with positive s component,
say) .

We now consider iV—1 of the electrons and al 1 the
ions as fixed, introduce an Sth electron and ask for the
stat, istical ensemble average of cos (k r—6) over all
positions r of this extra electron, k and 6 being fixed.
This average is

(cos (k r—8))

I d'y cos (k r —I5) 8'&
~J

I d3y pey(r) / a (y8)

We consider a volume V containing N electrons and
A~/Z positive ions of atomic charge Z with E and V
extremely large but with electron particle density
n =A'/ U fixed and finite. In this section we assume com-
plete thermodynamic equilibrium at temperature T but,
unlike the remaining sections, need to make no assump-
tions about the collision mean free path being large and
evaluate only statistical averages of various quantities.
AVe do have to assume, however, that the dimensionless
parameter h. defined in Eq. (4) is large compared with
unity; in an expansion in inverse powers of A we shall
calculate explicitly only the leading term and give only
qualitative estimates of higher order corrections.

Let k be any wave vector which satisfies periodic
boundary conditions in the volume V and, for any
given spatial distribution of al 1 the electrons and ions,
define complex quantities p ~„pI; and p ~ & according to
Eq. (1). Except for the relation p q ——p~*, different
values of k represent independent modes. We shall write
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where a is Boltzmann's constant. As V —& ~ we could
write, no matter what the value of A,

Coulomb interactions between the two singled out
electrons. We have

e'4"'i"r=D, [1+(87re/Vk'-aT)yai cos(k r gaia—i)], (9) (cosk. (r,—ri))r, (4me/Vk'"aT)[ el—gi cos(k- r, —&i)],

and rewrite this infinite product. as an infinite series of
terms with successive positive powers of 1/aT. However,
this series will converge rapidly if, and only if,
~eP(r)/aT~&&1. If A))1 the Coulomb interaction be-
tween "neighboring" particles is weak compared with
~T and this inequality is satisfied for all values of r
except those very close to one of the fixed charges. In
the integral in Eq. (8) distances away from a fixed
charge which are small compared with both the scale-
length k ' and the Debye length D are unimportant. At
a distance k ' the potential energy of an electron is of
order e'k and the use of an expansion in powers of 1jaT
will give rapid convergence as long as (An) ' e'k/ Ta«1,
as well as A))1. We shall assume that this inequality
also holds (it breaks down only for n«A '«1 and for
such very small values of n the Coulomb correlations are
negligible and the problem trivial in any case). Using the
expansion of Eq. (9) in the integrands of Eq. (8) we keep
only the zero order term (unity) in the denominator. In
the numerator the zero order term gives no contribution,
we keep only the terms of first order in 1/aT and, since
the cosine terms for different values of k are orthogonal,
we obtain

(cos(k r —8))= (4ire/Vk'aT) p, ai cos(8 —6ai), (10)

where the pai and 6a, refer to lV —1 electrons and N/Z
ions. A similar calculation for (cos(k. R—6)), where R is
the position of an additional positive ion, simply gives

(—Z) times the expression in Eq. (10).
The use of Eq. (1) gives a double sum over indices

j, / for a quantity like p, &,'= pj„~p&„ for all S electrons.
In this double sum we separate out the terms with j=l
for which the phase factors cancel. On taking a sta-
tistical ensemble average the various terms in the re-
maining double summations give identical results and,
replacing N(N —1) by N' and dropping the subscript k,
we obtain

(p )=Ne'[1+)V(cosk (r, —r,))],
()i ') = iVe'[ Z+N(c sok(R, —R,))], (11)

(p )= (p )+(p )—2' g (cosk (r~ —R i)),

where r, and R; are the positions of the jth electron and
ion, respectively.

The cosine expectation values are the Fourier
transforms of the two particle correlation functions,
which would vanish for randomly distributed elec-
trons and ions, and we evaluate them as follows.
We keep p& for all particles except electrons j and l
fixed, keep r,. fixed at first and average over r&. This
average can be obtained in analogy with the derivation
of Eq. (10) but in Eq. (9) we have to add the term

[1—(Sere'/Vk'aT) cosk (r, —ri)], which represents the

with r, fixed. We average next over r;, still keeping p&

fixed, use Eq. (10) and finally average over the remain-
ing particles as well. Using the same procedure on the
other cosine terms we fipd

(cosk (r;—ri))=Z '(cosk (R,—R,))
= —Z—'(cosk (r, —Ri))
= (a'/N)[n'(pP)()Ve') ' —1] (12)

where the dimensionless parameter o. is defined in Eq.
(5). (pP) refers to lV —2 electrons but iV —2 may be
replaced by E, since we expect no cancellation of large
terms.

Substituting Eq. (12) into Eq. (11) to eliminate (p, )
and (p,2) yields an explicit expression for (pP) and substi-
tuting this expression back into Eq. (12) gives explicit
expressions for the cosine expectation values. Using
again Eq. (11) we finally obtain the desired expressions

(p.2) =Ne'(1+Zn') [1+(Z+1)n'] ',

(p ') =ZNe'(1++') [1+(Z+1)n']—', (13)
(gP) = (Z+1)Ne'[1+ (Z+1)n'] ',

iV(cosk (r, —ri))= —n [1+(Z+1)n ] (14)

' D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).' J. A. Fejer, Can. J. Phys. (to be published).' J, Renau (unpublished work).' F. D. Kahn, Astrophys. J. 129, 205 (1959).
7 The fallacy in Kahn's derivation appears to lie in the use made

of his Eq. (17); In this equation, two expressions for (p, P) occur,

Equation (14) merely represents a rederivation of the
Fourier transform of the well-known Debye-Hiickel
two-particle correlation function for two electrons. If
we had taken over this expression (and similar ones)
from the Debye-Hiickel theory, substitution into Eq.
(11) would have given t.he desired results without re-
quiring any other formulas of the present section.

For n«1 our results in Eq. (13) reduce to those for
randomly distributed particles, as they should. For n))1
the total charge density fluctuations (pP) are smaller
than those for random distribution by a factor o. '~ k-'.

The electron charge density fluctuations (p,'), however,
are reduced only by a factor Z/(Z+1) even in the limit
of o.~ ~. Pines and Hohm' have carried out calcula-
tions for (p,2) for a model in which the positive charges
are uniformly and continuously distributed. Their re-
sults can be obtained from our more general ones in
Eq. (13) by making the formal substitution Z=O in
which case (p,')=(pP) and (pP) =0. The expression for
(p,'i) for Z=1, the case of greatest interest for the
ionospheric application, has also been derived by differ-
ent methods by Fejer' and by Renau. ' Kahn' has
derived an expression for (pP) for general values of Z
and n which agrees with ours in the two limiting cases
e«1 and n))1 but appears to be incorrect' for general
values of n.
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8„=—((t4. cos (6,—6,))',„)
=ZXe'n4(1++') 'L1+ (Z+1)n'1 ',

—= (p 2) —g„.=+e&(1+4+)—i

(16)

If the ion mass M is large compared with the electron
mass m, the expressions in Eq. (16) have the following
physical significance. The ions move slowly so that p;
varies slowly with time and the frequency Fourier
transform of p,' has a narrow spread and so does the
Fourier transform of the square of that part of p, which
remains in phase with p, . The full Fourier transform of
t4,2(t) (which we shall analyze in detail in the next
section) thus contains one part, with a narrow frequency
spread, whose integrated intensity is given by 6„.The
remaining part represents the electron density Quctua-
tions which are not correlated with the ions, has a wide

frequency spread characteristic of electron thermal
velocity Doppler broadening and integrated intensity
given by 0„.For n«1 the dominant part is O„and the
integrated intensity of the narrow part is small, 0„=Se'
and 6„.=ZS'e'0. . For o.))1 the dominant part is B„and
e..=(t P)=re'~ '«e„.

In deriving Eq. (10) from Eq. (8) for a particular
wave-mode k we had carried only the leading term in an
expansion in powers of 1/14T and thereby omitted all
terms which involve p« for any other wave-mode qWk.
The approximation made thereby is equivalent to the

one for N electrons and one for N+1, which should be taken at
constant density N/V (not at constant volume V). Since second
differences occur in subsequent equations, the use of a constant
volume V is not justified.

We finally evaluate in a similar manner another sta-
tistical average which forms only part of (p, ,2). We first
consider the positions of the ions, and hence p;= p;e "',
as fixed and ask for the average of the component of the
electron quantity p, which is in phase with the constant
p;. We first rewrite the expression in Eq. (10) for the
average over the Xth electron (with X—1 electrons, as
well as the ions, fixed), using the definitions in Eq. (6)

(cos(k r —6))
= (47re/Vk'14T) [p. cos(8—5,) +ti; cos(6—8,)$.

We have ti, cos(b, —8,)= —eg,=i cos(k r, —8,) and
for the jth term in this sum we first average over the jth
electron, keeping the remaining electrons as well as ions
fixed, and use the equation above. We average next over
the remaining JV—1 electrons, still keeping the ions
fixed, and add the identical 3T' terms j= 1 to E. This
gives

(t4, cos(8,—8,))„=—n'$(ti, cos(8,—8,)),+t4,]
= —n'(1+n') 'ti, ,

where the subscript p; indicates that this quantity is
kept fixed. We finally square the expression in Eq. (15)
average over the positions of all the ions as well and use
the explicit expression in Eq. (13) for (t4, ) to obtain the
desired result

so-called "random phase approximation" which neglects
correlations between different wave-modes. Some devia-
tions from this approximation could also be calculated
with methods similar to those of the present section.
For instance, with pj„and pI, ; fixed, the average of
ti«t4, , cos(8—5«—8, ,) for q+q'=k could be evaluated.
Using such expressions and keeping terms of second
power in 1/~T in Eqs. (8) and (9), corrections to Eqs.
(10) and (13) could then be obtained. For u&(1 the
leading correction to Eq. (10) is probably of relative
order e'k/14T (An) ', the correction to (t4,') of relative
order n/A where n and A are defined in Eqs. (4) and (5).
For n))1 the leading correction both to Eq. (10) and to
(t4P) is probably of relative order (An') '.

3. THE FREQUENCY SPECTRUM

We have so far evaluated only the root mean square
average of the quantity p, (t) defined in Eq. (1) and now
wish to calculate its time-dependence, or rather its
frequency Fourier transform. In this section we neglect
collisions entirely (mean free path much larger than both
k ' and D) and assume that the only forces acting are
those of the electric field E(r), given in Eq. (7), due to
the charge density Quctuations themselves. We again
assume that A&)1 and also that n,k '))1.In this case the
use of a Boltzmann equation for a Boltzmann distribu-
tion function f(r,v, t) is in general justified. Such an
equation was used by Bhatnagar, Gross and Krook' and
the spatial and frequency Fourier transforms of the
distribution function f evaluated We shal. l use a method
similar to that of BGK but we shall have to take ac-
count of the discrete nature of the electrons more ex-
plicitly since we wish to retain also terms in an expres-
sion for pP(t) which are proportional to only X, the
number of electrons in the volume V, rather than N'.

We consider a fixed value of the wave vector k, take
its direction as the s axis, call the 2 component of
velocity v and shall omit the subscript k in pj,„etc.We
define a quantity o,„(t)by.

doo,„(t)= —e P 'i e. '~' p, (t) =P„dao,„(t), (17).
where Qi' denotes summation over all electrons whose
velocity z, =v, lies between o and o+dv. Our quantity
o.,„(t) is essentially —e times the spatial Fourier trans-
form for wave vector k of the Boltzmann distribution
function j (r,v, t). The Boltzmann equation reads

Bo,„/Bt+4'kvo, „=(e'/. rN) d'r E,(r,t)[8f(r, v, t)/Bo]e '",

where the right-hand side represents the contribution
from those electrons whose velocity was below v pre-
viously but passed into the v ~ o+do bin due to the
acceleration of the electric field E. (minus those that
have pa.ssed beyond v+do); E, is given by Eq. (7). We
assume A=ra'))1, ek '))1 and the absence of any

8 P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94,
511 (1954) (hereafter referred to as BGK).
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large scale macroscopic deviations from thermal equi-
librium and replace f in the right-hand side of the
Boltzmann equation by the equilibrium distribution
function

f(r,v, t) ~ nF, (v);
F,(v) =,(2KT/mv. ) l exp( m—v'/2~T), (18)

where n=Ã/V is the electron particle density. This
gives the so-called Vlasov equation,

Bo.,/Bt+ikvo ..= i(4ve'n/~T. ) (v/k) p zF, (v), (19)

where p, is pi, for our fixed value of k. This substitution
is equivalent to tbe "random phase approximation"
since we have neglected fluctuations in f(r,v, t) with
wave vector q together with components for E in Eq.
(7) with wave vector k —q.

We define next the frequency Fourier transforms, or
rather Laplace transforms, of the time-dependent
quantities o.„(t) and p, (t),

q,„(&u) = dt o,„(t)e. i'~+»'

Qz (o~) =ie[1 G—,(oi) G—, (io)]
N

X{+(o~+kv —iy) 'e '"z~

where

N/2—Z Q (oi+kv —iy) 'e '"e~)(24)'

G.(oi) =
~

I (4ve'nv/k~T) (co+kv —iy) 'F, (v)dv,

(23)

Su~~ing Eq. (23) over all velocity groups v and
using the fact that Q, =g„dvq, „we obtain an explicit
expression for Qz(oi) in terms of the quantities o.,„(0) at
the initial time t=0. The terms involving F,(v) and
F;(v) are smoothly varying functions of v and we can
replace the summation over v by an integration. In the
term involving o z„(0), however, we must be careful to
preserve the discreteness of the summation and of ex-
pressions like Eq. (17) and write this term as a summa-
tion over individual electrons and ions. This gives

dt p, (t)e &'"+»',

(20)
G, (or) = ' (4v Ze'nv/k~T, ) (&v+kv —iy) 'F (v)dv,

where p is a real, positive, infinitesimally small constant.
In a radar experiment, where the frequency spectrum of

I p, (t) I

' is obtained during a large but finite time interval

(2y) ', a quantity essentially like IQ. (or) I' is measured
and we also have for the time average of

I p, I',

=h/~) " IQ.(~)I'd~ (21)

Using the identity

r ',„(t) "+ "dt= —,(0)+(' +y)q..( ),
0

we derive from Eq. (19) the relation

q,„(oi)= (oo+kv —iy) 'I —io..(0)
+( 4ev'n »/T)(v/k)F, (v)Qz(co) j, (22)

where o &„, pz, q,„, and Q, are defined by equations analo-

gous to Eqs. (17) and (20) but with all the charges,
electrons and positive ions of charge Ze, included. For
the ions alone one obtains an equation similar to Eq.
(22) with ne' replaced by Zne' and with a distribution
function F,(v) occurring which is defined as in Eq. (18)
but with the ion mass Ply replacing the electron mass m.
In this expression we also allow the ion temperature T;
to differ from the electron temperature T. For the
electron and ions combined we then find

qz„(o~)= ((o+kv-iy) 'L-ioz„(0)
+(4vne'/kiiT)(F. +ZTT, 'Fz)Qz(cv) j (23).

and s;, Z, denote the position of the jth electron or ion,
respectively, at time t=0 (and v, is the corresponding
velocity). After summing Eq. (22) over velocity v and
making use of Eq. (25), we also find

Q.(co) =ie
G N e

—ikz~'

1—G,—G, z'-i oi+kv, iy—
G,, N/~—Z

1—G,—G

e—ikzg'

(26)
&0+kvz —$p

( ~ e zkzi 2)—
& z i~+kv, =iy 9—

F,(v)dv= lV — +lV(&V—1)
„((u+kv)'+y'

r r F.(v;)F,(vi)(e"&*&—* &).. .,dv, dv,
X, . (27)

(oo+kv,—iy) (or+kvi —iy)

Equation (26) expresses Q, (o&) explicitly in terms of
the positions and velocities of all the electrons and ions
at the initial time t=O. If we were to put Z=O and
replace the summation in Eq. (26) by an integral over
o,„(0)dv we essentially would obtain Eq. (44) of BGK
and we shall return to such an equation in Sec. 5. At the
moment, however, we want an expression for IQ, (o&) I'
under conditions of thermal equilibrium (except that T,
may differ from T) and therefore take the modulus
squared of the right-hand side of Eq. (26) and average
over initial conditions. In the double summation over
particles j and / we separate out the terms with j=l and
obtain
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The quantity ( ).. .i indicates an average over the posi-
tions of the two electrons with their velocities kept
constant and is of the same order of magnitude as the
expression in Eq. (14). With the density fixed, the
second term on the right-hand side of Eq. (27) is then
proportional to )7, just as the first term, but as p ~ 0
the second term tends to a constant limit whereas the
first term is proportional to p '. Keeping only terms of
order y ' we can neglect the second term in Eq. (27) and
evaluate the integral in the first term and obtain from
Eq. (26)

4/~&e')(IQ (~) I')
=

I
1—G.—G,

I

'k 'L
I
1—G,

I
'F.( c /k)—

+Z
i
G,

i

'F, (—co/k) j, (28)

where G is defined in Eq. (25) and F in Eq. (18).

~ I ~ r ] Kl
~

7 4

.2

0.5 2.0 2.5

- )&-

Fro. 2. The function 1' (x) plotted against x for +=0, 0.5, 1, 2, 3
and 4. The vertical lines near the top of the figure denote x0, Eq.
(38), for n=2, 3 and 4. The dashed curve denotes 1' u&(x), Eq. (41),
for 0.=1.

f(x) =2x exp( —x') exp(ts)dt,
Jp

(30)

and the integral in Eq. (30) is tabulated. "For x(1 the
Taylor series (convergent for all x) converges rapidly,

f(x) =2x'{1 (2/3)*'+—(4/15)x'
+ . . (—2x') "L3 5 (2tr+1)]—'+ }. (31)
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Fio. 1.The function f(x), de6ned in Eq. (30), plotted against x.
The dashed curve denotes the asymptotic expansion carrying only
the first two terms on the right-hand side of Eq. (32).

' J. P. Dougherty and D. T. Parley (unpublished work).' K. A. Karpov, Tabttitsi fgnktsii v konsp/eksnoi oblasti (Akad.
Nauk. U.S.S.R., Moscow, 1958).

4. RESULTS

Equation (28) is the essential result in its most
general form. For Z= T/T, = 1 this result has also been
obtained by Dougherty and Farley' and, for o.))1, by
Fejer. ' Using Eqs. (54) and (56) of BGK the expressions
for G in Eq. (25) can be expressed in terms of tabulated
functions,

G, (ro) =—u'L1 —f(x)+i(ir)'x exp( —x') j,
x =to/co. , oi, = (2k'IrT/rn)'*,

(29)
G, (~)=—(ZT~'/T~) L1—f(y)+i(~) '*y exp( —y') j,

y =to/co, , ro;= (2k'sT;/M)&,

rt
—= ro;/co, = (m T,f/M T) '«1. (33)

In this case a good approximation (except for some
special cases discussed below) can be given for Eq. (28),
in terms of a single-parameter family of functions I' of
one variable, as follows. The first term in Eq. (28)
involves F,~ exp( —x') and is of most interest for

i xi
1. Disregarding the narrow region ixi = iyirt&rt we

have
I
yi))1 for this term and G;=ZTn'/2T, y' can be

neglected compared with unity and with 6,. The second
term in Eq. (28) involves F,~ exp( —y') and is unim-
portant if

I yi = Ixlrl '&ri '. In the important regions we
then have ixi«1 and G,= —n'L1+i(rr)&xj. Neglecting
also the term i(m)'*x, we obtain finally"

'Y dke ( rrs ) ' dto
(I(),(~) I

)d~=r. (*)—uzi I r, (y)—,
(rr) ~Pe' co, (1+rrs)

ZTA
(34)

T,(1+cr')

r (X) =eXp(—X')(L1+rr' —cx'y(X) j'
+m.rr'xs exp( —2x') }—' (35)

where a is defined in Eq. (5) and x, y in Eq. (29).
"This result had been stated previously by E. E. Salpeter, J.

Qeophys. Research 65, 1851 (1960). In Eq. (1) of this paper
-'xp'f' ShOuld read ~7rp'8'

For x))1 we have the asymptotic expansion

~(x)—'= ('*') 'I-'+ (3/2x')+('5/4x')+" j.
For intermediate values of x, the function f(x) is plotted
in Fig. 1, as is (dashed curve) the function obtained
from the first two terms on the right-hand side of Eq.
(32). The velocity distribution functions F in Eq. (28)
can be written explicitly as k 'F,=exp( —x')/(s)'co, and
k 'F;=exp( —y')/(rr)&co, .

The constants or, and co; represent Doppler spread
frequencies characteristic of thermal velocities of the
electrons and ions, respectively. For most cases of
practical interest m(&M and T,&T so that
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Each function I' (x) is even in x. It is plotted for
positive x in Fig. 2 for n=0, 0.5, 1, 2, 3, and 4. For z«1
the function is close to the Gaussian I'p(x) =exp( —x').
This is, of course, the characteristic Doppler spread
spectrum for noninteracting electrons. For o,))1, on the
other hand, I' (x) has a very sha, rp maximum near
x=~xo, where xo is the solution of the dispersion re-
lation,

(xo) —1=~ '. (36)

1
7r 2

~ QO

p. (x)dx =n—' (39)

decreases. It should be remembered that, for a practical
problem, collisions also contribute a very small width to
the spectrum which dominates the Landau damping for
very large values of n and that small slow variations of
the over-all electron density will vary co~ and broaden
the spectrum. As the discussion in Sec. 2 shows, the
integrated intensity in Eq. (39) should not depend on
collisions or on the width.

Ke have discussed so far only the first term, involving
I' (x), in Eq. (34) which represents the part of the fre-

quency spectrum which is important at large frequen-
cies, of the order of cv, or of co„, and whose integrated
intensity is given by 0„in Eq. (16).We turn now to the

"Equation (36) also has a second solution with xo 1. This
solution is of no interest since F o. 4((1.

"See reference 2, Chap. 4.
'4 The relevance of such plasma oscillations to the radar back-

scatter problem was 6rst pointed out by A, I, Akhiezer, I. G.
Prokgoda, and A. G. Sitenko, J. Exptl. Theoret. Phys. (U.S.S.R.)
33, 750 (1957}Ltranslation: Soviet Phys. -JETP 6, 576 (1958}7,
who used a model in which the ions are replaced by a uniform
charge distribution.

"L.Landau, J. Phys. U, S.S.R. 10, 25 (1946).

For x very near xp, I' (x) can then be approximated by
the Lorentzian shape,

I'.(x) =-', o.' exp (—xo') (4 (x—xo)'

+Ls(~)'~"(—xo')3') ' (37)

for e))1, where we have used the approximate relation

f 1=1/2—x' in evaluating coefficients. If Fq. (36) is
solved' approximately by using the first two terms in
the asymptotic expansion, Eq. (32), we obtain

xp'= —', (n'+3), ohio' =—(xpoi.)'=pi„'+3KTk'/'m. (38)

This expression for uo' is the well-known" dispersion
relation for longitudinal (electrostatic) plasma oscilla-
tions. "The Lorentzian shape of Eq. (37) is characteristic
of the resonance spectrum for a long-lived oscillation.
The width of the spectrum, the expression in the second
round bracket in Eq. (37) comes from the so-called
Landau" (or "drift") damping which is contributed by
those few electrons in the tail of the Maxwell distribu-
tion whose velocity equals the (very large) phase
velocity of the plasma oscillation. As o, increases the
width decreases and the maximum of I' (x) increases
sharply, even though the integrated intensity

second term, involving I's(y), in Eq. (34) which is im-

portant only for small frequencies and whose integrated
intensity is given by 8„in Eq. (16). For n((1 we have
e„=Z&'e„«e„but the width of the second term is
smaller by a factor of g=oi;/oi, ((1 than that of the first
and the peak of the second term will dominate for small
po as long as Zn4» il. For o.»1 the integrated intensity 0„
of the second term dominates that of the erst term. For
the case of greatest interest, Z= T~/T = 1, we then have
/=1 as n —+ ~ and I' s(y) has the almost flat-topped
shape plotted in Fig. 2. In this case we have almost
complete charge neutrality, the electron density mainly
follows that of the ions which can change only slowly
and leads to a narrow frequency width of order co;. The
shape of I'i(y) differs from the Gaussian for non-
interacting ions because electrostatic potentials of order
I(.T are set up by the requirement that the electrons
follow the charge density of the (slow) ions.

If the ion temperature T; is lower than the electron
temperature T, as well as a)&1, we have P = (ZT/T, ) l&)1
and the "ion component" I's(y) also has a Lorentzian
shape like Eq. (37). This sharp "resonance curve"
represents the so-called positive-ion oscillations" '
whose frequency is the same as that of a plasma oscilla-
tion for ficticious particles with the ion charge and mass
but with the electron temperature. If the quantity p,
defined in Eq. (33), is negligibly small and there are no
collisions the width of the frequency spectrum for the
positive-ion oscillation is given by I' s(y) no matter how
large P. However, if (ii T,/ZT) »exp( —P'/2), then
the replacement in the derivation of Eq. (34) of
G.= —o.'L1+i(pr)~x] by —o.' is not justified and the
actual width, although still small, is larger than that
given by I'p(y).

To summarize the results so far for the most im-
portant case of T;= T, Z = 1 and m«M: We have
defined the dimensionless parameter n in Eq. (5) and
have P=n(1+n') ', rl—=po, /po, = (m/JI)*' The frequency.
distribution is given by Eq. (34) with x and y defined in

Eq. (29). The integral over doi of the first term in Eq.
(34) is (pr) *'(1+o.') ', that of the second term is
(pr)'n'(1+n') '(1+2o.') '. The sum of the two integrals
is (~)l(1+n')(1+2n') ' which decreases only by a
factor of 2 as a goes from zero to infinity. The function
I' (x) is even in x and is plotted for positive x in Fig. 2,
has Gaussian shape for o.=0, is almost Oat-topped for
n= 1 and has a maximum at a nonzero value of x for
larger values of o.. For o.&4, the function I' (x) has the
Lorentzian shape of Eq. (37) and a very sharp peak of
height greater than unity and Eq. (38) is a very good
approximation. For o.((m/M)"s, the maximum of the
first term in Eq. (34) is larger than that of the second
term. This is again the case for large values of n (n 5

for 3f/m 10') but it should be remembered that in a
practical problem such as the ionosphere application
there are other causes, besides Landau damping,

"E.P. Gross and M. Krook, Phys. Rev. 102, 593 (1956).
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broadening the "resonance peak" and the actual maxi-
mum will be lower than that given by P (x).

.(~) =
1—G,—G;

f(xS)-
i exp( —Px')+

COg xS(~)-'*

f(y)——i exp( —y')+, (40)
(vr) ly

where a is a constant. Using the fact that m(&3f, we can

'7 Because of the absence of collisions our case is quite different
from those involving turbulence (with a short mean free path)
where large eddies feed small ones and pf„(t) also depends on
p„(0) with q/k; see, for instance, F. Villars and V. Weisskopf,
Proc. Inst. Radio Engrs. 43, 1232 (1955); R. A. Silverman, J.
Appl. Phys. 28, 506 (1957).

S. SOME DEVIATIONS FROM THERMAL
EQUILIBRIUM

We have discussed so far only cases in which complete
thermodynamic equilibrium holds (except that the ion
and electron temperatures T; and T may differ). We
now consider one very special kind of small deviation
from equilibrium. We assume that equilibrium has been
established but that at some time /= 0 the electron and
ion charge densities are suddenly both altered in a non-
homogeneous manner (but keeping charge neutrality)
by some external agent. This might be accomplished,
for instance, by the sudden passage of fast ionizing
particles with a patchy spatial distribution. The newly
created patchy electron charge distribution is assumed
to be small compared with the uniform density n but its
spatial Fourier transform pi, (0)= —p&;(0), Eq. (1), is
assumed to be larger than p&, for purely thermal density
fluctuations. We further assume the absence of collisions
and A))1 in Eq. (4), will use the random phase ap-
proximation and consider only one particular value of
the wave vector k (and drop the subscript. k).'" We as-
sume next that o.,„(0)and a,„(0),Eq. (17), are smoothly
varying functions of the velocity e. We also assume that
after the initial time 3=0 there are no external forces or
disturbances (except for the possibility of another
sudden burst of ionization after the effects of the original
disturbance have died down).

If we assume the disturbance at 3=0 occurs instan-
taneously, then the frequency Fourier transform of
p, (t) is again given by Eq. (26) but we can replace the
summations by integrations over the smoothly varying
functions o..(0) and o,.(0). We specialize further by
assuming that o,„(0) is proportional to the Maxwell
distribution function for ions at temperature T= T; and
o,„(0) that for electrons at temperature Tti ' where
8&1. Carrying out the integrations over dv we find

simplify this expression as we did in Sec. 4 to obtain

IQ.(~) I'"P-"'(»)~. '+«'(I+~') 'Pe'"(y)~' '' '
(41)I' '" (x) = [exp (—x') +exp (x')f'(x)/7rx'jI' (x) .

As Eq. (41) shows, the function I' t" (x) decreases
much less rapidly for large x than the function I' (x), as
x ' rather than as exp( —x'). This slow falloff is due to
our special assumption of a sudden onset of the disturb-
ance which contributes Fourier components of large
frequency. If the onset occupies a finite time duration
T, as it would in practice, our Eq. (41) breaks down for
co& T ' and the actual spectral intensity would be lower
than in our approximation. Note also tha, t IQ. (oi) I' in
Eq. (41) is independent of y ', the length of time over
which the frequency spectrum is accumulated (as
y ~ 0), rather than being proportional to y ' as is the
expression in Eq. (34) for the case of thermodynamic
equilibrium. This is due to the fact that we assumed
only one single external creation of a disturbance which
dies down in a finite time period and very much later
times do not contribute to Eq. (41).

For n&1 (and 8 1) the peak values of I' &" do not
differ very greatly from those of F . For e&)1 the second
term in Eq. (41) contains P,&'&(y). The dashed curve in
Fig, 2 depicts this function Pi&" (x) which is seen to be
similar to Fi(x) except for its longer tail. The first term
P t" in Eq. (41), however behaves rather differently for
n))1 (even with tt 1). It has the Lorentzian shape of
the expression in square brackets in Eq. (37) but the
very small multiplying factor xo' exp( —xo') is missing.
The integral of F "' over x thusirtcreases wi'th e roughly
as exp(e'/2) rather than decreasing as n '. Physically
this means that our assumed sudden onset of the dis-
turbance can excite a plasma oscillation no matter how
much larger co„ is than co„but this oscillation persists for
a, length of time (the inverse of the Landau damping
frequency width) which increases with n as exp(n'/2). It
should be noted again that, in practice, collisions will

put an upper limit to the persistence time of the plasma
oscillations and that the excitation of the oscillations
would be strongly depressed if the onset time T of the
disturbance is large compared with the oscillation
period ~„.The assumptions in this section were chosen
not so much because they are physically reasonable but
because their consequences follow readily from previous
work in this paper.
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