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Pion-Nucleon Scattering in the Mandelstam Representation*
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Using the analytic properties of partial wave scattering amplitudes, as derived from Mandelstam's
representation, we have studied the J= -„I' state of the pion-nucleon system. The method used is covariant,
it incorporates unitarity, and the effect of a possible pion-pion resonance has been investigated. Using the
"single nucleon term" and the low-energy scattering properties of the "crossed states, "we obtain a resonance
in the J= —,', T=-,' pion-nucleon state without the aid of a cutoff. We have also investigated the scattering
in the T=—,

' state. The pion-pion resonance appears to have only a very small effect in the T= $ state whereas
in the T=

& state it increases the phase shift by a factor of 2.
The resonance obtained in the T=-', state occurs at too low an energy. There are several factors which

may account for this: We have not been able to include fully the contributions from crossed states, and
we have not systematically included inelastic scattering.

I. INTRODUCTION

'HE past few years have seen promising attempts
to deal with strong-coupling theory by utilizing

the analytic properties of scattering amplitudes, The
work of Chew and Low' on the static theory started
this approach to the pion-nucleon scattering problem
and enjoyed considerable success mainly because it
embodied most of the principles that any correct
theory must have. We have in mind here, in addition
to the analytic properties, unitarity, conservation of
isotopic spin, and crossing symmetry. Unfortunately,
it was not possible to include Lorentz covariance
among these in the static theory. Progress along the
latter line was made by Chew, Goldberger, Low, and
Nambu' who utilized the fixed four-momentum-
transfer dispersion relations to derive the successful
results of the static theory and to include the leading
kinematic corrections. While the latter authors had
hopes of obtaining the position of the 3-3 resonance
and the s-wave scattering lengths in principle, they
were not able to do so in practice. Although their theory
marked a great step forward in this field, the authors
did not investigate the effect of a possible strong x —m

interaction nor was their pro jection of the partial
wave amplitudes an exact one.

Mandelstam' has recently proposed a two-dimen-
sional representation of scattering amplitudes from
which one can derive the analytic properties of partial

waves. 4' There is hope that by solving the 7|-—m.

scattering problem, which one can do within this
framework, ' and working up through heavier mass
states, one might finally be able to get a realistic hold
on the strong coupling problem. That is, the goal is to
calculate scattering amplitudes quantitatively in terms
of the fundamental coupling constants of the theory
and the masses of the particles involved. ' This program
has had some successes, notably the justification of
"polology" from which the same pion-nucleon coupling
constant has been determined from several different
physical processes. Frazer and Fulco' were also able to
explain the isotopic vector part of the electromagnetic
form factor of the nucleon by introducing a z —m

resonance in the T=1, J=1 state. There appear to be
some theoretical arguments for this resonance' and
hopefully we will soon have some experimental evidence
on this question.

In this paper we shall work on the second stage of
the general program indicated above. Given the
pion-nucleon coupling constant and a +—+ interaction,
we investigate x —S scattering.

We have collected the kinematic relations pertaining
to pion-nucleon scattering in Sec. II. In Sec. III we
discuss our choice of amplitude and Sec. IV contains
the Mandelstam representation for this amplitude.
Section V is concerned with a discussion of the program
to be followed in practice and especially the replacement
of known branch cuts by poles, and in Sec. VI we
specialize to the J=

~ amplitude and obtain an approxi-
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P ION —NUCI EON SCATTERING

mate solution for this amplitude including the "single-
nucleon terms" and unitarity. "I.ong-range" contribu-
tions from crossed channels are considered in Sec. VII,
and "short-range" and inelastic contributions are
discussed in Sec. VIII. Section IX contains concluding
remarks.

II. KINEMATICS

We first summarize the relevant formulas pertaining
to the kinematics of pion-nucleon scattering. ' We take
pi and qi to be the four-momenta of the incoming
nucleon and meson, p2 and q2 to refer to the outgoing
nucleon and meson, and n and P to be the initial and
final isotopic spin states of the pions (see Fig. 1). Then

I' IG. 1. Pion-nucleon interaction in
channel I.

spin eigenamplitudes by

A+=-', (A'*+2A'),

A =-', (A' —At),

(2.14)

(2.15)

pi+qi =p2+q2, (2.1) with identical relations for the 8's. In the center-of-mass
system, the differential cross section can be written

by conservation of four-momentum. We shall refer to
this process as channel I. We define the I.orentz scalars
by

(~.e)(~ tfi)
I f fi+ f2i I, (216)

dQ 8pins(2.2)s (pl+ql)

u= —(pg —qi)',

t = —(qi —q2)'.

There is one relation between them,

s+t+u= 2M'+2tj, '

g2g&

fi= 2 fi+~i+i'(*)—2 fi &i i'(~)-, -
t=o l=2

(2.17)('2.5)

(2.3) where the matrix element is taken between two-

component spinors. The functions f, and f2 are related
2.4 to the phase shifts by

which reduces the number of independent scalars to
two. If 8' is the total energy, q the three-momentum,
and 8 the scattering angle, all in the center of mass, then

where

f~= E (fi fi+)~i'(—&)—
1=1

(2.18)

and therefore

s= 8"
)

t = —2q'(1 —cos0),

(2.6)

(2.7) a.nd

x= cosO',

fig= p' ~ sln5iy/qt

(2.19)

(2.20)

u= 2M'+2@,' W'+—2q'(1 cos0)—

We shall also need the relation

in the appropriate eigenstate of isotopic spin. These
equations can be inverted by

[(W+M)' —']L(W-M)'- '1
2=

4$"
(2.9)

~1

f ~ dx[fi——(x—)Ei(x)+f2(x)P,~, (x)]. (2.21)
2 ]

The T matrix for this process is defined by

Sg; 8g, (2n——)'~b—'(p, +q,—p, —q,)

M'
X

( I u~»i (2 1O)
(4EiE2Micg2 J

The T matrix defined in this way (uu=1) is a Lorentz
scalar and can be written

(W+M)' —y,
'

fi= [A+ (W M)B], —
16m B' (2.22)

(W—M)' —ti'
[—A+ (W+M) B], (2.23)

16+8"

and conversely

The functions fi and f2 are related to A and B by

(2.11)T= —A (s,u, t)+-,' (qi+q2)B(s, u, t),
where

Ap. =bp A++ ,'[rp, r ]A-
Bp„pp B++,'[rp, r ]B——- ( 1 1

B=8 Wi fi+ f2 I
(2 25)

( (W+M)' —p' (W—M)' —ti' jThe amplitudes A+, 8+ can be related to the isotopic

W+M W—M
A =8irWi (2.24)

(2.12) ( (W+M)2 —ti2 (W M) & ti2

(2.13)
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Finally we can relate f&+ to A and B by

fig = (1/32vrW') {[(W+M)'- p,']
X [At+ (W —M) Bi]+[(W—M)' —p']

X[—A fy$+ (W+M) B&~&]), (2.26)

partial wave helicity amplitudes9 by'

where
1

A~(s) = "P~(x)A (s,n, t)dx, etc.
—1

(2.27)

and

M I

X f+P (y) ,f~ yP~'-(y) (2 37)
[.T (7+1)]

Since A & and 8& depend only on t/t/", we have

f~+(W) = f~+~
—( W-)— (2.28)

9+s)
(pt)' 'f~ &~'(-y) (2 3g)

- ~ [~(~+1)]'

We shall refer to this as our "reQection principle. "
It is a fundamental principle of the theory we will

work with that the functions A and 8 are analytic
functions of the variables s, t, and 0 except for singulari-
ties associated with the three channels in Figs. 1, 2, and
3. That is, the boundary values of A and 8 describe
the physical processes that can be obtained by any
interchange of the legs of Fig. 1. The three physical
channels obtained in this way are associated with
nonoverlapping regions of the variables s, t, and N.

The values of the functions A and 8 in the crossed
pion-nucleon channel (Fig. 2) can be obtained from
those of channel I by the use of crossing symmetry:

which are obtained by simple manipulations of the
equations in reference (8). The reader is also referred
to this work for the relation between the fq+ and the
cross section in channel III.

III. CHOICE OF AMPLITUDE

Before proceeding to discuss the partial wave
amplitudes as functions of a complex variable, we must
first decide what variable to use and what kinematic
factor to multiply the amplitudes by. The guiding

A+(s, utt) = aA+(n, s, t),

B+(s,u, t) =wB+(u, s,t).

(2.29)

(2.30) FIG. 3. Pion-nucleon in-
teraction in channel III.

t=4(P+y') =4(p'+M'),
s= —p' —P+2p) cosg,

st= —p' —P—2p{ cosp,

(2.31)

(2.32)

(2.33)

where p is the nucleon momentum in the center-of-mass
system of channel III, f is the pion momentum and

y= cosp= ps' (s/ps{ s (2.34)

In this case the amplitudes A+ and 8+ are related to
the eigenamplitudes of isotopic spin by'

A+= (1/+6)A',

A =—'A'
2 7

(2.35)

(2.36)

etc. The amplitudes A and 8 can be written in terms of

FIG. 2. Pion-nucleon interac-
tion in channel II.

If the variables are such that channel III (Fig. 3) is
physical, then

principle in this decision will be to ensure that the main
features of a correct theory are automatically main-
tained even when approximations are introduced.

First we shall explain our choice of variable. "
According to the Mandelstam representation the
functions A and 8 are analytic functions of 8" except
for discontinuities determined by the "single-nucleon
term" (Fig. 4) and physical scattering amplitudes in
the three channels. The "single-nucleon" discontinuities
are known functions of the pion-nucleon coupling
constant. We shall also take low-energy scattering in
crossed channels as given, and neglect high-energy
scattering in crossed channels. The neglect of these
high-energy scattering singularities in A and B has
some chance of success because they are mostly far
away in the complex plane, and the discontinuities
across them are in most cases bounded by unitarity.
Rather than work directly with A and 8, however, we
shall use the partial wave amplitudes f~~ [Eq. (2.26)],
because the simple unitarity conditions on the f&+ will

be very important to us. It is evident from Eq. (2.26)

' M. Jacob and G. C. Wick, Ann. Phys. 7, 404 (1959)."Some of these considerations have been introduced previously
in references 4 and 5.
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that f&+ contains singularities of type g(W') in the
W plane. in addition to the singularities in A and B.
The g(W') dependence is associated with nucleon
spin; for example the factor X~M in a Dirac spinor
depends on g(W ). Singularities of this type, which are
not associated with single-nucleon terms or physical
scattering amplitudes, are called "kinematic singulari-
ties. " We wish to eliminate all kinematic singularities
because the discontinuities across them are nowhere
given or bounded by unitarity. "This is easily accom-
plished by working in the W rather than the 8' plane.
There may be other means of achieving the same end;
the way we have chosen appears simple and straight-
forward to us.

An alternative possibility would be to use helicity
amplitudes, ' ' which have no kinematic singularities in
the 8" plane. However, the helicity amplitude for a
given J and isotopic spin is a linear combination of
the /= 7+2 and /= J—~i states. This linear combination
makes the unitarity conditions more complicated; for
this reason we have not used helicity amplitudes.

Thus we consider the amplitude (e'~sin8)/q as a
function of W, using Eq. (2.28) to give us a definition
of the function in the left-hand 8' plane. When the
amplitude for any partial wave is written down fEq.
(2.26)), it contains an over-all factor of W ' from
kinematics. The residue of this singularity is not known;
therefore we eliminate it by multiplying the amplitude
by TV'. The amplitude

W' e" sining/q (3.1)

now contains no kinematic singularities.
It is a general feature of quantum mechanics that

any phase shift 8& varies as 8& q"+' at threshold, It
can be shown that the amplitude for the J, /= J——,

'
state has /(= J——',) wave thresholds in channels I
(at W=M+p) and II (at W=M —p). Because of the
reflection principle fEq. (2.28)j, the same amplitude
has thresholds at negative W (W= —3II&IJ) which
are related to the positive-energy J, /= J+ ', wave in-
channels I and II. Thus our amplitude (3.1) for this
state has zeroes for two positive values of 8', near
which it varies as q", and zeroes for two negative values
of 8', near which it varies as q"+'

We therefore introduce the following amplitude for
the J, 3=J——,

' state:

W2&'~i+ sin)&+/q~i+ f (W+M)2 —p21 (3.2)

fThe J, /= J+,' amplitude can be given-in terms of
this by using the reflection principle, (2.28).] The
amplitude (3.2) has no kinematic singularities. It has
built into it the correct threshold behavior; that is,
our final answer will have the right threshold behavior

"The self-consistent calculation of the discontinuities across
these singularities, which would have to be carried out if they
were not eliminated, would substantially increase the complexity
of the problem.

FIG. 4. Diagrams
of the "single-nu-
cleon" terms.

p JE

P2

regardless of our approximation scheme. By dividing
by the threshold factors, we have effectively made
all subtractions which our knowledge of threshold
behavior permits. Since q

' W' at W 0 fEq. (2.9)],
it may appear that although division by q" removes the
zeroes (of order 2/) at the physical thresholds on the
right, it introduces the same number of zeroes at %=0.
Appendix A contains an argument advanced by
Mandelstam, "which indicates that this will not be the
case for us.

Dispersion integrals for the amplitude (3.2) converge
very rapidly when l&0 due to the factors in the
denominator. This good convergence was already
implicitly present before we divided out the threshold
zeroes, because the information on the threshold zeroes
would allow several subtractions in the dispersion
relations for amplitude (3.1). So our choice of kinematic
factors in (3.2) has not really changed the maximum
possible convergence of the dispersion relation for the
amplitude. Likewise, we shall see in Sec. VI that the
convergence of the "S/D method" we use to so/M the
dispersion relation is in principle independent of
kinematic factors such as q

"in the amplitude.
However, the kinematic factors are important in

practice. The amplitude (3.2) falls o6' at least as fast
as W "'+'i as W —+ ~, because q~W and ~c" sin8~ &~1.

In our method of solution the asymptotic behavior of
a dispersion integral of form

r dW'1V(W')

W-W

gz=.=W' e" sin8/q'f (W+M)' —p,'] (3.3)

is entirely satisfactory; it has no threshold zeroes or
kinematic singularities and its correct asymptotic
behavior is maintained even when unitarity is imposed.

~ S. Mandelstam (private communication)."Calculations on this amplitude are now in progress.

will essentially determine the asymptotic behavior of
the amplitude. Although the amplitude (3.2) should fall

off as W "'+" im priecip/e, the contribution from the
dispersion integral will fall oK as W ' il practice because
the cancellations needed to give better convergence
cannot be maintained when unitarity is imposed in our
calculation.

For the case J=—,
' the amplitude"
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g&+ = 1F'e'"+ sin(I&+/q', (3 4)

However, it is not possible to satisfy all these require-
ments for amplitudes with J&-,', so some compromise
must be made. The only example of J&~ we shall
discuss here is J=-,', which we need for the detailed
calculations in Secs. VI—VIII. The amplitude we have
used for this state is

functions:

goo

A2'(S, t') =
(&&+a) '

ds' P)2'(s', t')

S —SI

1
1

(~—»'-' ds' p22'(s', I')
(4.3)

x~ „ S —S

which appears to be a convenient, but not the only
possible, choice." The 8' ' asymptotic behavior of
(3.4) is automatically maintained when unitarity is
imposed. A double zero has been reintroduced into
(3.4) at the "D-wave threshold. " This double zero is
not maintained by our approximations, but the error
introduced into the study of the I' wave should be
small because the D wave is not expected to have much
reaction on the I' wave. In the end we shall check this
point and find that the error indeed appears unimport-
ant for the I' wave.

E,'
A'(s, u, t) = +

M' —s 3f'—u

+— ds' ' du'
(24+~) ' (Sr+) ) ' (s s) (u u)

p '(s', I')
+— ds' dI'

2r2 ~ ())I+„) ~ 4„(s s) ()! t)

1 " " p22'(u', )!')
+— du' I dt' . (4.1)

2r2 "(~+„)* " 4 (u' —u) (t' t)—
This can easily be rewritten as a one-dimensional
representation at fixed s,

A'(s, u, t) = R ' 1 I"dI'A '(S, t')
+ +-

M' —s M' —I x ~4„ t' —t

1
(
" du' A2'(s, u')

(4.2)
7r Ij ())r+p) 2 u u

with the following representations of the weight

IV. THE MANDELSTAM REPRESENTATION

According to Mandelstam's conjecture, the ampli-
tudes A+ and 8* (referred to as A' with i=1, 2, 3, 4
in this section for brevity) have a representation of
the form

1 (
" ds' p„'(s',u')

A2'(s, u') =-
(~+y) 2 S S

~2M2 2p~u' ds~-p 4(S~,u~)

(44)
x~ S —S

The double spectral functions are real and do not
extend up to the indicated boundaries except asymptot-
ically. We have also kept s+u+),'=2M2+2)42 for both
the final and the dummy sets of variables.

From Eqs. (4.1) (4.4). we can immediately deduce
the analytic properties of the partial waves. %e study
these in the complex W plane (s= W2) for reasons which
have been discussed in the previous section. The
quantities of interest to us are

A)'(s) =~ P)(x)A'(s, t(s,x),u(s, x))Cx, (4.5)
—1

since the partial waves are formed from linear combina-
tions of these with coefficients that are simple functions
of 5'. The only x dependence in our fixed-s relation is in
the denominators and therefore the partial waves are
easily projected out:

( 'P)(x)dx
A '(s)=R '

J gM' —s

P4(x)dxR'"&, M2 —L2M2+2p2 —s+2q'(1 —x)j
1 (" (' P4(x)dx

+— dt' A, '(s, &')

2r~ 4„~ ~, I'+2q'(1 —x)

00

+— ' du' A, '(s,u')
&"(~+a) '

P4(x) dx
X '

, (4.6)
~ ~ u' $2M2+2p2 s—+2q'(1 x)j— —

Frazer and Fulco used an amplitude of the form of Fq.
{3,2) to derive an effective-range relation for the J=-'„ I' state.
They maintained the S" ' falloff of their amplitude, in the course
of the E/D solution, by making two subtractions in D. By this
means the D-wave threshold is treated correctly, but the subtrac-
tions introduce two experimental parameters (in addition to the
masses and coupling constants) into the theory.

'5 Subtraction terms have been omitted since they do not affect
the arguments that follow.

where we always have in mind that q' is a function of s
LEq. (2.9)j. We are now in a position to ask what are
the singularities of A)'(s). These will come from two
sources. First, the denominators can vanish and thus
give rise to branch cuts. Second, the functions A 2'(s, t')
and A2'(s, u ) have singularities of their own, which can
be determined from Eqs. (4.3), (4.4). We first discuss
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the latter type. Both A3 and A2 have a branch cut from
s= (M+p)' to ~, that is, for

—~ &» W&»—(M+p) and (M+p) &» W»& ~.
This branch cut corresponds to the physical region for
pion-nucleon scattering in channel I and will be called
the "physical cut. " The second integral for each term
appears to give a branch cut for negative s. Actually,
this is not true and only arose from our partial fraction
decomposition of (u' —u) '(t' —t) '. To see that in
fact this singularity is fictitious we note that the second
terms of A & and A 3 contribute to A ~' as

1 )L" ™~~ds'p23(s', t') t' I' (x)dx

J „ s' —s ~ i t'+2q'(1 —x)

00 23r2 2/2 u' dsr —(sr—tr)
rdu

p I Zi(x)dx
X, (4 ~)

, u' —t 2M'+2p' —s+2q2(1 —x)j
If the orders of integration are interchanged in the
s', t', I' integrations and the variable of integration
then changed to t'=2M'+2p' —s' —u' in the second
integral, one finds

(sr—»'—4s' (~—»'—' dt' (s' t')
t

P23g )
ds

s —s

~1
y ' Z, (x)dx

. t'+2q'(1- x)

(4 g)
s—2q'(1-x) —t' —s'

as well as from 0 to i~ and 0 to i~—(along the whole
vertical axis).

The second part, which we call the "crossed x —2V

cut, " is associated with scattering in channel II:
IN

A)'(s)x= — du' A, '(s,u')
(~r+» '

I'i(x)dx
X (4.10)

i u' —L2M'+2p' —s+2q'(1 —x)j
This term has a branch cut for

—(M—p) &» W&» (M+p, ),

and also from —i~ to +i~.
The third part, which we call the "z—m cut, " is

associated with scattering in channel III:
1 ~" (' Zi(x)dx

Ai'(s) =—,' dt' Aa'(s, t') ' . (4.11)m~4„J i t'+2q'(1 —x)

This term has a cut along the circle

i Wi = (M' —p')'*,

and also from i~ to—+i~.
Since our 8' plane is really cut in two by the cut from
i~ —to +i~, we are free to define the function as

we like on the left (also inside the circle). We shall
however use Eq. (4.6) for A)' to define the function on
the left, and in the circle, for then we can relate the
discontinuities across the cuts to the absorptive parts of
scattering amplitudes. The cuts are summarized in
Fig. 5.

The next step is to calculate the absorptive parts
across the cuts in terms of A2'and A3'. This is very easy

and combining the two denominators gives an s' —s in
the numerator.

Ke next state the results for the branch cuts arising
from the vanishing of denominators in A)'(s), which we
consider in three separate parts. The first part is the
"single-nucleon term" (Fig. 4),

L. IMIT OF REGION OF CONVERGENCE OF

LEGENDRE EXPANSION IN CHANNEL LIE

t' P)(x)dx
Ai'(s)~=A, ' '

1 M' —S +2p;t 2

P, (x)dx M-p,
R„' f 4.9

M' —L2M'+2p' —s+2q'(1 —x)j

)

/

)'

t'

i///////I

ZM +2@,

which has the following properties:

1. The first term has poles at 8'= ~M if tt=o.
2. The second term has a branch cut for

—(M'+2p') '& W & —(M' p')/M-
(M' —p') /M&»W &» (M'+2p') '*

I'"iG. 5. Singularities of the partial wave pion-nucleon
amplitudes j,n the W' planq,
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Defining
1. Crossed ~ —N Cut

for the "dynamic singularities" (everything but the
physical cut and its reflection) since one can treat the
cuts as arising merely from the vanishing of the
denominators in Eq. (4.2). This is perhaps not entirely
obvious since on the cuts where s is real the denom-
inators of the second terms in Eqs. (4.3) and (4.4) can
vanish and A 3' and A2' will become complex and them-
selves have absorptive parts across the cuts. If we
write, however,

1/(s' —s) =PL1/(s' —s)7+ix.6(s' —s),

then, by Eq. (4.8), the term i~6(s' —s) will not con-
tribute to the partial wave amplitude because its
coefficient vanishes. We are therefore permitted to
calculate the absorptive parts across the cuts entirely
in terms of the vanishing of the denominators in
Eq. (4.2), remembering that when A2' and A3' become
complex (on the cuts indicated above) it is only their
real part which will contribute.

FIG. 7. Signs to be used
in calculating the absorp-
tive part of the crossed
pion- ion term as given by
Eq. 4.16).

Upon use of the crossing relations, this angle is trans-
formed into the scattering angle in the channel II,
x~=x(u, s). For the values of x used in the partial
wave projection, —1&x&1, then it will also be true
that —1&x~&1 and u) (M+ti)' as long as 0&s
((M—ti)', but not when s&0. By changing variables
from x to u in Eq. (4.13) one has for all real s& (M—p)',

~ (M2—p2) ~/8

AbsA i'(sP = (+) du Pi(x(s,u)) (&),
2q'" ~~'+2t"—.

XA 2'(u, x (u,s)). (4.15)

Absg(lf') =—.rg(~+) —g(lf'-) 7,
2i

(4.12) 2. m —~ Cut

The choice of sign is indicated in Fig. 6. It is located on
the side of the cut which is taken first in calculating the
absorptive part. Equation (4.13) can be more directly
related to physical scattering by using crossing sym-
metry $Eq. (2.29) and see Eq. (4.20)7, A2'(s, u)
= (+),A2'(u, s). On the right-hand side, u is now the
energy in channel II, and s is a momentum transfer.
They are both physical in the region 0&s& (M p)'—
but not in the region s&0. This can be seen in the
following way. One can write the angle of scattering in
channel I as a function of s and I:

2s(2M'+2p, '—s—u)
x(s,u) =1+

s' —2s (M'+ti') + (M' —ti') '

2L (M2 —p2) 2—ug7
(4.14)

g2 —2g (M2+ ti2) y (M2 —ti2) 2

i
i
I|
i

i

I

i

i

i

+
i

I

i

i

tI

FIG. 6. Signs to be used in
calculating the absorptive part
of the crossed pion-nucleon
term as given by Kq. (4.13).

where 8"+ refers to one side of the cut and 5' to the
other side, we find

AbsAi'(s)&&= (&) I'i(x)A2'(s, u)dx. (4.13)J,
where again the signs are indicated in Fig. 7. In the
special case where we are on the circle we have

—2q2= g(4) = 2$3P sin'(C/2)+ti' cos'(C/2) 7, (4.17)

AbsA i'(s)
PJ—(M2 p2)~~pic&t2 (4.18)

t, 2oH')

= (~) — dt I',
l

1— lA '(t,s). (4.19)
g(c')Ji ' E g(c') 3

In contrast to the +—S crossed cut, there is no region
on the m —z cut that corresponds entirely to a physical
process in channel III.

Finally, we proceed to show that the absorptive
amplitudes A~ and A3 are real in certain regions where
the denominators of the scattering amplitude A LEq.
(4.1)7 vanish. As a consequence, A2 and A3 can be
identified with the imaginary part of the scattering
amplitude in these regions.

1. Crossed ~ —N Cut

If we let s~3 ' be the maximum value of s in the
region where the spectral function p. s (Fig. 8) is
nonvanlshlllg then fol

s, max($( (M++)2

Proceeding in the same fashion one finds

AbsA t'(s)

t' —1q t'- '
t' t

=(~)l I

' «~il 1+ lA '(~, t), (416)
( 2q') &4„* E 2it' j
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we find that both A; and A2 are real. /The denominators
of Eqs. (4.3), (4.4) cannot vanish and the double
spectral functions are real. j If now i &4@', then 1/(t' —t)
is real and the only imaginary term comes from the
vanishing of the denominator 1/(u' —u). We therefore
have

s max($( (M+p)2
t &4p,' (4.20)
u) (M+@)'.

ImA '(s,u, t)
=A, '(s,u)
= (a); ImA'(u, s, t)

This region includes the low-energy crossed pion-nucleon
scattering region.

V. OUTLINE OF PROCEDURE AND USE OF POLES

We are now in a position to outline our program. We
shall take the scattering in the crossed states as given.
This means we have a set of known discontinuities on
the "dynamic singularities. "We can then construct an
amplitude that has these discontinuities and which is
also unitary on the physical cut by using the 1V/D
method of solution due to Chew and Mandelstarn. '
In principle, of course, the discontinuities on the
dynamic singularities are not known independently of
pion-nucleon scattering. What one would like to do in
principle is to solve the x —z scattering problem con-
sistently in terms of itself and then to use this informa-
tion as input and solve the pion-nucleon scattering
problem consistently in terms of itself. In this way one
would hope to generate all the scattering amplitudes in
low-energy regions in terms of two coupling constants,
one for the pion-pion interaction and one for the
pion-nucleon interaction, and the masses of the particles
involved. The first part of this program is under way. '

2. ~ —~ Cut

Again if s23 ' &s&(M+@)2, A3 and Aq are real.
If u&(M++)', then the only imaginary part comes
from the vanishing of t' t in Eq. (—4.2) and

r
$ max($( (M++)2

ImA'(s, u, t) =A3'(t, s)~ u& (M+p)' (4.21)
t&4p'.

This includes physical (3&4M') %+X—+ m+m. It
must be emphasized here that in this channel t is the
energy and s is the momentum transfer. We need
A 3(t,s) on the circle, where s is complex. We can use the
Legendre expansion in this channel to give us a con-
tinuation in the comp/ex mome+turn traesfer over a
limited region. (The validity of this expansion is
discussed in Appendix C.)

We now, in principle, can calculate all the discon-
tinuities on the crossed cuts in terms of scattering
amplitudes for the crossed processes (although one
will eventually have to study the double spectral
functions in order to treat the regions where the
I.egendre expansion no longer converges). We proceed
next to utilize these results.

95.
U

P a 90.

85.

80-
t

(M+ 2p. )

70.

(y+p& 60
4 8

I

I

l2 l6 20 P4 28 32 36 40 44
I

FIG. 8. Boundary curves of the Randelstam two-dimensional
spectral function.

One difhculty with this part of the program is that there
is so far no direct experimental evidence against which
one can check the predictions for pion-pion scattering.
We are of course more fortunate in the case of pion-
nucleon scattering where there is a rich fund of experi-
mental data available. The solution of pion-nucleon
scattering in terms of itself and of a given ~—

m scatter-
ing is a difficult problem and one which we shall not
actually carry out here although one would hope that
it will be done sometime in the foreseeable future.
What we shall do instead is to incorporate those
features which we think the correct theory should have
insofar as the dynamic singularities are concerned. We
shall attempt to keep all the known symmetries of our
theory, and see what amplitude we generate on the
physical cut. (As of the present, we are only in a
position to keep crossing symmetry approximately. )
There are three terms contributing to the dynamic
singularities. The first is the single-nucleon term (Fig. 4)
which contains the pion-nucleon coupling constant and
is a completely known function. We can thus take this
term into account exactly. The importance of this term
for the low-energy behavior of pion-nucleon scattering
has been pointed out by Chew and Low. ' The second
term contains the absorptive part of the process
%+X-+~+7r. This amplitude has been discussed in
detail by Frazer and Fulco. ' They show that if one
includes a J= 1, T= 1 pion-pion resonance, then
combining it with the single nucleon contribution to
1V+X—+m+m is enough to give agreement with the
experimental results for the vector part of the magnetic
form factor of the nucleon. We shall include in our
calculation the contribution from this x —m resonance
and see what the effect is on pion-nucleon scattering.
In including this amplitude, we are still working
within the framework of the basic program outlined in
the beginning of this section. The third term contribut-
ing to the dynamic singularities is the crossed m

—E
cut. Here we have imposed crossing symmetry and
related the contribution along the real axis to physical
pion-nucleon scattering. Here one is really faced with
the consistency problem which has not even been solved
exactly in the static theory where crossing couples
only the P states at the same energy. We shall therefore
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abandon the more fundamental course of calculating
all the phase shifts without the aid of experimental
data. Instead, we shall put in for the crossed cut the
experimental observation that low-energy pion-nucleon
scattering is dominated by the 3-3 resonance. It will
turn out, however, that this contribution is the smallest
of the three discussed so far, so that our calculation can
still be considered to be approximately within the
framework of the more fundamental program.

Taking the discontinuities across the dynamic cuts
as given, one can proceed by the E/D method to solve
for an amplitude which is unitary on the physical cut
and has these discontinuities. The result is an integral
equation which is rather complicated although it can be
solved by straightforward methods. If the dynamic
singularities were just poles instead of branch cuts,
then one would have the simpler problem of solving a
set of linear algebraic equations. We have decided to
use the procedure of approximating the dynamic
singularities by a set of poles and solving the resulting
problem exactly. In addition to simplifying the problem,
this procedure allows us to watch the behavior of our
results as we vary the input information. For example,
we can immediately spot the source of the difhculty if
we are troubled by the appearance of ghosts or spurious
bound states in our solution by the E/D method.

We would like to be as precise as possible in replacing
the cuts by poles and to do this we adopt the following
criteria for these poles:

1. They must, of course, satisfy the general conjuga-
tion property

A=O,

B'*=Sm-g'/(u —M2),

Bl = —47rg'[3/(s —M') +1/(u —M') ],

(6.1)

(6.2)

(6.3)

where g' 15 and the upper indices refer to isotopic
spin. At this point we specialize to the J= ~ state for
the remainder of the paper. For the J= ~ state we need
the following partial wave projections:

and

where

—4''
82'=

g2

—erg' a+1
2—a ln, (6.4)

8—1g
2

p3a' —1 q a+1—3a+
~ (

ln, (6.5)
2 ) a—1

a= (W' —M' —2p')/2g' —1. (6.6)

We notice that for the single-nucleon term with l/0,

(6.7)

VI. SINGLE-NUCLEON TERM PLUS UNITARITY

In this section we shall calculate the single-nucleon
term and then generate from it a solution consistent
with unitarity in channel I.The additional contributions
provided by the crossed m —E and m. —~ channels,
which complicate the problem considerably, will be
added in the next section.

The single-nucleon diagrams are given in Fig. 4. For
these diagrams, A and 8 are

g *(W*)=g (W). (5.1)
The J=—', amplitude,

[This property follows immediately from the Riemann-
Schwarz reAection principle and the fact that between
the cuts on the real W axis, g~(W) is a real function. ]

2. They must be located at reasonable positions
along the cuts so as to approximate the shape of the
actual discontinuity.

3. They must have magnitudes and relative signs
so as to approximate also those of the discontinuities.

4. The Cauchy integral around the poles must
approximate the Cauchy integral around the dynamic
cuts when it is evaluated in the physical region. The
reason we ask this is that our final answer will be
expressed in terms of integrals of these functions over
the physical region.

5. Finally, we ask that our set of poles be as simple as
possible, consistent with the above considerations.

The validity of approximating by poles can in
principle be checked by solving the integral equation
with the complete cuts in a given case. We have not
done this but will later give some arguments on the
validity of our procedure.

We shall treat the problem in two stages. We first
treat the single-nucleon term and then add the contribu-
tions of the other dynamic singularities.

gi+ =W'e""+ sinai~/q', (6.S)

gi+= {[(W+M)'—p,'][Ai+(W—M)Bi]
327l g

+[(W—M)' —p,'][—Ag+ (W+M)B2]}, (6.9)

which applies to either isotopic spin state. Substituting
(6.4). (6.7) into (6.9), we find the Born amplitudes

(&=81 g' t'

g.+I, I
= I, I [(W+M) -"](W-M)

KT=-,') Sq4 (——',)
a+1

X 2—a ln +[(W—M)' —y'](W+M)
8—1

f 3a' —1) a+1
X —3a+

I ~

ln (6.10
2 ) a—1

The discontinuities of (6.10) are contained in the

is given by the general expression [Eqs. (2.26) and
(2.20)]
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logarithm, which can be written in the form

a+1 W'(W' —M' —2lb')
ln—= ln

a—1 W'M' —(M' —p, ') ' (6.11)

l"
w.

There is a short branch cut from W= (M' —ps)/M to
(M'+2@')b with the corresponding reflection on the
negative real axis. There is also a branch cut from
—~~ to i~. The short branch cut on the right corre-
sponds to the pole in the static theory. Its reRection
corresponds to a "D-wave pole" and has a relative
strength &li'/M'. The branch cut on the imaginary
axis, which is a distance of order M from threshold in
the 8" plane, was pushed out to ~ in the static theory.

We now proceed to approximate the discontinuities

by a set of poles as motivated in the preceding section.
From Eqs. (6.10) and (6.11) one finds that

( 1) s'g
Absg+(W) = (+)I, I (I:(W+M)'—~'j

(——',I Sq4

x(w —M)a —
I (w —M)' —p'j

X (W+M) s (3a'—1)) (6 12)

I (Wo)

-14 -12 -IO -8 -6 -y -2

8

I

(

i M abs. g" (I W )= R (Vfo ) + I $(Wo)

R(W, )
-Z (W, )

GRAL ALONG THE
CONTRIBUTES

. g (i Wo) dWp

.Vf- iwo

Wo)

2 0 6 8 10 12 I4 16 I8 20

I

( 1 l g'

ts) 3(W M)
(6.13)

Using the same procedure for the rejected cut, one
finds that the residue of the pole is down by a factor
&bus/M' as previously indicated. Since we are concerned
with calculating the I' waves, and since in addition to
the fact that the residue is so small, the pole is a distance
235 away from the region of interest, we shall neglect
it.

In our first attempt to represent the cut along the
imaginary axis we used a pair of conjugate poles,
but in order to satisfy all the criteria of Sec. V we were
ultimately forced to employ two pairs of conjugate
poles. When combined with (6.13), these poles yield

g'~ 1q 1 ( a a*
gi+"=—I, I +I +

E W—W. W—W.*l

b fi*

+I +
L W—Wb W Wb*l—

where
a= 2.03, 5 =2.l23fi,

b = —2.85i, 5'y= 4.323fi.
(6 14')

This function is plotted in Fig. 9.
The sign in (6.12) is to be taken from Fig. 6. The

short cut on the right extends over distances small
compared to the distance from the cut to threshold.
We shall therefore neglect the variation of the denom-
inator in a Cauchy integral around this cut and integrate
directly over the absorptive part. Doing this, one
gets a pole whose residue is just that of the static theory:

FIG. 9. Absorptive part of the single-nucleon term along
the imaginary axis.

These poles reproduce the contribution of the Cauchy
integral around the single-nucleon cut to within a few
percent over the range of 8' on the real axis, 63'&5'
)M+@ and —M—li) W) —6M. This is more than
adequate for the integrals which we will have to take
over this region.

Near the threshold W=M+bi, g, is dominated by
the familiar static pole at 5"=M. As 8' increases, the
poles on the imaginary axis take over and dominate
the asymptotic behavior of Eq. (6.14),"

2g2

gi
Ws (—-', )

1.68g' ( 1~
gi+"- (6.15)

This asymptotic behavior may be compared with the
limit (Ie" sinbI &1) imposed by unitarity for real
5' —+ ~:

8 28'~'+ sln6q+ 8 g2

q3 8' 2$'
(6.16)

It is clear that the unitarity condition must act so as
to reduce the single-nucleon term for large 5.

For purposes of orientation it is helpful to think of
the pole at 8"=31as producing a "long-range poten-
tial, " which is especially important at low energies.
The cut along the imaginary axis is then analogous to a
"short-range potential, " which influences high-energy

"The exact g&+~ LEq. (6.10lg behaves asymptotically as
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V{r) V{r)
/2

FIG. 10. Equivalent poten-
tials in the J=-,', I' states.

in (6.22)."We assume elastic scattering so that

Im1/g= —q'/W'. (6.24)

Substituting (6.24), (6.23), and (6.18) into (6.22),
we have

(a)

scattering strongly. The long- and short-range potentials
are each attractive in the T=-,' state, and repulsive in
the T= —', state (Fig. 10). We shall find this potential
analogy extremely helpful in interpreting our 6nal
results.

We now proceed to solve the problem that we have
set up. To do this we use the N/D method of Chew
and Mandelstam. ' YVe let

gt~ cV/D, —— (6.17)

where S contains all the singularities on the left. That
is, we write

g' f 1) D(M) (uD(w. ) a~Be(w.) )
+I +

3 E —-', j W—M Ew —W. W —W.')

W—M 1" dW'q'(W')
Q Rg7(w, ) S"'

(W' —W) (W' —M) (W' —W )

T—2 D (2.12Mi) =4.64—4.27i,

D(4 32Mi) =. 4 52 5 4. 8i,—.
D+ (W+) D (W)

(6.26)

(6.25)
(W'+ W) (W'+M) (W'+ W,)

Evaluation of D at the t/t/"; gives a set of linear equations
which completely determine the D(W;), and the
"effective" residues which appear in Ã.

The results are

f bD(Wb) b*D*(wi,) )+
&w —w, w —w,*)

D(2.12Mi) =0.61+0.11i,

D(4.32Mi) =0.33+0.14i.
(6.27)

E;D(w,)
(6.18)

We have chosen E in such a way that

X*(w*)=E(w). (6.19)

Ke put the physical branch cut into D. Equation
(6.19) and the property g*(w*)=g(W) LEq. (5.1)j
imply

(6.20)D*(W*)=D(W).

The normalization of D is arbitrary up to this point.
We choose to fj.x the normalization by setting

D(W=M) =1, (6.21)

O' —M
D(W)=1+

ImD (W') d W'

~+„(W'—W) (W' —M)

&~+» ImD(W')dW'
(6.22)

(W' —W) (W' —M) .

which enables us to compare readily with the Chew-Low
effective-range formula. These properties of D enable
us to write

The striking difference in the isotopic spin states can
be interpreted in terms of the potential analogy (Fig.
10). The attractive short-range T=$ "potential" pulls
in the wave function, greatly enhancing the eGect of the
potential on the scattering amplitude. According to
our results this short-range potential essentially
determines the 3—3 resonance energy, thus playing a
role analogous to the high-energy cutoff which deter-
mines the resonance energy in the static theory. On
the other hand, the repulsive short-range T= —,

' potential
pushes out the wave function so that the scattering
amplitude becomes much less dependent on the strength
of the repulsion. We recall that the determining
characteristic of a hard core is its size and not its
strength.

It follows from these considerations that the T=-,'
amplitude will be very sensitive to the details of the
short-range interaction. In the next section, where we
consider the crossed w —S and x—x channels, we shall
And that we can treat long-range contributions from
these channels accurately, but not the short-range
contributions. Therefore our approach cannot be
expected to give results of high quantitative accuracy
in the T=-', state although we may hope to get the
qualitative features correctly. For the T= —,

' state,
however, the amplitude is much less sensitive to the de-

Since E is real on the real axis, we can set

ImD= 1V Im1/g, (6.23)

'7 If a different amplitude were used, the change in asymptotic
behavior would be the same for both g and E. Therefore the-
asymptotic behavior of ImD would be unchanged and the con-
vergence of Eq. (6.22) would be unaffected.
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tails of the short-range interaction, and we would hope
that here we could arrive at more quantitative results. "

To compare our results with the experimental eGec-
tive range plots we calculate the function

l.0 l.5 2.0 2.5 3.0 3.5 4.0
(gO

P
/

FIG. 12. Phase shift in the J=-', , T=-', P state.

4,5

4 q'
ctn8~+

3p' W—M

4 8" 1 4
Re

3p,' 8'—M g~+ 3p, ' E;D(W,)
(W—M) Q

W —8';

(W M) — p q"dW'
1— QRD(W)E ~

X
. (W' —W) (W' —M) (W' —W;)

(6.28)
(W'+ W) (W'+M) (W'+ W;)

This function is plotted in Fig. 11 for the T=-, state.
We have also calculated the phase shifts themselves in
the T= -,' and the T= -,' states, and they are plot. ted in
Figs. 12 and 13. We shall discuss these in the next.
section, after the long-range contributions from the
crossed ~—sV and x—x channels have been added.

The error which our replacement of branch cuts by
poles introduces can be estimated by substituting our
calculated D into the exact integral equation for D.
Estimates of this type indicate that our T= -,', /'-wave
solution contains errors of order 20%%uq or less, and the
T=-,' solution is good to a few percent in the low-energy
region. "

We recall that in choosing our amplitudes, we had
failed to guarantee the correct threshold behavior of

"It appears that this is also the situation in the J=-, state,
and work is now in progress on this state.

19 We have also checked that no ghosts (D=0) appear anywhere
near the physical region in our solution.

VII. TREATMENT OF THE CROSSED STATES

In this section we want to improve the treatment
described in the previous section by including the
information that we have on the crossed states. We
discuss fjrst the contributions of the crossed m —S
cut.

A. Crossed ~ —N Cut

As has been previously indicated, that part of the
crossed m —E cut lying on the real axis can be related
by crossing symmetry to physical m. —iV scattering. We

I.O 2.0
Qjlt

40 5.0

40

So

-I2'-

-I6o'-

&» Phase

Experi
et

AII cl

II Same

-20'"

FlG. 13. Phase shift in the J=-,', T= ~ P state.

the D waves. We are now in a position to check on
what the resulting D-wave behavior is. Using

g. (W)= —g'+( —W), (2.28)'

we And that the D waves are negative and small in
the region M+p(W(2M. Since we have not treated
the D threshold correctly and have neglected singulari-
ties lying near the D cut, we have no reason to believe
these results. We wish to point out only that the
inadequacy of our treatment of the low-energy D
state does not appear to introduce a large error in our
calculation of the I' states.
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shall now use the experimental information that m —S
scattering is dominated by the 3—3 resonance at low
energies and shall investigate the consequences of
keeping only 1mf2+2 in Imf LEqs. (2.17), (2.18)]:

ing the Cauchy integral from the absorptive part, we
shall make use of a procedure which in practice makes
approximating the cuts by poles easier. We construct
the functions

This gives us

Im fr (s,u) =3xIm f2+ (s),

Imf2(s,u) = —Im fr~(s).

W+M
ImA+(s, u) =82rW 3x

(W+M)' —p'

(7.1)

(7.2)

00

A (s,x)x=-
(M+v) '

00

B(s,x)"=
(M+y) ~

ImA (u', s)du'

ImB (u', s)du'

(7.9)

(7.10)

+ Im fg++ (s), (7.3)
(W—M)' —p2

ImB+(s,u) =82rW 3x
(W+M)' —p'

Im f2„~(s). (7.4)
(W—M)' —p'-

We can calculate the contribution of the crossed m —X
cut from these formulas by using crossing symmetry:

These functions have a branch cut along the crossed
m
—Scut and are analytic everywhere else in the s plane.

They also have the correct discontinuities across the
cut. We 6nd by substituting from Eqs. (7.7), (7.8) and
projecting out partial waves that

642rWR2 i 1 ) (f )
' WR+M

(,)x 3gx
9 &4) Ep) (WR+M)' —p'

W,—M - |.i Z, (x)dx
(7.11)

(WR —M)' —p' ~ 2uR —u(s, x)

ImA+(s, u) = &ImA+(u, s),

ImB+(s,u) =&1mB+(u,s).

(2.29)' B,( )x

(2.30)'

3@x—642rWR2 t ii t fi'
9 E4] &pi (WR+M)2 p'—

If we now substitute a sharp resonance approximation, '

Imp~2�(s) = (82rWR/3) (f/p)2q28(W' WR2), (7.5—)

f'= (p/2M) Y (7.6)
and use

r
' I'2(x)dx

(7.12)
(WR —M)' —p' ~ 2 uR —u(s, x)

The equation for the contribution of these functions to
our amplitude g~+. then becomes

then we And

2)
f2+~ ',

l
lfJ/2——, (2.14)', (2.15)'—1I

WR'(1) (f)2
ll

—
l ~" t(w+M) -"j

18q4 (4) (p, )

i T=-22' (1i 642r2WR2 (fi '
I A(, )l

& T= ;) E4)-
R+

X 3xx+, (7.7)
(WR+M)' —p' (WR —M)' —p'

~T=-22' i1) 642r2WR2 ffi '
ImB(u s)

l(T= ,') E4) 9-&pi
(7.8)

, (WR+M)' p' (WR —M)' ——p,
'

with

3xx (WR+2M —W) WR —2M+ W

(WR+M)' —p' (WR —M)' —p'

2—a ln +[(W—M)' —p,']
Q —1.

3xx(WR+2M+W) WR —2M —W
X

(WR+M)2 p2 (WR M)2 p2

(3a2—1x a+1
X —3a+

l
il ln, (7.13)

2 J a—1

where by Eq. (4.14)

2WR'(2M'+2p' —s—WR')
xx=1+ (4.14)'

WR4 —2WR'(M'+p')+ (M' —p')'

In our procedure of approximating the dynamic
singularities by poles we also need the Cauchy integral
around the cuts on the left. Instead of directly calculat-

s+WR' —2M' —2p'

2 gf
2

(7.14)

0.59M(
l
W

l
(0.76M.

When we take the absorptive part of this expression, we
And that the cuts run the length of the imaginary axis
and along a short interval on the real axis,
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g' t' 1 y )1
g+

s4 &w —0.6m) &4)
(7.15)

The contribution from the short cuts can be approxi-
mated by a pole of the form"

We first note that if we have only 1=1, then

+=8 +=0,

~« =g~«')

8- = 2-8-'.

(2.35)'

(2.36)

g' (1i
54~ E4) w —0.6m

(7.16)

In terms of the potential analogy, this expression
gives the long-range part of the force coming from
channel II. When we next try to evaluate the short-
range contribution of the force coming from this
crossed process, we find that the absorptive part along
the vertical axis contains angles x+ that lie in a region
such that the Legendre polynomial expansion in channel
II diverges. Formally, the extent of the region of
convergence of the Legendre expansion can be deter-
mined from the regions in which the two-dimensional
spectral functions p;, fail to vanish. This analysis is
carried out in Appendix C. The limitation on the use of
the Legendre expansion can in principle be overcome by
direct analysis of the spectral functions. This procedure
has so far appeared to be prohibitively dificult to
carry out. We have seen that our analysis of the
T= ~ state depended on the details of the short-range
force and therefore a reliable treatment of these short-
range forces must be developed before a quantitatively
satisfactory calculation can be made in this state."
However, we have also seen that in the 7=2 state
(and also, it appears, in the j=-', states) the ampli-
tude is insensitive to the details of the short-range
force coming from the crossed processes unless it
should turn out that these are so strongly attractive
as to dominate the repulsive short-range contributions
from the single-nucleon term.

Keeping the preceding considerations in mind we
shall only include the known close-lying singularities
coming from channel II and take

y=(~+5~ ~' u')/2p—~, (7.19)

and the variables refer to channel III. Frazer and Fulco
do not directly give the helicity amplitudes f&~ but
give quantities r, related to the f's by' "

M P
r (&)= —— f:(~)—f+ (&),' 02M

(7.20)

—1 M
r, (~) = f„-(t)-—f,:(~) .

2p' v2
(7.21)

The quantities r;(/) within the framework of their
calculation are directly related to the electromagnetic
form factor of the pion (we are act.ually only interested
in imaginary parts),

ImI', (t)= —(2L'/q')Lg, "(/)0/e7ImF (/), (7.22)

where g,'(t)0 is the spectral function of the appropriate
electromagnetic form factor of the nucleon calculated
in the absence of x—x interaction. They further give

11.3
z.(~) =

11.5—t/p' —2.32i
(7.23)

and from Chew et al.23 we have

We keep only the 7=1 state in Eqs. (2.37), (2.38) and
obtain

8.;=6~&2' (t),
-

(7.17)

A.. = —127r(t/p)/fly (~/v—2)fl jy, (7.18)

where

B. ~ —m Cut
g2" (11.5p') o

=0.61ef'/p,

gg" (11.5y') = 1.85t f'
(7.24)

(7.25)
For the amplitude corresponding to channel III we

shall use the work of Frazer and Fulco who have

proposed that a T=1, 7=1, 7t- —7t- resonance will

improve the agreement between theory and experiment
for the electromagnetic structure of the nucleon. ' The
interaction in any other state in channel III could also,
of course, be included if it were known. We shall be
primarily interested here, however, in pursuing the
consequences of the proposed x—m. resonance.

'0 The residue in Eq. (7.15) is also equal to

1/m J Imps~ iWldw.
2' We attempted to cut off the diverging polynomial contribu-

tions but found in all cases that our results were extremely cutoff-
dependent.

To simplify our calculations we shall make the
approximation of a sharp resonance and write

Imr~ ——y~8(3 —t~),

Imr, = (~,/M)S(~ f,,), —
(7.26)

(7.27)

where we take fg 11.5p' fro——m Eq. (7.23) and determine
y by integrating over both sides of Eq. (7.22). Using

ImF (t)dt=35 sp' (7.28)

22 f1+ means J=1 and helicity + and isotopic spin amplitude

28 G. F. Chew, R. Karplus, S. Gasiorowicz, and F. Zachariasen,
Phys. Rev. 110, 265 {1958).
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we And that
yg= —6.9,

y2= —15.6;
and from Eqs. (7.17), (7.18),

ImB = —12m (yg+2y2)&(t —4),

(7.29)

(7.30)

(7.31)

1 t
" ImA „(t',s)dt'

A (sx) (7.33)

1 "ImB..-(t',s)dt'
B-(s,x) ~=-

+~ F2
(7.34)

then these functions have a branch cut along the
z —w cut and are analytic everywhere in the s plane.
They also have the correct discontinuities across the
cut. By projecting the appropriate partial waves out of
this expression and combining the results we find

ImA = 12m (y2/M) (s+ t~/2 M—' p')—6(t tR)—. (7.32)

Ke use these last two equations as the input information
for channel III.

If, as in the last section, we calculate the functions

discussed in Appendix C and is shown on Fig. 5. We
are again only justified in using the contribution of the
close-lying singularities in channel III. It happens
that the contributions we are including from channel
III separate conveniently into long-range and short-
range terms, because the angular dependence of the
crossed J=1 state makes "intermediate-range" con-
tributions from this particular state small. The
contribution to the function g~~" "pV) from the
close part of the circle is well-represented by

g~+(W)-= I 2 I (1 88i)

&& L1/(W —Me'"') —1/(W —Me ' ')j (7.36)

where xo= 12'50'.
The neglect of the short-range interactions has the

same status here as for the crossed ~—T contributions.
We are now in a position to add to our treatment of

the singular-nucleon term the contributions of the
close-lying singularities in the crossed channels as
represented by Eqs. (7.16) and (7.36). We proceed in
exactly the same fashion as indicated in Sec. VI. We
find that

..(2'=-,'l
g,+(s)-l(~', )I

t' —1y 1 6
L(W+M)' —t 'g—

E 2) 32~q' g2

D'(Wg) = 2.30,
D'(Me'"') = 1 30—1 07i, .

D'(2.12Mi) =4.07—3.68i,

D'(4.32Mi) =3.91—4.72i,

D'(Wg) —1,

D'(M'" )=0 97+0.08',
D'(2. 12Mi) =0.61+0.11i,
D'(4 32Mi) =. 0 33+ 0 1.4i.

(7.37)
v2&

XI —2—A in-
I
—

I s+—M —„ I

A+1) M i 2 j
3—(W—M)(y, +2y ) +t'(W —M)' —p'$—
g

A —1—6A+ (1—3A') Iin
A 1

V2 f tz
y —

I
s+——M' —t'

I

M& 2 )
—PV+M) (y~+2y2) (7.35)

with
A = 1+t~/2q'.

1

This function has a cut on the circle W= (M' —p')'e'&

which starts at
I x I ~& 11'45',

I

—xI & 11'45',

and continues to the vertical axis where it runs from
—~ to +~. We are again here faced with the problem
that the discontinuity along the cut will refer to angles

@ in channel III for which the Legendre expansion
diverges. The region of convergence of this expansion is

The results for the scattering amplitudes and phase
shifts along the real axis are given in Figs. 11, 12, and
13. The experimental results as summarized bypuppi
and Stanghellini" Ashkin et at" and Walker et al
are also included in these figures. It is seen that the
long-range ~—~ interaction is responsible for 50% of
the 0.~3 phase shift in our calculation, while making only
a very small contribution to 0.». One reason for this
difference is that the ratio of x —x, T=1 to single-
nucleon contributions is four times greater in the
7=2 than in the T=-,' amplitude (for J=~3) due to
isotopic spin factors. The curve of Q.I3 without the x—~
interaction is almost identical to the results of Chew,
Goldberger, Low, and Xambu. 2

Using exactly the same techniques as in Sec. VII A,
we have also ca1culated the long-range contributions
from the crossed z —E, S and small I' states. These
contributions are small and can be ignored. We estimate
that a ~—x S-state phase shift of order 30' would give
not more than one-third of the long-range contribution
from the m

—~ P state to the 2'=-,' state (and one-sixth
of the w —w P-state contribution to the T=-,' state).

~4 G. Puppi and A. Stanghellini, Nuovo cimento 5, 1305 (1957).
~5 J. Ashkin, J. P. Blaser, F. Feiner, and M. O. Stern, Phys.

Rev. 105, 724 (1957).
2s 7V. D. Walker, W. D. Shephard, and J.Davis, Phys. Rev. 118,

1612 (1960).
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Thus there is some basis for ignoring this (unknown)
x—x S-state contribution as well.

Although these results indicate that it is a good
approximation to ignore long-range contributions from
nonresonating, low-energy crossed reactions, the region
of convergence of the Legendre expansion includes
other crossed contributions which are harder to
estimate. The crossed z —S singularity on the real
axis, at —0.5M'&8'&0.5M, involves physical x—Ã
scattering at energies ranging from just above the 3—3
resonance to ~. This region does not appear to give a
large contribution. '~ As 8" approaches the limit of
convergence on the circular s.—s cut (Fig. 5), the
singularities are related to X+X—+ m. with energies

up to t 3P. Arguments, based either on phase space
or putting pairs of pions into T=1, J=i resonance
states, indicate that the 4m intermediate state should
not be especially prominent for I&M'. However, if a
3z bound state, X, exists with T=O and J=1," the
mX state would contribute well below (=M'. Further-
more, unlike the singularities on the real axis, the
processes E+g —+ m which contribute on the circular

cut (f(4M') are nonphysical and cannot be
bounded by unitarity (just as contributions with f(4M'
cannot be bounded in the nucleon electromagnetic
structure problem).

To summarize, we believe we can reliably calculate
the singularities nearest to the physical region, as well
as the various single nucleon singularities. Proceeding
away from the physical region, but still within the
region where the Legendre expansion converges, we
6nd singularities which can only be estimated at present.
Beyone that, outside of the region of convergence, lie
singularities which we cannot even estimate at this
time. As in most applications of dispersion relations
we have been obliged to go ahead and see what results
we could obtain by ignoring those contributions which
we could not calculate.

VIII. SHORT-RANGE MODIFICATIONS AND
INELASTIC SCATTERING

In the previous sections we have obtained the T= 2,
J=~ resonance, but at too low an energy. The long-
range interactions entering into our calculations are
supposed to be quite accurate, so that short-range
interactions we have not taken into account are
presumably responsible for the differences between our
results and experiment. It is of interest to consider the
magnitude of the modification required in the short-
range interaction to bring the resonance energy into
agreement with experiment, and also whether the
energy dependence of the phase shift is given correctly

'~ If we assume a constant ~—N cross section in the high-energy
limit, the integrated contribution to the discontinuity near
W=0 behaves ~$'2.

» The possible existence of such a bound state has been proposed
by G. F. Chew, Phys. Rev. Letters 4, 142 (19%).

once the theory has been modided to give the correct
resonance energy.

In order to discuss these questions we adopt the
approximate procedure of multiplying all residues of Ã
on the imaginary axis LEq. (6.18)7 by a common factor
s. We believe our treatment of the nearby singularities
to be correct, and therefore leave these singularities
unchanged. We thus modify the problem by introducing
one parameter which represents an over-all reduction
of the short-range interaction.

Carrying out the rest of the calculation as before, we
find that s= 0.6 leads to a resonance at the experimental
energy. This suggests that the combined effect of
short-range contributions from channels II and III
must weaken the single-nucleon potential for T=-,' by
about 40%."As we have seen, a change of this type in
the T=2 state would have very little effect on low-
energy scattering in that state.

When we proceed to study the energy dependence of
the T=-', amplitude with a=0.6, we obtain the experi-
mental effective-range curve below resonance, but above
resonance our results curve upward instead of the
downward trend indicated by experiment (Fig. 11).
More complicated modi6cations of the discontinuities
along the imaginary axis, involving more parameters
than s, do not easily lead to improved agreement with
experiment.

Inelastic scattering at high energies in channel I,
which we have ignored previously, offers more promise
in explaining the data above resonance. An accurate
treatment of inelastic scattering is not possible at
present, but estimates can be made which indicate the
direction and approximate magnitude of the effects to
be expected. If inelastic scattering is present, Eq.
(6.24) is replaced by

ImD= X Im1/g
N(qs/W') (o s/—o s),

where o-z and 0-~ are the total and elastic scattering
cross sections for the particular state in question. "Thus
our former expression for Ima is multiplied by a factor
which is always greater than or equal to one. It is equal
to one for pure elastic scattering and it takes the value
two when the partial wave is completely absorbed. If
the real part of the phase shift is large, as in the 3—3
state where it decreases slowly through 90' (Fig. 12)
then the elastic scattering will dominate and we have
0'@~0Z.

We have made an approximate calculation assuming
that 0-p 1,30-~ above 600 Mev in the laboratory. In
this calculation the short-range interaction was reduced
in such a way as to keep the resonance energy fixed,
at its experimental value. The results obtained from

29 When the sects of inelastic scattering in channel I are
included, one 6nds that this estimate of 40% has to be increased
somewhat.

30 We 'wish to thank P. Federbush for an informative discussion
on this point.
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q, .g Pp q, P P2
FIG. 14. Time-or-

dered diagrams for
the single-nucleon
term which contrib-

(a)

utes to the J= —,
'

state.

(b)

this qualitatively reasonable treatment reproduce the
eBective-range formula below resonance, and turn
below the effective-range curve just after resonance in

approximate agreement with experiment. At higher
energies the phase shift levels off at 135' or 140'.
Estimates made with larger inelasticity factors lead
to somewhat higher maximum phase shifts.

The effect of inelastic scattering on the low-energy
T=~ amplitude can also be estimated. If conditions
are such that a~&-,'0-z at all energies, the effect is small.

31 There is also some question as to the meaning of the small
phase shifts at low energy because of charge-dependent effects.
These effects have been considered by D. M. Greenberger, Phys.
Rev. 117, 1387 (1960},who shows that they decrease with increas-
ing energy and are unimportant at energies above resonance.

IX. CONCLUSION

We are making use of partial wave dispersion relations
derived from the double dispersion relations for z —E
scattering. The fully covariant character of these
equations allows, in principle, cutoff-free calculations
of all quantities except the physical mass and coupling
constants. Thus there is some hope of obtaining the
position of the 3—3 resonance and the 5-wave scattering
lengths at threshold. In this paper we have applied
the equations to the J=-,', I' state.

We first took the "single-nucleon" diagram (Fig. 4)
into account. To display the physical nature of the
interaction arising from this diagram we can split it
into its two time orderings (Fig. 14). Figure 14 (a) may
may be described as the exchange of a nucleon, and it
can be shown that it contributes both a "long-range"
and a "short-range" interaction. Figure 14(b) represents
the creation and annihilation of a pair, and is all
"short-range. " The "short-range" contributions from
the single-nucleon term are a feature of our calculation
which was not present in the static theory at finite
energies because there the nucleon mass was taken to be
inhnite. We have also taken into account "long-range"
contributions from ~—E and x—x scattering in
crossed channels.

For practical reasons we have not taken into account
inelastic scattering, and many "shorter-range" contribu-
tions. The neglect of inelastic scattering means of
course that our calculations are not valid at energies
where inelastic scattering is large. "If the short-range,
single-nucleon interaction is strongly repulsive, as in
the T=—,'state, we hope that we may have a quantita-

tively reliable treatment at low energies. This treatment
will not be changed by taking more short-range effects
into account unless they are strongly attractive. We
do have to assume that the ~—z interaction is given and
"intermediate-range" multiple pion contributions are
not too important. In the attractive T=~ state, on
the other hand, our treatment can only be qualitative
because the resonance energy is sensitive to small
modifications of the short-range interaction. Therefore
our methods do not yet suffice to determine the res-
onance energy accurately although they do predict a
resonance structure for the 3—3 phase shift.

Our results for the J= ~, I' states are shown in Figs.
11, 12, and 13. It can be seen that the x—~ resonance
which has been proposed' for the T=1, J=1 two-pion
state changes the T= ', state -by 50% and the T=
state by very little. "

At present we are applying the same methods to
the J=—,

' states. Here the short-range single-nucleon
interaction is again repulsive so that we may be able
to obtain quantitatively reliable results.
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APPENDIX A: BEHAVIOR OF AMPLITUDE AT W=o

In this appendix we reproduce an argument of
3~Iandelstam, " to the effect that the partial wave
amplitude

&i= 8 sln8/g + (A.1)

is in general nonzero at s=0 when a finite number of
coupled partial waves is considered. )It is not known
whether h~(W=O) vanishes as the number of coupled
partial waves approaches ~.] The factor q

—"would

appear to introduce a zero because q
' s near s=0

[Eq. (2.9)]. We shall show that this factor is actually
cancelled by another factor, s ', coming from the
partial wave projection so that there is no reason to
believe that h~ ——0 at 8'=0. We present this argument
with the hope of stimulating the development of a
more complete understanding of this subject in the
future.

Since the possibility of a zero due to q
" arises

whether or not the particles have spin, consider the
case with no spin. In this case there are no kinematic
singularities and no reflection principle, so (A.1) is

appropriate rather than more complicated functions
such as Eq. (3.2). We further restrict our a,ttention to
5 and I' waves; it will be clear how to extend the
argument to progressively higher /. The total amplitude

3' Recently J. Bowcock, W. Cottingham, and D. Lurie, preprint
(to be published) have added the Frazer-Fulco m —m resonance to
the axed momentum transfer dispersion relations of reference 2.
At low energies they obtain ~—m effects for the I' states which are
qualitatively similar to ours.
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with 5 and I' waves included is and following the procedure outlined in the text we find

(A.2)tz=/zo(s)+q'hi(s) cosO, E;D(W~)
X(W) =Q 8'—S";which can be written, according to (2.7), as

h(s, t) =ho(s)+q'tz& (s) (1+t/2q'). (A.3)
D(W) =1—F—3f " dF'

7l ~+p

xi
L (W' —W) (W—M) (W' —W,)

lim h(s=0)
gazoo

Because h is a finite polynomial in 3, it has the property
that Iz —+ ~ as t —+ ~ for s/0 Lin our particular case
h hi(s) t/2j. It would then appear to be a restriction
on h to make

(6.18)

finite; therefore we assume that this is infinite as well.
Now the relation

Now

(6.25)
(W'+ W) (W'+ M) (W'+ Wi) ) .

hi= —
J

d(cosO~)h cosO~,

g ]

can be rewritten, using (2.7), as

(A.4)
q~2

L (W~2 M2 tz2) 2 4M2tz2]
4W2

(2.9)'

so that q" is a complicated function. We can approxi-
mate q" sufFiciently well for our purpose by1 t' dt

h(s, t
q'~ 4,22q' E 2q'3

(WI2 M2) 3 - (Wiz+M2)
g

= 1 3p
8W" (W"—M') '

h(s, t) -t,

Ke were originally concerned about the factor q
'

going to zero as s approaches zero. However, if we put
in an expression for h(s, t) which has the property We therefore can write
indicated above,

then the factor of g
' in front actually is canceled. To see

this we note that as s —+ 0, the range of integration goes
from —s ' to 0. The factor (1+t/2q') approaches
—1, and q

' s. This gives us

D(W) =1— Q D(W,)R;
8m&

3p
x I(~,~;) J(~,~,), (&—.2)

M'

0

hi —s~" (sdt)t constant.
—1tts

(A.6)

t."de' ( 1
I(oi,(u, ) = ' (co'z —1)z—

~ i (o" . (co'—(u) (cv' —1) (co'—cu,)

The factor of s in front has thus disappeared and there
is no a priori reason to believe that the constant is zero.

Another argument starts from the fact that Eq. (2.9)
for q' reduces to

(Il 3)
(~'+~) (~'+1)(~'+~')-

f dG)

J(oi oi ) = (co"—1)(co"+1)
J

q'= (W' —4M')/4, (A.7)

when the masses are equal. In this case q' is nonzero
at W'=0, and there is no reason why (A.1) should
vanish at t/t/"=0. If the transition from the equal-mass
case is smooth, (A.1) should not vanish for the non-
equal-mass case either.

(8.4)
(a)'+co) (oi'+1) (cv'+co,)

g=E/D, (6.17)

APPENDIX 3: N/D SOLUTION

In this appendix we present the details of our X/D
solution to the problem of a given set of poles on the
dynamic cuts and unitarity on the physical cuts. We
write

where we have introduced co —=W/M and /=1+t/M. z

The integrals are elementary and the results are most
conveniently expressed in the form

1(~,~') = L1/(~ —~')3l:&(~)—&(~')j, (& 3)

J( ')=C.1/( ')lL&( ) ~( *)7 (8 6)
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where

H(ce) =o~(1+~)—
(~2 1)2 'i2 ~2-

ln,
co'

The above expression reduces to

r L(co—cc) (X—U)+P V7
M Q

2u& —1 (1) 1 (1 l+-
I

—
I
—

I

—I, (8 7)
cd4 &P) 2or2 ~t4)

co2+1 t2—cd2

C(ce) = —ce (1+co) —ln
cv

+S ( —)—P(X—U)3 (8 19)
CE

and the only complicated co dependence is in the function

X=ReLH(o~) —(3tc2/M2)C(n)]. (8.20)
~2+1 t 1q+, I I+ I I & (8 8) Thus, even though the logarithms in H(cv) and C(~)

are complex, we only need to know their real parts.

I(o~,ur) =dH((u)/do),

J(cd,a)) =dC (co)/dc'.

(8 9)

(8.10)
APENDIX C: CONVERGENCE OF THE LEGENDRE

EXPANSIONS IN THE CROSSED CHANNELS

If we let

D(2.12Mi) =x+iy,
D(4.32Mi) =u+A,

(8 11)

then upon evaluating D(a&) at these two points we find
the following 4 linear equations

x+iy =1.312—0.0722+x (0.491)
+y (—0.295+0.354i)

+u (0.437—0.596i)+n (0.398),T=- 8.12u+iv= 1.49—0.075i+x(1.01)
+y (—0.295+0.427i)

+u(0.444—0.796i)+2 (0.898),

whose solutions are those given in the text (Eq. 6.26).
For the other isotopic spin state we find

x+iy =0.844+0.036i+ x(—0.246)
+y (0.148—0.177i)

+u (—0.219+0.298i)+v (—0.199),
u+6= 0.'755+0.037i+x(—0.505)

+y (0.148—0.213i)
+u( —0.222+0.398i)+n (—0.449),

whose solutions are also given in the text (Eq. 6.27). In
order to calculate ReD(oi) along the right cut, we must
evaluate terms of the form

(r+is)
Re L(X+iY)—(U+i V)g

Z

(r—is)
+ L(X+iY)—(U—iV)], (8.14)-(-~)

where

Ke emphasize again that in this channel t is the energy
and is real. It is the extension to complex momentum
transfer, s, in which we are interested.

The singularities in As'(s, t') are given to us by
Eq. (4.3). We need only investigate the first term in
that equation since the second term is obtained from
it through the crossing transformation, s &-+ u at fixed t

and we see from our equation for y(t, s) that under
this transformation

y(t, s) = —y(t, s). (C.2)

This means that if we find singularities for positive y
from the first term in Eq. (4.3), the second term will

give a symmetric singularity at —y. We therefore
consider

1 t
" pis' (s', t')ds'

(~+a) '
(C 3)

In this appendix we wish to examine the region of
convergence of the Legendre expansions in the crossed
channels. We shall look at channel III in some detail
and then just state the results for channel II as the
procedure is exactly the same. Our starting point is the
following theorem": If P(s) is analytic inside an ellipse
with foci at +1, then it can be expanded in a Legendre
series P(2)=Pc acI'c(s) within the elliPse. Our task is
to find the singularities in the function A2'(s, t ) in the
complex y plane where y is the cosine of the angle of
scattering in channel III:

s+t/2 M' p,2— —
y(t, s) =

2 (t/4 M2) 2 (t/4 tc2) t

R;D(Wc) = r+2s,

H (ce) —(3@2/M2) C (co),=X+2Y,

H (o~c) —(3t42/M2) C (co;) = U+ iV,

co;=cc+iP.

(8.15)

(8.16)

(8.17)

Let the smallest value of s for which the denominator
can vanish be ss.o.(t). (See reference 8 and Fig. 2.)
XVe note that the denominator vanishes only for real s.

"E.T. Whittaker and G. N. Watson, A Course of Moderrl
(8 18) ANcctysts (The Macmillan Company, New York, 1943l, p. 322.
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then both conditions reduce to

l
Re (s)+ t/2 —M' —p,

'
l ~& sis, c.( t)+ t/2 —M' —p'. (C.7)

We investigate two possibilities.

A. 8' on the Real Axis

In this case
l
W'+ t/2 —3P—p'l ~& sa.c.(t)+ t/2 3P—

—p' implies Ws&sn. c.(t). Since t goes over all values
4p'~& t&~eo in (C.7), we must take sis.c.(t);„=(M+p)'.
The Legendre series converges for 8" real and

Fzo. 15. Ellipses of convergence of the Legendre expansion in
channel III. The cosine of the production angle is denoted by
y LEq. (2.34)g.

We split the t region of interest into two parts,

(1) 4p, '&t&4M', y(t, s) = —y,

lWl & (M+p).

B. 8' on the ~ —~ Circle

(C.S)

In this case we write W'= (M' —p')e"x and our
condition becomes

+2(Ms ps) sinsx ——t/

&~ sis.c.(t)+ t/2 clP p—'. (C—.9)

s+ t/2 3II' p'— —
yo=

2 (M' —t/4) & (t/4 —p') '

Assuming the left-hand side is positive (the converse
(C.4) inequality is always true) we find

(2) t)~4M s

s+t/2 —M' —p,
'

y(t, s) =
2 (t/4 —M') '(t/4 —p') '

(C.1)

Since the denominator of (C.3) vanishes for real s only,
we find that for region 1 the corresponding y is
imaginary whereas for region 2 it is real. The two cases
are indicated in Fig. 15.

We now have the ellipse, in the complex y plane,
inside of which the Legendre expansion converges. The
corresponding region in the complex s plane is deter-
mined by Eqs. (C.1) and (C.4). In order to get a very
simple super Habit to the region of convergence for s

lying on the circle, we can imagine our region in the y
plane to be an infinite strip instead of an ellipse. In the
first case, the condition that y be inside the strip is

sa.c.(t)+t—M' —3p'
sin'g &

2 (M' —p')
(c.10)

Sln x ~~ 0.52)

o& lxl &46',
134' & l&l & 1so'.

(C.11)

For these values of y and t the left-hand side of (C.9)
was positive as assumed.

A numerical calculation of the correct elliptica l
region of convergence has been carried out by Frazer
and Fulco. ' They find that the series converges if

o& l, l
&33,

147' &
I ~ I

& 1go'.

From reference 8 we have l sn.c.(t)+tj;„96p,' for
1~12@'and 1~24@'.This gives

Sa.c.(t)+t/2 —M' —p'

2 (M' —t/4) l (t/4 —p') *

A similar treatment of channel II shows that the
channel II scattering amplitude along the real axis
between —M—p and 3II+p can be expanded in
I egendre polynomials for any I) (M+p)'." The
amplitude for any particular finite u) (M+p)' con-
verges over a somewhat wider range of S'.

The results of this appendix are indicated in Fig. 5.

(C.5)

In the second case the condition is

Sis.c.(t)+t/2 —M' —p'

2 (t/4 —3P) ' (t/4 —p') '*

(C.6)(2)
34 fhr. R. Frazer (private communication) has shown that the

region of convergence of the Legendre expansion extends for a
If we now let s become complex in Eqs. (C.5) and (C.6), short distance along the imaginary axis near W=o.


