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FIG. 1. Fourth-
order diagram whose
complex singularities
are discussed in the
text.

where n) 0, P)0, and y is such that the line passes
between the branches I's and I'i of I' (Fig. 2).

Suppose I' is a complex singularity of F lying on C.
Then, by (3) and (4), the coordinates of P depend on
the m only as differences: If we add an amount x to
each sis,s, the resultant I'(x) still passes through I',
which lies on a line of the form (7) which is independent
of x. As x increases, by (6), the 8, remain real and tend
to zero, and, as 8t+8s+8s+8i —&2w+0, the branches
I' t(x) and I' s(x) join. Thus no line of the form (7)

FIG. 2. Curves of real singularities of the fourth-order
diagram of Fig. 1 in the s, t plane.

can meet all I'(x) in t,he same complex point, and so P
is nonexistent, and Ci(q') cannot have complex singu-
larities in its physical sheet (defined by cuts on the real
q' axis), except for the above-mentioned "kinematic"
singularities.
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A transformation is presented to remove coordinate ("pseudo") singularities from metrics of a certain
class, a special case of which is the transformation of Kruskal, extending the Schwarzschild metric beyond
its pseudosingularity. The transformation is applied to the Reissner-Nordstrom metric, which describes a
concentration of charge and mass in general relativity. On an initial surface this metric shows the same general
behavior as the Schwarzschild metric, describing a "wormhole, "or bridge, between two asymptotically flat
spaces, but with electric flux flowing through the wormhole. It is found that the region of minimum radius,
the so-called "throat" of the wormhole, begins to contract, but reaches a minimum and re-expands after a
finite proper time, rather than pinching off as in the Schwarzschild-Kruskal case: the raduis of the throat
pllsates perioChcally in time, "cushioned" by Maxwell pressure of the electric field through the throat. The
motion of charged particles in this metric is investigated, and it is shown that no particle can hit the geo-
metric singularity at r =0; (1) quite in general, provided only that the mass of the test particle exceeds the
value associated in general relativity with its charge, and (2) in particular when the test particle has no charge
at all, but (3) such collisions are Not avoided when the throat itself is not endowed with any electric Aux.

I. INTRODUCTION

'ANY of the well-known solutions of Einstein's
- ~ equations contain apparent singularities which

have not been understood until recently. Such singu-
larities seem to be a characteristic feature of solutions of
the free-space Einstein and Einstein-Maxwell equa-
tions; they can often be prevented from occurring if
one grants that near the singularity some field of
nonzero rest-mass contributes to the curvature of space.
However, it has been suggested' that in the domain of
free-space gravitation and electromagnetism all

*Based in part on Chapters 2 and 6—10 of a thesis submitted by
the first author in partial fulfillment of the requirements for the
B.A. degree at Princeton University.' J. A. Wheeler, Nuovo cimento.

"properly closed" spaces must aheays develop an
intrinsic geometrical singularity as time evolves. It is
therefore interesting to examine some of the known
exact solutions of the Einstein-Maxwell equations for
singularities, even in cases where they describe spaces
which —instead of being closed —are asymptotically Rat
at great distances.

To do this, one must distinguish between true
geometric singularities at which invariants of the
Riemann curvature tensor become singular, and
"pseudosingularities, "which are due to an unfortunate
choice of coordinate system. The well-known Schwarzs-
child solution provides a good example of both types of
singularity. In the two most common coordinate
systems, some of the metric coefficients vanish or
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FIG. 1. Radius r of the throat of the Reissner-Nordstrom wormhole as a function of proper time r. The radius of the throat, as
measured by its circumference 27Ir, or by the area 4mr of the minimum sphere, pulsates periodically between maximum radius r& and
minimum radius r2, as seen by an observer stationed at the throat in his proper time r. The curves r vs ~ are various cycloids; their
period 2~m is independent of the value of q. For q=0 the cycloid reaches the singularity r =0 at its cusp. As q increases, the amplitude
of the oscillation decreases, so that the observer at the throat does not reach the geometric singularity. In the limit g' ~ m' the Max-
well pressure of the electromagnetic 6eld through the wormhole just balances the gravitational forces tending to contract the throat.
/Also see B. Bertotti, Phys. Rev. 116, 1331 (1959)].

become infinite at a finite value of the radial coordinate
as well as r=0. The former is a pseudosingularity,
whereas the latter is a true geometric singularity.
Although in physical bodies the presence of matter
changes the field equations from their free-space form
much before the singularity is reached, these singu-
larities do present a problem from a more fundamental
point of view.

It has been shown by a number of authors' that one
can continue the Schwarzschild solution across the
pseudosingularity. Kruskal3 has found a single co-
ordinate system in which to write the maximum
analytic extension of the Schwarzschild solution. Of
course, no change of coordinate system can remove the
singularity at r=0, which can actually be reached by
particle and light geodesics.

The geometric singularity at r =0 has physical
effects whose interpretation is not yet clear. Consider,
for example, the space-like surface about which the
solution is time-symmetric. 4 This surface has the
topology of an Einstein-Rosen bridge' between two
asymptotically Qat spaces. The bridge, like a throat,
has a narrowest region. The circumference of this
narrowest region at the Schwarzschild time 3=0 is
2s rsoh 27I (2GM/c') = 47rm (here m is the mass measured
in units of cm). Fix attention on an observer at this
throat of the bridge, where r takes on its minimum
value. For this observer, r is a time-like coordinate,

2 G. E. Lemaitre, Ann. soc. Sci. Bruxelles Ser. I 53, 51 (1933);
J. L. Synge, Proc. Roy. Irish Soc. 53, 83 (1950); D. Finkelstein,
Phys. Rev. 110, 965 (1958);J. Ehlers, dissertation, University of
Hamburg, 1958 (unpublished); C. Fronsdal, Phys. Rev. 116, 778
(1959).

'M. D. Kruskal.
4 For details, see Kruskal's paper, reference 3.
~ A. Einstein and N. Rosen, Phys. Rev. 48, 73 (1935). See also

C. Misner and J. A. Wheeler, Ann. Phys. 2, 525 (1957).

which decreases as he moves along his geodesic. Thus
he finds that the throat, whose radius is also given by r,
shrinks continually, until it "pinches off" at r=0. One
might hope that if the throat contained some electric
Qux, as in the case of the Reissner-Nordstrom solution,

ds'= (1—2m/r+ q'/r') 'dr'+r'dQ'
—(1—2m/r+ q'/r') dt',

the stress of the field in the shrinking throat would
keep it from pinching off. In this case the observer
stationed at the throat would never reach the singu-
larity at r=0 (Fig. 1).

In this paper we shall find a coordinate system for the
Reissner-Nordstrom solution which is analogous to
Kruskal's coordinates for the Schwarzschild solution.
In Sec. II we shall develop a procedure to eliminate the
pseudosingularities, applicable to a general class of
static spherically symmetric metrics. In Sec. III we

apply this procedure to some well-known solutions, in
particular to the Reissner-Xordstrom solution. Section
IV is devoted to a more detailed discussion of the
geometry of the Reissner-Nordstrom metric; finally,
Sec. V deals with trajectories of uncharged and charged
particles in this metric.

II. TRANSFORMATION TO NONSINGUI AR
COORDINATES

We consider in this paper line elements which can,
in a suitable coordinate system, be written in the form

ds'= P 'dr'+ r'dQ' ydt'— —
dQ'= de'+ stn'Hdie'

~=~().
This metric is spherically symmetric and "static" in
the sense that it does not depend on the coordinate t.
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ds'= f'(u v) (du' —dv')+r'(u v)dQ' (2)

where f'(u, v) is to be regular at the pseudosingularity.
By comparing (2) and. (1) we find the conditions on u
and v that this transformation be possible:

Equation (1) does not represent the most general metric
of this type, but it includes some well-known metrics
(Schwarzschild, Reissner-Nordstrom, de Sitter) as
special cases. We assume that the function p(r) has
zeros or poles, representing pseudosingularities, which
are to be eliminated by a change of coordinates. In the
following we con6ne attention to the neighborhood of
ore of the pseudosingularities and look for a coordinate
patch which will continue the metric analytically across
that pseudosingularity; the entire analytic extension
may consist of several such patches, overlapping in
finite regions.

Following Kruskal we shall try to determine a
simultaneous transformation of r and t to new co-
ordinates u(r, t) and v(r, t), in terms of which the light
cones are lines with slope &1. In such coordinates the
metric (1) takes the form

space, because from Eq. (1),
ds'=@(dr*' —dt') =ydudP.

In order that f' in Eq. (8) be nonsingular, any
singularity in the numera, tor p(r) must be cancelled by
the denominator, for all t. We must therefore have

h(r*+t) =Aev'""+'i

g(r*—t) =Be& &'* 'i

Here 3 and 8 are arbitrary scale-factors, and we shall
take 3=8 below; y is a constant whose value must be
chosen such that f'of Eq. (8),

f'=~(r)e ""*/4A'v'

is regular and positive throughout the coordinate patch.
In the general case, expand p as a power series near the
pseudosingularity. One finds that a choice of y which
makes f2 of Eq. (11) nonsingular is possible only
whenever the singularity in p is a zero of the 6rst order.
To correlate our result with Kruskal's form of the
Schwarzschild solution, put

f'(u„'—v„') = 1/y(r),
f'(u ' v') =—4(r), — (3)

p(r) =1—(2m/r); r~=r+2m ln(r —2m).

hence
u, =y(r)v„; v, =y(r)u, . (3)

In terms of a new radial coordinate r~, defined by
dr*=& '(r)dr, these equations take on the simple form

Ng= Vg+ Vt= +r~. (6)

The general solution of these equations is

u= h(r*+t)+g(r*—t),

v=h(r*+t) —g(r~ —t),

where h and g are arbitrary functions of one variable.
Below, prime will denote differentiation with respect to
this variable. Eq. (3) can now be solved for f',

4 (r) 4 (r)

up —vp 4h'(r*+t)g'(r* —t)
(8)

IpQg VgVg= 0.
I

The subscripts denote ordinary differentiation with
respect to the corresponding variable. Equations (3)
are to be considered as three differential equations to
be solved simultaneously for u, v, and f. First eliminate

f to obtain equations for u and v alone:

uP —vP uPP1 —(v&/u')'$ uP-=—-=-~'(), (4)
v2 v2P (u/v)2j v2

The explicit form of the transformation to the co-
ordinates u, v in which the metric is nonsingular is then
obtained by substitution into (7),

u=Ae~""[e~'+e ~'j 2Ae~" coshyt,

v= 2Ae~"* sinhyt.
(12)

The inverse transformation can, in general, only be
given implicitly:

F(r) =—4A'e'&""=u' —v'—=w

t= (1/2y) tanh —'$2uv/-(u' —v') j. (13)

These transformations differ from Kruskal's trans-
formation for the Schwarzschild solution only in the
form of the function F(r). Therefore, the relation
between new and old coordinates near the pseudo-
singularity is qualitatively the same as for the Schwarzs-
child case near r=2m. At this point r and t interchange
roles as spacelike and timelike coordinates, but u
remains spacelike and v timelike.

III. EXAMPLES

As we have seen, for the Schwarzschild metric the
above transformation is identical with that given by
Kruskal. To illustrate the procedure by another well-
known case, consider the metric of the de Sitter universe,
written in the "static" frame. ' This metric is of form
(1), with

y=1—r'/R' O&r&R

The variables u=r*+t and P=r* t that occur in the—
6 See, for example, E. Schrodinger, 1'xpaeding Universes

argument of h and g are "lightlike" coordinates in r, 3 (Cambridge University Press, Cambridge, 1956).
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formation coincides with the usual transformationv
between the static and the de Sitter frame. The main
difference between the above and the de Sitter frame
is the occurrence of the point r= ~ at a finite value of
u, v. However, the proper time needed to reach r= ~
from the origin tends toward in6nity:

pl gI
r= fdv= R/&/(1 —5') ~

"0
(20)

FIG. 2. Kruskal diagram for the de Sitter metric. The scale
factor has been chosen A =8=1.The static metric was given in
the region zz)

~
e ~, zzz —ez(1; the new coordinates give an analytic

extension in the u, v plane except for the shaded region. A typical
space-surface u=0 is bounded by two points r =0, indicating that
if the coordinates 8, q are taken into account this surface has the
topology of a three-sphere. An infinite proper time is needed to
reach the hyperbola r = ~. Geodesics can be extended to arbitrary
length, and the nonsingular metric is complete in this sense. This
coordinate system does not show the invariance of the geometry
under space translations. ¹arthe point u=v=0 the relationship
between old and new coordinates is similar to that shown by
Schrodinger, reference 7, Fig. 2.

The new measure of radial distance becomes

The transformation for the Reissner-Nordstrom
metric differs from the above only in complexity. The
metric is of form (1) with

ztz(r) =1—2m/r+q'/r'= (r—r[) (r rz)/r', —

which vanishes at two pseudosingularities,

(21)

r& =m+ (m' —q') '*, r2= m (m' —q') i. — (22)

In addition, a true geometric singularity occurs at r =0,
just as in the Schwarzschild case. The new radial
coordinate is

r2 f22

r =r+ ln(r —r&)—
yl r2 ~l ~2

ln (r—r&). (23)

For regularity in the I, v coordinates the numerator
of (11),

Again we must make the denominator of (11)
nonsingular,

(R+r)1—yB(R r)1+yB
e 27r

1
(16) ztze

svr*— e zyr(r r —
)z

—[z—yrzslirz —rzl[(r r )t+[zyrzz/[rz —rz)]
r2

must be everywhere finite in the range of r considered;
therefore,

1+yR=O, y= —1/R, (17)

R+r '

2A

R2A2

(A'+w)'

[rR—rp cosh
(—t/R),

& R+ri sinh

and the complete transformation, Eqs. (11) and (12),
~ becomes explicitly

y, = (r, r,)/2r'—(25)

so that the metric coe%cient in the new coordinates
becomes

(24)

From this expression it is clear that we cannot avoid
singularities at both rl and r2. Therefore, the Reissner-
Nordstrom metric will be described in terms of two
coordinate patches, neighborhoods of ri and r2, respec-
tively. Quantities referring to only one of these patches
will be denoted by corresponding subscripts 1 or 2,
or generally by i or j where i, j= 1, 2 or 2, 1.The values
of p needed to avoid zeros in Eq. (24) are

with the inverse, from Eq. (13),
exp (—2y,r)

.2 — (r r .)2(1—2yz'm)

(2A7 z)'
(26)

1 ( 2Nv i
&Is—p&)

The Kruskal I—v diagram for this form of the de Sitter
metric is shown in Fig. 2. It extends the metric of the
static frame, which is well known to describe only part
of the de Sitter space, to a description of the complete
de Sitter space. Near the origin u, v=0 our trans-

= 2A (r r,)&(r r,) *'["z'["'»e&"— —cosh';t
(27)

sinhy;t

7 See, for example, R. Tolman, Relativity, Thermodynamics, and
Cosmology (Oxford University Press, New York, 1934).

In this case, Eq. (13) cannot be solved explicitly for r
as a function of 8'. As in the Schwarzschild case, we
cannot therefore give an exp/icit expression for f' in
terms of u and v. The transformation of the coordinates
is again obtained by substitution into Eq. (12):
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FIG. 3. The two coordinate
patches describing the Reissner-
Nordstrom geometry.

IV. THE REISSNER-NORDSTROM GEOMETRY

In the discussion of the Reissner-Nordstrom solution
we shall always assume that the mass parameter m
exceeds the minimum value associated in general
relativity with the charge q, (m and q in units of cm)

(28)

In this case the two roots r, of Eq. (21) are real, and
our analysis yields two coordinate patches; in both the
relationship between old coordinates, r, t and new
coordinates u, v is qualitatively the same as for the
Schwarzschild case. As the parameter r decreases from
infinity in the first patch we approach the first pseudo-
singularity r~ (see Fig. 2); as r decreases below r~ it
becomes the timelike coordinate. Since the second
pseudosingularity is not removed in the first patch, we
cannot let r decrease below r2 in this patch. Actually, the
values of the new coordinate v tends to infinity as r
approaches r2, as is seen from Eq. (28).' Thus the
metric is actually regular for all finite values of u and v

in the first patch, but it is not complete since, as we shall
see, the proper distance between r~ and r~ is finite.

It therefore becomes advisable to change over to the
second patch at some larger value of r, r„as shown in
Fig. 3. Since r continues to be the timelike coordinate,
we have drawn u as ordinate and v as abscissa in the
second patch. The second patch, similar to the first,
has a regular metric for arbitrarily large values of
u) v; but since we are crossing over at some value r„
r~&r, )r2, we enter this patch somewhere along the
hyperbola shown in the figure. It does not matter
whether we choose to enter along the lower branch, in
the direction of increasing u, or along the upper branch,
in the direction of decreasing u. For purposes of easy
visualization we have chosen the latter possibility and
picked a value of r, such that the two hyperbolas can be
made to coincide by laying one patch on top of the
other. ' Points with identical t coordinates then lie one

We are indebted for this remark to R. Lindquist.' This requirement, that 4A 1'e~»"*=4A2'e'»"* can be satis6ed
by choice of A j, A2, or r, .

above the other if the two patches are thus super-
imposed and "glued together" along the boundary r,.
As r decreases further to r2 it reverts to a spacelike
coordinate, until we reach the reverse geometric
singularity at r=0.

To visualize the manifold it is natural, in general
relativity, to consider it as a succession of spacelike
surfaces. The manifold described by the two patches
contains two surfaces about which the metric is time-
symmetric, " u&=0 and z»=0. The geometry of the
first surface is already well understood. " Like the
analogous surface in the Schwarzschild-Kruskal mani-
fold, it represents a "wormhole, "or bridge, between two
asymptotically Oat spaces. The asymptotically Rat
parts are described by the region of large positive and
negative values of n. At N=O, r reaches its minimum
value r~ on the surface. The sphere of minimum area
4xr', or the "throat" of the wormhole, therefore, is
described by r = r~, or I=0. This picture agrees exactly
with the geometry found by solving the time-symmetric
initial value problem of gravitation and electromagne-
tism. The initial metric obtained from this point of
view is just the space-part of the Reissner-Xordstrom
metric, written in isotopic coordinates,

ds'= [(1+I/2p)' —(q/2p)'j'(dp'+p'dn')
with

~=pl:(1+~/2p)' —(V/2p)'3 (29)

This metric has been discussed in some detail by Misner
and Wheeler. "For purposes of visualization, it can be
imbedded in 4-dimensional space, giving a surface of
revolution much like the well-known surface for the
Schwarzschild case, obtained by rotating a parabola
about a line perpendicular to its axis."

' For definition see, for example, D. R. Brill, Ann. Phys. 7, 456
(1959)."See, for example, C. Misner and J. A. Wheeler, Ann. Phys. 2,
525 (1957),"See, for example, Hermann Weyl, Space—Time —3fatter
(Dover Publications, New York, 1952), pp. 259—260; also see
L. Flamm, Physik. Z. 17, 448 (1916).In the Reissner-Nordstrom
case the curve to be rotated in the 8 and p directions is given, in the
R—r plane, by

R(r) =J'[(1 p)/p]&dr =J'—[(2mr —g2)/(r —rq) (r —rq)g&dr.
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drp~2 boa p~2

JS= ~ fl& =
2 &r, "o "rg P—P(r)]'

=v-m. (30)

Thus the period T=2xm is independent of the charge,
and is the same as the time required for pinch-off in the
pure Schwarzschild case.

V. TRAJECTORIES OF PARTICLES

We have seen that the "electromagnetic cushion"
provided by the electric Aux through the Reissner-
Nordstrom "wormhole" effectively prevents an observer
stationed at the throat and following a geodesic from
reaching any pinch-off at the singularity r=0. Will
observers moving along less symmetrically situated
geodesics likewise avoid this singularity?

The Reissner-Xordstrom metric is invariant under
t translations, which have the form of Lorentz trans-
formations on u and v. Since any geodesic starting at
the throat on the initial surface v~=0, at arbitrary
velocity, is related to the geodesic of the "stationary"
observer discussed above by such a transformation,
observers on all such geodesics will see the same time-

The second surface of time-symmetry, v&=0, can be
analyzed similarly. It is bounded at two ends by the
singularity r=O, and has a maximum radius at r= r2.
The geometry of this surface is also described by the
metric (29), where p now takes on those negative
values which make r positive,

po= o(q —~))p) —-', (q+m) =po'.

A point whose p coordinate differs by some small
number e from one of these limits po has the r-coordinate,
given by Eq (2.9), r=(q/po)e, and geodesic distance
from the singularity s= 1'ds= (q/po') o'. Hence, the area
of the sphere drawn at that distance is A =4mr'
=(4v-q'/po')o'=4v-qs (for a regular point we should
have A =4vrs'). This property characterizes the singu-
larity at r=0 on the surface v2=0.

By symmetry it is clear that the line I=0 in the first
patch, and its continuation v=0 in the second patch is a
geodesic, the worldline of an observer who initially, and
permanently, is situated at the "throat" of the "worm-
hole. "The radius of the wormhole as defined from the
surface area of the extremal sphere, is simply given by
the r value at the observer. As in the pure Schwarzschild
case, the observer sees this radius begin to decrease
from its maximum value r~ as time proceeds from the
initial point, vt=0: the throat begins to shrink. How-
ever, for the Reissner-Nordstrom case it does rot pinch
off, but reaches a minimum r2 at the second pseudo-
singularity. From there on it increases again to r&, and so
forth (see Fig. 1). Thus our observer sees the wormhole
pulsate in time, kept from collapsing by the pressure of
the electric Qux through it. The proper time interval
from r& to r2, or half the pulsation period T, is readily
calculated:

development of the space, and none will hit the singu-
larity at r=0. It is also clear that light rays, which are
described simply by lines of slope +1 in the I, v co-
ordinates, wilt hit this singularity (see Fig. 2). To
discuss trajectories other than these simplest examples,
we examine the law of motion of test particles" of mass
p, and charge e,

d x" dx dx~ c dx'
+kiev — F v

d7. dr p,

(31)

In the Reissner-Nordstrom metric written in the r, t
coordinates the electromagnetic field tensor has the
nonvanishing components

F„,= F„=-q/r' (32)

When this tensor is transformed to the new I, v co-
ordinates, one immediately obtains its analytic exten-
sion into the regions beyond the pseudosingularities,

F""= F""=(u,v&
—v„u&)F"—'= Q (u, ' v„')F"—

—FPE/f 2 — q/r2f 2

F„„=f'F„=f'q/r'; F „=F„„=O.
(33)

The electric field in the surface v~=0, defined as the
force of electromagnetic origin on a stationary unit
charge, has contravariant components

dx~
F ~ =F S- /f=(q/r f)S ~

dT
(34)

h= r'p, (36)

is a constant of the motion. One of the remaining two

"See, for example, D. M. Chase, Phys. Rev. 95, 243 (1954).

If q)0, this force always points in the positive u
direction on the initial surface. On the sheet n(0, it
points toward the wormhole throat, and on the sheet
n&0 it points away from the throat. The "charged
wormhole" therefore looks like a negative charge
viewed from one sheet, and like a positive charge when
viewed from the other sheet; the Rux Rows continuously
from one sheet to the other through the wormhole.

Although the electromagnetic field distribution in the
Reissner-Xordstrom space becomes clearer in the.u, v

coordinates, it is more dificult to write Eq. (31) in these
coordinates, because Eq. (26) cannot be solved ex-

plicitly for r in terms of I and v. We shall therefore use
the r, t system to discuss trajectories of test particles.

The four equations (31) specify the development in
proper time of the four coordinates r, 8, y, and t. Two
of these equations express conservation of "angular
momentum": if we satisfy the 9 equation by restricting
attention to orbits in the 8=v/2 plane, the p equation,

(1/r')d'(r'q )/dr'=0 (33)

implies that the angular momentum parameter
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equations, viz. , that for r, may be replaced by the
condition that the four-vector velocity be a unit vector.
This follows from differentiation of the metric (1) with
respect to proper time v,

1=yt, 2—y
—'r '—(h2/r~)

The remaining equation,

'd(yt, )-/dr = (./I ) (q/4r )r,

can be integrated to give

(37)

(38)

qu, = —(eq/yr) +k, (39)

where k is a constant of integration. By eliminating t,
from (37) and (39) one obtains the radial equation

PL1+ (k /r )j= L
—(eq/pr)+k j2 r2 — (40)

This equation is analogous to the energy integral of the
corresponding classical radial equation of motion in a
central force field. The analogy can be made. more
explicit by rewriting (40) as follows,

—',p, (k' —1)= —,'pr, '+ (—pm+eqk)/r
+ (' "/~') (~q'/2")+~"'~/2r'

To find the range of variation of r, we use the standard
method of setting r,=0 to obtain the turning points.
Equation (40) shows that at these points p is positive,
hence r is space-like, as is necessary for the turning
points of a timelike trajectory. From Eq. (41) we can
verify the well-known result for the Schwarzschild case
(q= 0):If the angular momentum parameter k does not
vanish, the positive term on the right-hand side of (41)
may dominate at small r, and prevent the particle from
reaching r =0; but it must reach the singularity at r =0
in a 6nite proper time if h =0. In the Reissner-Xordstrom
case, the next to last term of Eq. (41) will always
dominate the 1/r-term at small r, and it is positive if
p'& e'. Thus in this case no test particle will ever reach
the singularity at r=0, provided only that the mass of
the test particle exceeds the minimum associated in

general relativity with its charge.

V. CONCLUSIONS

The analytic continuation of the usual Reissner-
Xordstrom metric for a "point" charge presented here
shows many features similar to the Schwarzschild-
Kruskal metric. In some respects it prevents fewer
difficulties than the SchwarzschiM metric; in particular,
if we restrict attention to particles whose mass exceeds
the minimum associated with their charge (m) ~q~,
p)

~ ~~), the throat of the wormhole representing the
particle pulsates in time and does not pinch off; and
no test particle ever hits the remaining geometric
singularity at r= 0.

Our analysis has been confined to the case ~q~ (nz.
If we formally. let q exceed m in the metric (22), the
character of the solution at small r changes radically,
since now the intrinsic geometrical singularity occurs
on the initial surface of time-symmetry. In this case a
singular initial geometry can only be avoided by
assuming some "real" charge and mass distribution of
finite extent near the origin. The physical situation
obtained by shrinking such a charge distribution to a
point has been discussed by Arnowitt et al. '4 It is quite
different from the wormhole topology we have discussed
here, although the two agree perfectly at large distances
from the concentration of mass and charge.

In conclusion, the discovery that the Reissner-
Xordstrom metric —known since 1916—is endowed
with a pulsating throat, is in full accord with the
concept of a dynamic balance between gravitational
pull and Maxwell pressure, and adds to the physical
interest of this standard solution of Einstein's equations.
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