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A hnked-cluster expansion for the free energy in the petit canonical ensemble is presented and proved. It
has the advantage of avoiding the introduction of the unknown chemical potential in the perturbation series.
As a consequence of correlations among the population numbers n(k), additional linkages representing these
correlations appear. The result is used to find the ground-state energy of a many-body fermion system. This
expression reduces to the Brueckner-Goldstone expansion only in the case of central forces in an isotropic
system, a theorem due to Kohn, Luttinger, and. Ward, It is also shown that in the random phase approxi-
mation, correlation bonds do not contribute, Finally the relation of our formalism to the Bloch-De Dominicis
expansion for the grand partition function is discussed.

1. INTRODUCTION

'HERE are now several studies concerning the
cluster-perturbation development of quantum

statistical mechanics in the grand canonical ensemble.
The use of the grand ensemble is dictated by the
mathematical convenience of avoiding the problem of
the correlation between the population numbers rt(k)
from one unperturbed state to another Li.e. , (rs(k)n(k'))
—(tt(k))(rt(k')) =0 for krak'j. Here the average is

taken with respect to an unperturbed grand canonical
distribution. The unperturbed Hamiltonian has eigen-
states which are products of one-particle eigenstates.

As is well known, there is a, price to pay for this
convenience. In this case, one introduces the unknown

. chemical potential p which itself must be calculated in
terms of the perturbing many-body forces. Thus the
perturbation expansion of the grand partition function
is a mixed expansion where each coefficient of a given
power of the coupling constant $ is in itself a function
of $. Sometimes, this development is very useful; for
example, in understanding the theory of quasi-particles
it seems to be essential since it is p, itself which is the
reference energy for quasi-particles and holes. In other
cases, however, the appearance of p is a calculational
disadvantage and must be replaced by its power series

* This work has been supported in part by the Once of Naval
Research.

t On leave of absence from "Universite Libre de Bruxelles, "
Bruxelles, Belgium.

in $. The resulting unscrambling problem is not easy.
It is the purpose of this paper to present the pertur-
bation cluster expansion in terms of the petit canonical
ensemble directly and so avoid the problem of the
chemical potential. Thus for direct calculation of
thermodynamic functions, the present method will

prove to be more useful.
It is shown in this paper, that as a consequence of

correlations brought about by the condition Ztt(k) =X
in the petit ensemble, new kinds of cluster graphs
appear in the normal development which contain
"correlation" bonds. These arise because the so-called
unlinked clusters do not quite factorize.

In Sec. 2, we presenl: in detail the few lowest orders
of perturbation theory together with obvious generali-
zations which then lead to a general statement of the
cluster theorem, and the proof follows immediately.
As an application in Sec. 3 we prove that the expansion
of Brueckner and Goldstone' is valid for the ground-
state energy of a Fermi gas in the case of central forces
in an isotropic and homogeneous system (a theorem due

to Kohn, Luttinger, and Ward' '), but in general is not
true. As another application we show in Sec. 4 that in

the random phase approximation no correlation bonds

occur and consequently in this approximation one may
use the unperturbed chemical potential in each term

' J. Goldstone, Proc. Roy, Soc. (London) A239, 267 (1957).
2 W. Kohn and J. M. Luttinger, Phys. Rev. 118, 41 (1960).
3 J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).
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of the perturbation series, a result announced in a
previous paper. 4

It is of interest to establish the connection between
the methods adopted in this paper and those of Bloch
and De Dominicis. This is presented in Appendix D.

Throughout this paper we use Fermi sta, tistics only.

energies as'

(2.1)

where g is the coupling constant given by H =HO+ )V
The angular bracket. symbol in (2.1) is defined for an
arbitrary operator 0 by

2. LINKED CLUSTER EXPANSION

A. Intxoductory Discussion

tre —~(~0+&~)0
(0&t ———

tre —P(EEp+$ v)
(2.2)

The starting point of our analysis is to write the For perturbation theory, it. is useful to go into inter-
diBerence between perturbed and unperturbed free a,ction representation and in the usual fashion we find

" (—1)"
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For orientation, we examine the first few terms in
perturbation theory. To do this the denominator in
(2.3) must be brought into the numerator to get an
explicit function of $. We write

Ho ——g ei,at(k)a(k), (2.8)

V=1 Zb(q)/njat(k, +q)a" (k,—q)a(k, )a(k, ), (2.9)

followed by one integration in P space. This last step is
permissible because of homogeneity in P space. We
remark in passing that (2.7) shows the connection
between techniques which rely on denominator can-
cellation (after differentiation) and techniques which

rely on the statistical properties of semi-invariants for
independent variables' (before differentiation). In this

paper both techniques are used since it was found to be
pedagogically convenient to work with the 3E 's in low
order, but mathematically more convenient and
transparent to work with denominator cancellation in
the general proof. Of course, proofs are easily inter-
changeable from one method to the other.

For Hp we take the set of single-particle states and
the explicit form of t/ is a two-body local potential.
Thus, in second quantization we have

—(v(p ))o(v(p )v(o))o $a"(k),a (k') ]+Ski, (2.10)

—(v(p ))o&v(p )v(o))o

—(v(0)),&v(p, )v(p, )),

+2(V(0)) &V(P ))o(V(P )&o3 (2 6)

III„ is the eth semi-invariant formed from the
variables V(P i), , V(Pi), V(0). This is seen from
the fact that

(8/Bg) instr expt —P(HO+/V)])

" ( 5)"~—
= (~/~5) 2, (2.7)

n=o

4 F. Knglert and R. Brout (to be published).' C. Bloch and C. De Dominicis, Nuclear Phys. 7, 459 (1958).

or in interaction representation

U(P) = 1 QLv(q)/Q]ai (ki+q; P)a" (k2 —q; P)
Xa(k„P)a(ki, P), (2.11)

at(k; P) =at(k) expLP. ,],
(2.12)

a(k; P) =a(k) expt —Pckj.

We shall take the direct diagonal interaction v(0) =0.
This amounts to absorbing a constant into all one-

particle energies.
We now consider the first order term (2.4). This is

the exchange diagram of Fig. 1(a). For the moment,
we follow the obvious generalization of Goldstone's

graph notation to finite temperature in the same manner

6 R. Brout, Phys. Rev. 115, 824 (1959).
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as Bloch and De Dominicis. A more precise graphical
description will be presented below. Figure 1(a) is a
member of the sum M& given by

(V)p ———P i (k,—k,)(ninp),
kIk2

(2.13)

Operator Graphs

It is required to characterize expectation values of
products

(V(P —i) ' ' ' I (Pi)I (O))p.

This is easily done by noting that if a particle goes up
it must come down, i.e., if a particle in a state is an-
nihilated, at some later stage in the product a particle
must be created in this same state and vice versa. If
this occurs for a given state, then the term considered
is the average of a product of number operators multi-
plied by a c-number function of Pi, P„ i. We write
it in the form

~(t'ai, " P-; ~(qi) '(q-))(g)p g=ni'np'

where

n =n.;(=a,ta, ) or n,'=n, 1(=——a.,a,&),

according to whether the annihilation operator appears
earlier or later than the creation operator. Such a term
may be represented by a graph similar to a Goldstone

where we abbreviate n, = n(k~). For simplicity we ignore
spin indices. Thus, for spin 2 all exchange terms written
in this paper are present for parallel spins only.

In Appendix 8, we show the following:

(nln2)p (nl)p(n2)p+0(1/E); ki/k2. (2.14)

For the case ki ——k, , then (ni')p —(ni)p =0(1),however,
this is of no interest since the term ki ——k2 contributes
only 0(1) to (2.13). Since it is desired to find
limN „(F/E), such contributions may be neglected.

In going from (2.13) to (2.14), we are reducing an
"operator" graph to a "c-number" graph. Since this
reduction is the essential content of our analysis we
shall now dwell at some length on this point.

Fzo. 2. A sample reduc-
tion from an "operator
graph" to a "c-number
graph. "

k ~k-q '&
9F)) )IF il )

k g k+q

-qi 9
, Irsk,

k& () k &+q&

«, ~':, k, ~ k;+q,

I~i/k+q

(b)

c Xuntber gra-phs

We now express the contribution of "operator"
graphs in terms of "c-number" graphs. This is done by
expanding the factor (g)p in terms of the semi-invariants
generated by the number operators.

The semi-invariants M'"'(ki . k„) may be defined
in analogy to the Ursell functions in statistical
mechanics.

graph except that the fermion line gives rise to an
operator n . For example, the g part of the graph Fig.
2(a) is

g =n'(k) n'(k —q) n'(k') n'(k'+q)
Xn'(ki)n'(k, —qi)n'(ki') n'(ki+q, ).

If there are n (n) 1) pairs of creation-destruction
operators occurring for a given state, the term con-
sidered may be represented by the sum of the graphs
obtained by pairing in all possible ways the creation
and annihilation operators into number operators. This
theorem, which enables us to treat on the same footing
graphs with or without repeated indices when one
performs sums is simply a reinterpretation of a theorem
of Bloch and De Dominicis and is demonstrated in
Appendix A. Such a statement implies ignoring ex-
clusion principle in intermediate states, a point to be
discussed in further detail on a specific example.

(a) (b)

(n'(ki))p=M ' (ki),
(n'(ki) n'(kp)) p

=M "&(ki,kp)+M &'& (ki)M &'& (k,),
S y'S 2R 3 0 (2.15)

=M t'& (ki, kp, kp)+M'(ki, k,)M &'& (kp)

+M i'& (k,,kp)M &'& (kp)+ M &P& (k„kp)M t'& (k,)
+M &'& (ki)M &'& (kp) M &'& (k,)

the generalization in higher order is the usual Ursell
prescription. 7

We represent a semi-invariant of order v by con-

FIG. 1. Graphs arising in hrst and second order.
7 B. Kahn, thesis, Amsterdam, 1938 (N. V. Noord-Hollandsche

Uitgeversmaatschappij), Chap. III.
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Fig. 1(b) & [2&(q)]2/Q2 dP'(exp[ —P'(o(kl+q)

+0(k2 q) 0(kl) o(k2))]

X(23'(k,+q)23'(k2 —q)22'(kl)n'(k2))) (2.18)

Fig. 1(c) & —[2&(q)/Q][2&(kl+k2 —q)/Q]

X " dp'texp[ —p'(0(kl+q)

(2.18a)+0(k2—q) —0(kl) —o(k2))]

X(23'(kl+q) 22'(k2 —q) 22'(kl)22'(k2))).

The reduction of (2.18) and (2.18a) to "c-number"
graphs is immediate since both graphs give O(E) to the

necting the v lines of momenta k~ k„which represent
the operators 22(kl) 22(k„) by a dashed line.

In Appendix 8, we prove two statements. The first
is that Zo is the generating function of the M':

M & "& (kl, ,k,)
= 8" lnZ0/8( P—o(kl)) c&(

—Po(k,)), (2.16)

where Zo= tre t ~0. The second statement is with regard
to the order of magnitude of M&"&; if p is the number of
distinct k; in M&"&(kl,k2 k„), one has

M &"& (kl k„)=O(1/El' —'). (2.17)

Each operator graph gives rise to a large number of
graphs generally with dashed lines, These graphs may
be considered as representing c numbers and the g
factors are products of occupation number averages
and semi-invariants of order greater than one. For
example the graph Fig. 2(a) gives rise to the graph of
Fig. 2(b) among others, the g factor of which is

g= (22'(k))0(22'(k —q))0(23 (k ))p(22 (kl))p

X(22 (kl +ql))OM"'(k'+q, k —ql kl ) ~

Substantial simplification occurs if one notices that
the semi-invariants of order greater than 1 are the same
when expressed either in terms of e or n'. This is
established in Appendix C.

With this notation, we now turn to the first few terms
in perturbation theory beginning with M&. There are
two kinds of "operator graphs" which arise in this
order, the linked graphs of Fig. 1(b) and 1(c) and the
unlinked graphs of Fig. 1(d). Note that Fig. 1(b) and

1(c) are not contained in (V(P))p(V(0)) 0. This is general.
In mth order a totally linked graph is contained only
in (V(p„ 1) V(pl) V(0))0 and in no other products in
M„. Also note tha. t Fig. 1(b) has a positive sign and
Fig. 1(c) a negative sign because of one extra com-
mutation. This is an example of Wick's theorem that
the sign of a graph is (—1)' where / is the number of
closed loops. Explicitly

energy and hence all semi-invariants of order v (1)1)
contained in (n'(kl+q)22'(k2 —q)22'(kl)23'(k2)) may be
set equal to zero in the infinite limit (Appendix 8).
We now turn to Fig. 1(d). This graph is contained in
both (V(P) V(0))p and (V(P))p(V(0))p. Explicitly it
arises in the term in M2 which is

Fig. 1(d) —& [2&(k, —k )2/Q][ l(tk 3
—k4)/Q]

X [(n (ki)23(k2)22(k3)42(k4))o
—(22(k, )22(k ))o(23(k )22(k ))]. (2.19)

This term contains four summations and two factors
of O(1/Q) and hence appears of O($2). The square
bracket however is 0(1/E) through the use of (2.15)
and (2.17). In fact, reduction to "c-number" graphs
gives this result automatically.

(22(kl)22(k2)22(k3)22(k4))0 (22(kl)22(k2))0(22(kp)23(k4))0
=M &'& (kl, k3)M o& (k,)M ~'& (k4)

+M"'(kl, k4)M o& (k2)M o& (k3)

+M &2& (k„k,)M &'& (kl)Mo& (k4)
+M» (k2 k4)M "& (kl)M'" (k,)+O(1/1&4') (2.20)

Thus complete reductions to "c-number" graphs gives
the linked term Fig. 1(e). Notice that there are no

graphs with a dashed line connection within an already
linked part [i.e., the term M(kl, k2) in (2.19) is cancelled
out]. In case the unlinked parts have indices in common,
we note that

(22 (kl) 42 (k2) 23 (kl) 22 (k4)) o
—(22 (kl) 22 (k2))0(22 (kl) 22 (k4)) p

=M"'(k k )Mo&(k )M&'&(k )+0(1/1&&T). (2.21)

Comparing (2.21) and (2.20) we see that if two indices
in the diagram are in common (contracted indices), the
order of magnitude of the semi-invariant is increased

by one factor of iV. However, the number of terms with
contracted indices is 1/E of those with noncontracted
indices. The result is that one may use Eq. (2.20) even
when two of the arguments in a 3f&") are identical. This
prescription in fact gives exactly the coeScient of
0(1/S) in the square bracket in (2.19). Thus Fig. 1(e)
is also correct if the connected lines have identical
indices.

Notice that in Eq. (2.17) there do not appear the
"anomalous graphs" of Kohn and Luttinger, ' a sample
of which is drawn in Fig. 1(f) for reference. It will be
shown in our general discussion that anomalous graphs
do not appear. Rather, in the notation of the present
paper they arise as dashed lines between fermion lines
of the same rnomenta.

In other words the anomalous graph is a different
graphical notation of one kind of our dashed line graphs.
In the free energy, it is evidently more convenient to
introduce the present nota, tion and so include in one
diagram both identical and different indices. In the
grand partition function, however, the graphs with
different indices vanish by virtue of the independence
of the e&, so the anomalous graphs may be more
convenient.
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As the third order graphs contain no new principle,
we draw a few dashed line graphs which arise directly
in Fig. 3. We remark in passing that there are two kinds
of dashed line graphs which occur when there are three
unlinked parts, represented in Fig. 3(a) and 3(b). Fig.
3(b) contains M]$3 and Fig. 3(a) M»M». Note both
are the same order of magnitude in X, i.e., both con-
tribute 0(N) to F(1).

In fourth order, in addition to the types of terms
already mentioned, there appears the first violation of
the Pauli exclusion principle. As there appears to be
inadequate discussion in the literature of this point, we

go into some detail. The first point is that one is at
freedom to include among intermediate states, wave
functions which either obey or do not obey the exclusion
principle. The reason for this freedom is the following.
The perturbation Hamiltonian is a totally symmetric
operator with respect to the permutation group. Thus,
if one begins with an antisymmetrized product the only
nonvanishing matrix elements are those which connect
wave functions of the same symmetry type. Therefore,
if the unperturbed wave function is an antisymmetrized
product, the perturbation itself will pick out the anti-
symmetrized parts of the intermediate-state wave
functions. As this argument is abstract, we shall
illustrate both points of view in the fourth order calcu-
lation. The argument given is to be considered a
pedagogical amplification of the excellent analysis
contained in Goldstone's paper.

We first consider the case where the exclusion
principle is built into the intermediate states from the
outset. Now consider the operator graphs that arise in
(U')p and (V')p(V')p corresponding to the two unlinked
parts in Fig. 4(a).P Since the exclusion principle is
obeyed in intermediate states, no indices may be in
common in the unlinked parts in the expression for
(U')p. This is, of course, not the ca,se in (U')p(U')p.
Therefore, there is incomplete cancellation in the con-
tribution to M4 from (V')p —(V')p(U')p from diagrams
of the type 4(a) with an index in common. The result
may be rediagrammed in Goldstone's manner as Fig.
4(b), where the sign of the graph is correctly given by
Wick's algebra.

The alternative approach is to ignore the exclusion
principle in intermediate states. In this case both

(c)

Fro. 3. Prototypes of the unlinked graphs arising 1n third order.

Here we have considered as different those graphs which differ
by a different ordering of the interaction (wavy) lines. This
facilitates the discussion and, as will be shown in the formal
proof, allows a complete elimination of anomalous graphs.

Fzo. 4. Graphs
which give rise to
Pauli exclusion prin-
ciple violating terms
in the free energy.

(c}

diagrams 4(a) and 4(b) appear in (V') p but with opposite
signs and only 4(a) in (V')p(U')p which again leaves
only 4(b) with the factor [—(e(k))p ].

The above notation turns out to be inconvenient in
the general formulation of the problem. In fact, the
Bloch-De Dominicis theorem on identical indices gives
a total of three connected graphs in the formal reduction
from "operator graphs" to "c-number" graphs. Firstly,
Fig. 4(b) arises with the factor [—(e(k))pP]. Moreover,
a graph which violates the Pauli exclusion principle has
repeated indices within the graph; this means that a
term [—M&" (k,k)) arises which is an internal dashed
line within the graph itself. This is Fig. 4(d). Finally,
Fig. 4(c) which contains [+M"'(k,k)] also appears.
Figure 4(c) and 4(d) cancel one another leaving Fig.
4(b) alone.

The above cancellation is again inconvenient in the
proof of reduction to the Brueckner-Goldstone ex-
pansion. For this reason, we shall present the final
theorem in a manner which eliminates Fig. 4(d). This
is to interpret Fig. 4(b) as an operator graph, with the
factor [—(rP(k))p]=[—(m(k))]. Then Fig. 4(d) does
not arise but Fig. 4(c) remains. Figure 4(b)+Fig. 4(c)
gives the factor [—(e(k))pP].

B. Theorem,

With this qualitative sketch we are now in a position
to state the general cluster expansion. This is given by
a set, of rules which corresponds to the formula (2.23)
below.

1. In mth order draw all graphs, in a specified time-
ordered sequence linked and unlinked, containing rs

interaction lines. Each interaction line carries a factor
—r(q). The linked parts contain all violations of the
Pauli exclusion principle, but mo anomalous graphs.
The unlinked parts are singly connected by dashed
lines. The definition of singly connected is a connection
in which two otherwise unlinked parts are connected
by one and only one dashed line.

2. To each hole or particle line not connected by a
dashed line associate a factor of (e(k))p or (1—e(k))p,
respectively. Here we drop our e'(k) notation in favor
of the conventional notation with the sign of Rule 4.'

' In this way, a Fourier analysis of the graphs becomes im-
possible due to the fact that the range of integration of inter-
mediate p s are not independent. This may be an inconvenience
especially when all dashed lines may be avoided, as is in the grand
partition function,
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To a dashed line connecting k, k„associate the semi-
invariant M&"&(k', . k„) including terms where k, k„
are the same states. [This rule is to be applied with the
convention that Pauli exclusion graphs contain only
ore hole or particle for each repeated index in accordance
with the above discussion. This is established below. ]

3. A hole line running from P, to P, (P,„:)P,) is as-
sociated with the propagator exp(t, —t, )e(k). A
particle line running from P, to P; (t,&t,) is associated
with exp(t, —t, )e(k).

4. The sign of a graph is (—1)'+' where t is the
number of closed fermion loops and k is the number of
hole lines which are not connected by dashed lines.
Here each hole line in a Pauli exclusion graph is counted
separately. Divide the result by e and integrate over
Pi P.. i

C. Proof

YVe now present a formal proof of these point. s. The
program is the following. In the first paragraph below
we establish that no disconnected graphs occur. In the
second paragraph we isolate contributions of O(tY) and
show that these are the singly connected graphs only.
Rule 2 is an automatic consequence of this analysis.
Rules 3 and 4 are automatic consequences of the AVick

theorem as applied to the many-body problem by
Goldstone and Bloch and De Dominicis and hence are
not further discussed here. The division by n in Rule 4
is a consequence of integration with respect to the
coupling constant as seen from Eq. (2.23). Finally, in
the last paragraph we take up the question of the
anomalous and Pauli exclusion violation graphs in our
general formalism.

Reduction to Connected Graphs

Disconnected "operator" graphs do not give rise to
factorized integrals in (2.1), but disconnected "c
number" graphs do (in this context a dashed line is
considered a connection). Evidently, all the graphs
which are not connected to the first one in the numerator
of (2.1) comprise a sum of graphs multiplying each
connected graph. This sum is obviously the value of the
denominator and hence the usual cancellation argument
of the disconnected graphs obtains. The expansion of
the free energy may then be written, after integration
over the coupling constant,

(—1)" 1
F(1)=F(O)+ P —— dP„dt,

n —o gI ~ ~o ~o

X(TU(i9 ) ' ' ' U(t s) U(0))0, (2 22)

where the c index means restriction to connected
graphs in the sense given above.

tributions in the limit of an in finitely large system.
This comes from the two following facts

1. Each connected graph without dashed lines if of
0(Ã).

2. Each dashed line connecting fermion lines gives
rise to a factor of order O((1/1V)" ' '), where s is the
number of identical indices (i.e., p —s is the number of
distinct indices. )

The first statement is a consequence of the conserva-
tion of momentum. The second is shown in Appendix B.

As we do not need graphs of order less than Ã, the
following graphs may be disregarded without further
discussion.

(1) All graphs containing dashed lines inside an
otherwise connected graph (this means a graph which
would be connected if all dashed lines were removed)
except those connecting lines with identical indices
("anomalous" or "Pauli exclusion violating" graphs).

(2) All graphs in which otherwise disconnected
graphs are connected by more than one dashed line.
This is obviously true when the dashed lines connect
states with different indices. It is also true when they
connect states with same indices because these give
rise to an extra power of (1/Ã) for each restriction to
identical indices. This gives rise to the same order of
(1/Ã) as those connecting fermion lines with diferent
indices.

Thus, except for "anomalous" or "Pauli exclusion
violating" graphs the only graphs which occur are

1. Connected graphs without dotted lines; these we

call linked [e.g. , Fig. 5(a)].
2. Linked graphs singly connected by dashed lines

[Fig. 5(b)$.

It is easily verified that all these graphs are of order
1V, so that the denominator in (2.22) automatically
cancels all terms which are of higher order in E.

tl 7)

(i

Elimination of Unnecessary Graphs

A large number of graphs which occur in (2.22) may
be dropped because they give vanishingly small con- FIG. 5. Linked graphs and singly connected graphs.
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- (—1)" I'
E(1)=F(0)+2 ——

n=o g
dP dP,

x(v(p„) "v(p,)v(0)), ,

The graphs for (2.23) are the same as those for (2.22)
except that graphs with different time ordering are to
be considered different. Now a graph with a dashed
line inside occurs because a given zz'(k) occurs several
times; however considered as an operator-graph
Liz'(k)] = rz'(k); (—1) +'iz'(k) or 0 according to
whether all fermion lines with momentum k are going
backwards in time (hole line), forward (particle line)
or if some are going forward and some backward. We
thus consider a graph with several hole lines (or particle
lines) with the same momentum as containing only one
hole (or one particle line). In this way all "anomalous"
graphs vanish and "Pauli exclusion violating" graphs
are simplified in such a way that no dashed lines occur
inside a linked graph. '

Fiizrzzrzaliorz of cf rzorrzalous GraPhs azzd Discussiorz of
Pauli Exclusion Violalirzg GraPhs

It is possible to eliminate linked graphs which con-
tain dotted lines, within as well as anomalous graphs.
This is more easily achieved if we consider separately
the contributions of graphs with diferent time ordering
or equivalently if we write (2.22) in the form

the contribution of terms like (3.2) do not vanish in
the limit T=O; these graphs are in fact the correction
to the Brueckner-Goldstone perturbation expansion.
However, when the unperturbed Fermi surface is a
sphere (isotropic system) and when the interaction
potential is spherically symmetric Lso that v (q) depends
only on the magnitude of q], we have f, (k,) = f; ( ~

k;
~ ),

a point due to Kohn and t.uttinger, ' on the unperturbed
Fermi surface. The sum on k, may then be performed
in the semi-invariant since there is a nonvanishing
contribution only on the unperturbed Fermi surface
thereby allowing factorization of the f(~k, ~). Since
g rz(ki) =N which is a number fixed in the averaging
process, the semi-invariant is zero by the same argument
as that given in Appendix C. We see then that the
Brueckner-Goldstone expansion is valid in the case of
isotropy. We notice, however, that this argument works
only at T=0 so that at finite temperature, graphs with
dashed lines will appear.

where
Lp, (P')p, t(P")]=0 for qWq', (4.1)

4. RANDOM-PHASE APPROXIMATION (RPA)

As discussed in a previous paper, RPA is equivalent
to the selection of the ring diagrams only. This may be
regarded as a consequence of a simpli6ed commutation
ru1.e,

3. THE BRUECKNER-GOLDSTONE EXPANSION Pq ~k ~k+q ~k. (4.2)

The previous expansion gives a perturbation series
for the ground-state energy of a many-body fermion
system when one takes the limit p —+ pp .This expansion
contains in addition to the Brueckner-Goldstone ex-
pansion all the graphs connected by dashed lines in
this limit; the latter contribution is generally 6nite
(and has been evaluated to second order by Kohn and
Luttinger'). This can be seen as follows: the contri-
bution of a graph with m unlinked parts connected with
zzz dashed lines (singly-connected graph) may be first
integrated over all momenta except those involved in
the dashed line connections and integrated over inter-
mediate p, the result is of the form

p 2 fi(ki)fp(kp) . f-(k-)~(ki, ,ki)
&& ~ ~ ~ &~

XM(k,+„ki) M(k„, k„), (3.1)

where the f are regular functions of k and the p factor
comes from the p' integrations. From (8,4) we may
write (3.1) as

fi(ki) f-(k-) ~'
kI k»

XInZp/8L —p(ki)] ' ' 8L—p(k, )]. .

XlnZp/BP p(k„)]. —8[ «(k )]. (—3.2)

These derivatives are singular on the unperturbed
Fermi surface in the limit p~ pp so that in general

In the petit ensemble, those dotted line corrections
which connect rings with the same 6xed q contribute
O(1) to the free energy, because of the lack of sum-
mation on different q. Thus, they may be neglected in
the infinite limit. This shows that in RPA the per-
turbation series are identical in the grand and in the
petit canonical ensembles. Thus the perturbed and
unperturbed chemical potentials must be set equal in
each term of the perturbation series in order to obtain
consistent results.
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APPENDIX A

We shall prove that the expectation value of a
product of creation-destruction operator pairs with
identical indices is equal to the sum of the expectation
value of all sets of operators obtained by pairing in all
possible ways the creation-destruction operators into
number operators. The demonstration is identical to
that of the Bloch-De Dominicis theorem' so that we
simply recall the steps of the argument.
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(a) If the theorem is true for all products of 2(p —1)
operators and for one particula, r product of 2p operators,
it is true for a, ll products of 2p operators. This is a
consequence of the identity

(A a,a~ta) o= —(A a~'a~a) o+(A a)o,

where A and 8 contain products of a~t and al, .
(b) It is true for the particular product

(a~"'ak')o,

because this product gives zero for p& 1.

APPENDIX B

We shall identify the p-order semi-invariant of the
number operator with the p-order partial differentiation
of the logarithm of the unperturbed partition function.

We define the semi-invariants M'"'(ki k ) as in
(2.15) but in terms of the n (not in the n'); thus

(n(k, ))p
——M&» (ki),

(n(ki)n(kp))p=Mi'i (ki, kp)+Mi (ki)Mi (kp). (8.1)

This gives the Mi"i(ki, ,k„) as a function of the
moments in the following way. The rule which expresses
the M in terms of the ( )p, are the same as the re-
ciprocal relations (8.1) except for a coeScient

(—1)"='(k—1)!,where k is the number of groups into
which the p particles are divided. i For example,

M(ki&kp)=(n(ki)n(ko))o (n(ki))p(n(kp))o&

M(ki, kp, kp) =(n(ki)n(kp)n(kp))p
—(n k,)n(k, ))(n(k, ))o

'PE yÃ 3 OS 2 p

—(n (kp)n(kp))p(n(ki))o

+2(n (ki))o(n (kp))(n (kp)) p.

(8.2)

The unperturbed partition function is

Zo ——tr expL —P P n(k)p(k)],

(n(ki) ' ' ' n(k~)) = (1/Zp) B~zp/Br Pp —(ki)] ' ' '

8[—Po(k„)]. (8.3)

The function ÃL&» (ki k~), defined by

5K'&'(k, k„)= 8„1nzo/8L —Pp(ki)]
8(—Pp(k„)], (8.4)

is identical with the p-order semi-invariant

M'» (k„k,),
as seen by straightforward differentiation:

from which it is immediately found that the pth order
moment is given by

~i»(k, )=a lnzo/aL —Pp(k, )]= (1/Zo)8zo/8( —Po(k, )]=(n(ki))p ——Mi»(ki),

5R (ki kp) = (8/8 j—Pp(ko)]) (1/Zo)Bzo/BP Pp(ki)—]+(1/Zp) cPzp/8$ Pp(ki—)]8/ P(kp—)]p
= —(1/z, ')(az /a( —P (k )])(~z /~l — (k )7)+(1/z )(~%/ilL —& (k )]~L—& (k )])

(8.5)

= M&'& (ki,k p).

For higher orders we obtain all combinations (8.2) and and Ppp which are connected by the relation
the coefficient of a term separated in k groups comes
from , n, (Pp, ,Ppo) o=&', (8 7)

pip 1
a"-'i —

i
=—(—1)(—2) (—4+1)aZ,

EZ, ) Zo"

=—(—1)"—'(k —1) !Bzo,.
Z, a

this is exactly the coeKcient occurring in (8.2).
We now prove that the order of magnitude of

M'"'(ki, .k„) is given by

M'"'(ki k,) =0(1/''I' ')

which we write f(Po, Po,",Ppp) =0 and note that

8f/8 (—Po,) =0(1); 8f/Bop 0(Ã). (8.8)——

In these terms we have from (2.12)

B(nl)o OP+0 il(nl)o Bf/8( Pp2)

~Ppo ~( Pp ') ~Ppo -~f/~Ppo

=0(1/iV). (8 .9)

Equation (8.9) is easily generalized as follows. Define

8" lnzp
where p is the number of distinct k, in k,". k„. For
simplicity of notation k; will be abbreviated by the
index i. We begin with M('):

(8.10)
8 (—Ppi) o!(—Po„)

We now prove that
8' logZp p!(ni)o

~( Ppi)~( Pop) —~( Pop)— — M„... "i=O(1/V —')) kiAkp Ak~. (8.11)(8.6)M, ,()=

We proceed by induction. M». .. '"' is an explicit
Notice that Zp may be considered a function of —Po., function of (—Po&), (—Pp ); Ppp as is evident for
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22=2 from (8.9). Thus

k

~~»" n—1 ~Pro—=O(1/iV)
~PI 0 ~(—P~-)

(Bloeh and De Dominicis)

Finally jn (8.12) we note that rather than differ-
entiation with respect to a different Pe„ in (8.12) we
could have taken [1I/O (—Pc,)jM1...„1"',2 ——1, 22—1.
In this case, the dependence of po on e, is unimportant
since the direct functional dependence on ~, plays the
key role.

We thus find

=O(1/iV" '). (8.13)

APPENDIX C

The semi-invariant defined by (2.15) are the same for
v)1 than the semi-invariants defined by (8.2). This
is evident if all the e' correspond to "hole" lines because
then e'=e; if some n' comes from particle lines,
22'=22 —1 and some n1, in (8.2) have to be replaced by
eI,—1. The contribution of the factor —1 is, however,
zero because it factorizes out of the correlation functions
and so is always cancelled by other terms in the semi-
invariant expansion (8.2).

APPENDIX D

Connection with Bloch-De Dominicis Expansion

Our expansion is also valid for the grand partition
function: In that case all semi-invariants (dashed lines)

may be removed except those connecting identical
indices. However, these dashed lines do not appear in
Bloch-De Dominicis Expansion; this is due to another

(Bloch ond De Dominicis)

FIG. 6. Correspondence with the graphs of Bloch and
De Dominicis in the grand ensemble.

interpretation of the theorem demonstrated in Appendix
A which amount to interpret in their expansion our
operator graphs as c-number graphs; this gives rise to
a different evaluation of Pauli exclusion violating graphs
and to nonvanishing anomalous graphs. For instance
we have the following equivalence between Bloch-
De Dominicis graphs and ours in the grand partition
function (Fig. 6).

We notice also that use of (2.1) is equivalent to a
reduction by means of the cyclic invariance of the
trace. This is due to the fact, that when perturbation
expansion is valid (2.1) may be obtained by using this
invariance. "This is the reason of the factor 1/22 which
appears in the evaluation of the graph; the contribution
of one graph is equivalent to the sum of all contri-
butions from the e graph obtained from the first one
by cyclic permutation of the wavy lines.

"M. L. Goldberger and E. N. Adams, Chem. Phys. 20, 240
(1952).


