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A method is presented for determining the X' spin, using only angular momentum conservation and
the rules of quantum mechanics. The method is based on a proof that, in the reaction m +p ~ h.+J o,

the K& decay intensity associated with a given direction of the h. spin cannot be isotropic at any production
angle, if the Eo spin is equal to or greater than two.

Account is taken of the particle-mixture aspect of the X1' and of possible magnetic moment precession.

I. INTRODUCTION

HIS paper presents a method for determining
the spin of the E' meson. While it is commonly

accepted that the E' spin is zero, the most compelling
argument for spin zero is that of simplicity.

The observed decay into two x"s rules out odd spin.
Even values of the spin other than zero makes difhculty
with the observed E' decay rate, but this inevitably
brings in questionable dynamical assumptions. The
situation with respect to the E+ is not much different.
Odd spin values are unlikely on the basis of the z
decay spectrum' (dynamical assumptions again are
involved) but the r spectrum provides no evidence
against even, nonzero, spin. There is an argument
against spin 2 due to Dalitz' (i.e., that E+—+w++y
could occur for spin 2) which, of course, is of a dy-
namical nature. Finally, the polarization of the p+ from
E+ decay' is consistent with spin zero, but does not
rule out higher spin, since very little is known about
the possible polarization of the E+ mesons, and the
measurements were made at one angle.

All this is to be contrasted with the situation for the
A. hyperon, where the beautiful method of Lee and
Yang' has made possible an unambiguous spin determi-
nation' using only angular momentum conservation
and the rules of quantum mechanics.

We therefore seek here a method of "legal proof" of
spin zero for the E' in order that the answer to such an
important question have a foundation which is as Arm
as possible.

The method of Adair' is applicable to the E', but so
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far has not yielded conclusive results, because of
uncertainties in the number of partial waves present
in the production process. ~

We examine the reaction

w +P +A+E'.—

The A spin is now known to be —,.' Thus all spins
in reaction (1) are known, except for the E'. Further,
the A. is known' to have a large asymmetry parameter
(n). This means that it is possible, on a statistical basis,
to distinguish between A spin up and A spin down,
relative to some preferred axis. The way we utilize this
is the following:

In reaction (1), at any given production angle, the
quantum-mechanical state of an observed E' is a
statistical mixture of four components, corresponding
to spin up or spin down for the struck proton, and, for
each of these, to spin up or spin down for the associated
A. By using the decay asymmetry of the A, one can
project out the E' intensity associated with A. spin up.
This is then only a two-component mixture (corre-
sponding to the two possible spin orientations of the
struck proton).

We then prove that for a E' spin state which is a
statistical mixture of Q pure states, isotropy cannot be
achieved in the Ere decay for Es spin J such that J&~ Q.
Thus for the two component mixture, J~&2 can be
ruled out. Even without observing the A, we have
Q=4 and so J&&4 can be ruled out.

The proof is in the form of an inequality which can
be applied to the data; that is to say, we give an
inequality, based on the above proof, for each even,
nonzero spin J. The inequality must be satished if the
spin has the assumed value J, and will be violated if the
spin is zero.

II. FORMULATION OF THE PROBLEM

Let us choose f1= y, Xps/~ y»&&pat as the axis of
quantization (Fig. 1). (This choice is for definiteness

7 F. S. Crawford (private communication).
F. S. Crawford et a/. , 1958 Annual International Conference

on High-Energy Physics at CERN, edited by B. Ferretti (CERN
Scientific Information Service, Geneva, 1958), p. 323.
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The intensity of the decay products is then
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which may be written
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FIG. 1. Schematic diagram of m +p ~A+Eo, A —+ p+m,
E —+ m++~, as seen in the center-of-mass system of the pro-
duction process. The decay angles 8, @, cos 'P are measured in
the particle's rest frame.

only; our results are independent of the axis of quanti-
zation. )

The most general wave function for the products of
reaction (1) is

We now want to project out the A-spin up and A-spin
down intensities I+ and I . By examining (5) it is
readily seen that the functions

f+= 2 (1+34/~) f =5(1-3k*/~—)

have the desired property, namely:

(O~
0+=

1
IE-A-")x~"+I IZ-A-(2)x~",

(.OP

(1q (Oq
I& A-")» +I

&O) (.ii

The two-component mixtures I+, I may thus be
directly obtained from the data.

We are therefore concerned with the properties of
functions of the general form

I=Pl+ A„«)Pg"I''
q m

where f+ is for struck proton spin up, P for down.
The A «& are functions of the production angle 0;

q m, m'
(q)A, (g)&P mP m'8

f iy

(oi
)Oq

I,&I

are A spin eigenfunctions; and the xg are E' spin
eigenfunctions, for spin J, and spin projection m in the
direction 8. For an unpolarized target, the intensity is:

First we note that Tg Fg '*——(—1) + '7'g™FJ™~
(i.e., that some of our functions are essentially identical
because of a symmetry).

We therefore write

I= ,'P P (A «)A„.(~)*-
q m, m'

+( 1 )m+m'A, (g)A (q)8) y' mp' m'8

Upon E~' decay, angular momentum conservation
coupled with zero spin of the pions requires

&(z"~ 1'z ((&A),

We define a coefficient 8
(a)A, (a)*+( 1) + 'A, (g)A (g)e

in terms of which the intensity is then quite simply

where

m, m'

mP' m'4 (9a)

are the spherical harmonics.

Upon A decay,

We can get rid of the complex conjugation symbol, since

m8 —( 1)mg —m

(11 (1+ub) ( l (1 c(0*'&—
(3)

Eo) E 2 ) Ei E 2
m m'

, p my' m'0 —p g, ( 1)m'p' mp' —m'

m m'

where n is the h. decay asymmetry parameter. Thus, if we define I3 = (—1)™B,, the intensity
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becomes I= 2+-B Yg Fg '.
tn, fn'

(()b)

III. PROOF OF THE INEQUALITY

Since we suspect not all the interference terms can
vanish, we might form the sum of the squares of the
8 for m/m'. To increase the symmetry, we include
the diagonal terms as well, and form

m r tS

where the sum extends from m= —J to m=+J, a,nd
the same for m'.

We now show that this function cannot be so small
as to correspond to isotropic E&' decay. Multiplying
out Eq. (11), we have

p& —p ~p g (&()g,(o)o+( 1)m+m'g, (o)g (o)*~z
mm' q

[(g ( )g, ( ) 'g ( ') 'g, ( ')

m, m', q, q'

+ ( 1)m+m'(g (o)g, (o)og, (o')og (o')

+g (o')og, (o')g, (o)g, (o)o)]

We may interchange the order of summation and
rearrange as follows:

p& —g [[Q g ( )g ( ')*f + [ P g, ( )g, (o')@Jz

q, q' m —m'

The B are (except for m'=m), the coefficients of
typical interference terms in the E&' decay angle
distribution. It is these interference terms which cause
the anisotropy.

The B ~ are now all observable, provided the
I"&"FJ ' are all linearly independent, except for the
above-noted symmetry. (They are linearly independent,
as we show in Appendix I, by demonstrating functions
which project them out. ) The symmetry insures that

B„„=B„„=(—1)"+ 'B „,
= (—1)"'"'B--,--* (10)

The real part of 8 shows up as the coeKcient of
P~ Pq

' cos((m+m')p) (where the Pq are the associ-
ated Legendre functions). The imaginary part is the
coefficient of Pq Pq

'
sin((m+m')&t), so both are

observable.

The terms on the right are all positive; the terms in
the 6rst squared expression, for q=q' only, give

where z()(q) is the statistical weight of the qth component
in the mixture. Thus

Fg ~&2+, zt)'(q).

This has a. minimum, since

P, z( (q) = IV,

where 5' is the total weight of the mixture. The
minimum is at

z()(1)=z()(2)= =w(Q) = W/Q.

(Q=number of components in mixture) and the value
of the function at the minimum is

2Q(W/Q)'= 2W'/Q.

We have then, finally, the basic inequality:

F &2W'/Q if the E' spin is J. (14)

[For a wave function normalized to unity (W= 1) and
a two-component mixture (Q=2), (14) gives Fq&~1.]
[We have tried to strengthen the inequality (14) by
invoking the other terms on the right side of Eq. (12),
with no appreciable success. )

If, on the other hand, the spin is zero, then the decay
distribution is isotropic. For isotropy, the measured
B ~ will be zero for m/m'; for m =m', i,e., the diagonal
terms, the 8 will be weighted equally. Thus, in this
case B =2W/(2J+1), so that

(Fz)isotropic = 2 ~

Bmm'
~

iso tropic
mme

t' 2W )' 4W'
= (2J+1)

E2J+1) (2J+1)
A contradiction is thus encountered if the spin is zero

and the trial spin J is such that 2W'/Q&~4W'/(2J+1),
which amounts to

J~& Q. (15)

The result. is intuitively plausible: one way to fake
isotropy, with spin J, is to have a "thermal mixture, "
i.e., each of the 2J+1 substates present, all weighted
equally, and all incoherent. This in turn is indistin-
guishable from a mixture containing m=0 and each
value of ~m~, the m=0 component being given half
the weight of each of the others. Such a mixture has
J+1 components. Equation (14) says that nothing
less than this will do; if Q(J+1, or in other words
J&~Q, then isotropy is not possible.

+
~ p ( 1) 'g, (o)g, (o')

~

z] (12)

IV. METHOD OF APPLYING THE INEQUALITY
TO THE DATA

In Appendix I we show that the functions

P mm' —2
I even, M

C~~ (LM,mm') [4zr (2L+1)]'
llew 8

Czg(LO, OO) (2J+1)
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project out the 8 ~: i.e.,

~I(8,tf, O)Fg~"'dot, 4=8 (0),

where the C's are Clebsch-Gordan coeScients, and I
denotes a statistical mixture, such as the spin-up
intensity I~ (8,$,0). The integration is over 8, P, at
fixed O~. In the future we denote such an integration
by ( ), . If necessary, the ( ), will also include an
average over the A. decay coordinate, $,.

The inequality (14) then can be put in a form
whereby it can be compared with the data. If we
project out the A spin up (down) intensity, we have

In the form (15a or b) the inequality could be
applied to the data; however, the expressions (15a or b)
may be simplified greatly, by noting that

~(f)g, ~'=)t $*(1)f4(1)$(1)dri f*(2)f(2)$(2)dr2,

(16)

where 1, 2 refer to the coordinates of two digererit
events, and f is any function. Thus (15b) becomes

where we have taken W~= (f~)~ and Q= 2, correspond-
ing to the two orientations of struck proton spin. If we
do not project out the A spin, we have Q =4, W = 1, and

(15b)

4 2 4*(1)
I

t

Cq~ (LM, mm') (4tr (2L+1)5&

(1) I4(1)d
CJ g (I.O,OO) (2I+1)

Czg(L'M', mm)C 4 (2L'+1)]'
X g*(2)

( Q I'r. '*(2) )p(2)dr2t (17)
Er" even, ~' CJJ(I'Q, QQ)(2I+1)

which by the orthogonality of the C's is This last form is advantageous as it turns out to have
a smaller statistical error.

For 7=4, (7), (15a), and (18) give4tr (2I.+1)
(Z(I' "'(1)I' *(2)).).

2 2I even I C~J(LQ 00)) (2I+1) iti

1+—;;—1+15.4P)
By the addition theorem of spherical harmonics, this is

4(2L+1)'
(P~(~»))~- (18)

L even )Cgg(LQ 00)$2 (2Iy 1)2

where 6~2 is the spatial angle between the decay x+ of
the events 1 and 2. The Pr, (h) are normalized so that

+1

J
(Pl, (x))'dx =

—1 2L+1

XL
—1+70P2(h, ;)+126P4(h;;)1&~0, (19)

where N~=number of pairs=N(N —1). Finally, by
adding the (+) and (—) inequalities and writing the
same thing for y and s, we have, for J=2:

2 3
1+—,(4.4)

n'

XL—1+70Pi (6;,)+126P4(d;;)j&~ 0. (20a)

Equation (18) is obviously independent of the choice of
coordinate axes. For J=2, and projecting out the A

spin up (down), we have from (7), (15a), and (18);

34(4)& ( 3$.(i)&

u ) ( n )

+44.2P4+75P4+67Ptt) &~ 0. (20b)

(We do not give the form for 5=4, il spin not projected
out, as its statistical error is rather large. )

This (20a and b) is the final form of the inequality.
The inequality is to be applied to E events in a "nar-
row" histogram interval in O. The question of how
narrow the interval must be depends on the number of
partial waves present in the production reaction (1).
This in turn aGects the statistical error. This point is
discussed in Sec. VI. In a similar way, the beam mo-
mentum must be sufficiently well defined that the 8 „'
do not change very much over the width of the beam
momentum interval, This point is best investigated
experimentally, but should cause no trouble.

V. STATISTICAL ERROR

Whether any of this is useful or not depends on the
statistical error associated with the inequalities.

In this section we must distinguish between two
kinds of averages: one, an average over the data,
including a finite number of events and an attendant
statistical error. Two, an average over many experi-
ments. This becomes the quantum mechanical expecta-
tion value in the limit of a large number of experiments.
Therefore, this average we denote by ( ).
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2

I+gP~
I8 — +(P

I z. p

With F given by (20a), we evaluate (23) for a
distribution which is actually fat in 8, P, and obtain

&PP)/&P)'( = )
= (2/iV )2740p(P, u), (24a)

I2
(pg)

IC

3'F where p(P,n) is plotted in Fig. 2; P is the A. polarization,
and o. the A decay asymmetry parameter. Q(P,n) 8
for 1.12 Bev/e s. +p ~h+E', . and for a=0.8.j

The statistical error given by (24a) is enormous for
small E; this is because we are looking for a large
number of different possible deviations from isotropy.
The statistical error drops rapidly with increasing E,
however. This results in the situation that our method
is useless with the present world supply of A+X'.
events, but becomes very good very rapidly with an
increased supply of events.

Similarly, for J=4

6.
&PP)/&F)'= (2/iV„)960p(P,a),

which is slightly more favorable.

(24b)

l I t I

pg p.4 p
06 p.8 I.p

FIG. 2. The function P (P,n)

In the limit of large numbers, both averages are the
same. We distinguish between them here, because of
statistical error.

We have here to deal with functions F which are
averaged over the coordinates of pairs of particles,
i.e., suppose we have:

P= (2/X~) Q f,,= (1/iV~) Q f„ f,, = f(x,,x,), (21)

then

and

The mean-squared fluctuation is

iAj j'Aj'

The terms in i'= i,j '=j (and vice versa) give

There is also a contribution from i'=i, j'W j; we have
evaluated this, and find it (for our case) very small
compared to (23).

(23) shows a very curious dependence on the number
of events, i.e., the rms fluctuation goes as 1/1V instead
of the usual 1/giV. This is because we are dealing with
pairs of particles, and the number of pairs goes like JP.

VI. DISCUSSION

We must remember that the E~ is a particle mixture,
and see if this in any way affects the results. Also, the
experiments are done in bubble chambers with magnetic
field, and we must deal with the complication that a E'
of nonzero spin might possess a magnetic moment
which (it would seem) would precess in the field and
thus wash out the anisotropies we are looking for.

These questions are examined in Appendix II, where
it is proved that they in fact cause no difficulty. The
essential feature is that a E~' with nonzero spin and
magnetic moment does not precess "as a whole" in a
magnetic field, but rather its E' and X' components
precess oppositely, the net result being a small compo-
nent of E&' decays in the long-lived E2' group.

By looking for this effect, and (presumably!) not
seeing it, one sets a limit, that the fraction of E~
decays in the E2' group is less than some number e.
We then show that our inequalities are still good, to
order e, so that their usefulness is unimpaired. The
proof is quite general, being based only on CPT
invariance.

In conclusion we have compared this method to the
Adair method. ' We find that the statistical uncertainty
is smaller in the Adair method for small numbers of
events, and smaller in our method for large numbers of
events, The other point of interest is the sensitivity of
the method used to the number of orbital angular
momentum states participating in the reaction. In this
respect we find our method superior; if we define L,

„

to be that orbital angular momentum against which

the method is "safe," we find I, S', so that as a
practical matter, uncertainty about what angular
momentum states are involved soon vanishes. We
estimate, that for 3 standard deviations, and safe
against S, P, D, and Ii waves in the production process,
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of the order of 5000 events are needed, all at one energy
(5000 seen A' s).

In deriving our inequality we have used only angular
momentum conservation, CI'T invariance, and the
rules of quantum mechanics.

It would seem that we might do better statistically,
by invoking parity conservation in the production
process. We have investigated this, and find that to
utilize the restriction of parity conservation to its fullest
leads to cumbersome results, without greatly improving
the statistics. We do not give the results here.

~I(8,$)Fs 'doe p=B (25)

The requirement that (25) be satisfied is just that

'Yg "Yg '"dog, p

I+~ l I~I I (26)
tm ) (m' ) pm ) t'm')

&m"~' im") & "& Em")

First we expand Yg Vg
'

in terms of the YL

Ys~Ys '= Q Css(LM, mm')
L,M

2J+1
XCss (L0,00) Y M (27)

L4m. (2L+1)]**
now

Css(LM, mm') = (—1) Css(LM, m'm). (28)

Since the left side of (27) is unchanged upon m m',
the right side must be also, and so the coefficients of
the YLM must vanish for odd L. This is indeed so,
since (28) implies that

Css (LO,OO) = (—1)iCss (Lp,pp), (29)
or

Therefore

YJ YJ- '

Css(LO, OO) =0 for odd L. (30)

Cps(LM, mm')Cps(LO, QO) (2J+1)
M (31)

L even, M
l 4~(2Ly1)]»

We try

Css(LM, mm') $4r(2Li+1) j»
F mm' Y M8

I even, M Csj(IQ pp)(2 J+1)
(32)

so that

APPENDIX I

We now show that B (and hence B ) are
observable, by demonstrating functions F&™with the
property that

dory, pI'g 'Yg "Yg '"

Css(LM, mm') t'2L+1 )»

L even, M Css(LQ PQ) I' even, M' (2L +1J

XCss (L'M', m "m"')Cps (L'0,00)

f

= 2 Q Css(LM, mm')Css(LM, m"m"')
L even, M

= Q Cps(LM, mm')Css(LM, m"m'")
L,M

+Css (LM,m'm) Cps (LM,m "m'")

I+~I
fm i (m i t'm ) (m

(m"& &m'") ~m"') &m")' (33)

which is the required property, and shows that (32) is
the desired projection operator. We are now able to
project out any of the characteristic interference terms
in the total intensity or the A-spin-up (down) intensity.

APPENDIX II. "PARTICLE MIXTURE" PROBLEM

This note deals with the particle mixture aspect of
the E' spin determination problem.

It is necessary to look into this because:

(1) The E' is in a magnetic field; if it has a large
magnetic moment, this might precess and "wash out"
the interference terms in cos2&, cosQ on which the
inequality is based.

(2) The E' is in hydrogen rather than in vacuum,
so this might have some effect on its spin states.

(With respect to item (1) it is no more difficult to
do the most general case than to do any, so we do not
assume CI' invariance, and allow an arbitrary magnetic
moment and spin. ) The results are then based on:

(i) CFT invariance.
(ii) Strangeness of +1 for the E'. (Since from these

assumptions alone, the Lee-Yang-Oehme' treatment of
the particle-mixture scheme follows. ) If, for the time
being, we neglect nuclear spin-Rip processes, then the
basic equations of motion are given by Good." We
need modify them only to this extent; the strong-
interaction term in (e, n = complex index of refraction
for E', E') should have added to it the magnetic energy
of the E', (K') magnetic moment. Thus, for a gipsies

spin substate m (taken along the magnetic field),

2m' mpH
rs„=1+ A (0)— (1)

k' iitpck

2xi7 mpHn„'=1+ A'(0)+
k' APck

T. D. Lee, C. N. Yang, and R. Oehme, Phys. Rev. 106, 340
(1957).

"M. L. Good, Phys. Rev. 106, 591 (1957).
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where pc= velocity of particle, t«=magnetic moment of
E', H=magnetic field strength, m=o, &1, &2
=component of E' spin along magnetic field, 0=wave
number of E', and Ã=number of atoms per cm'. The
reversal of sign between (1), (1') is because, for the
same value of m, the E', X' will have opposite signs
for p H; i.e., the E' magnetic moment is the negative
of that of the E'. (This follows from CPT invariance. )

(1,1') is correct for a particle moving exactly perpen-
dicular to the magnetic field, since for these the field
in the particle's rest frame is H, =yH~, b, in the rest
frame the Larmor frequency is

Ml, )) m. = n«t«IIo. m /k).
and in the lab system it is

o)Llb ))o,) L,c .m ./7 n«t«II 1ab/I«)

which is what appears in (1,1').
For particles with a velocity component along the

magnetic field, the effect is somewhat reduced, since
only the part of H perpendicular to the path gets
multiplied by p, in transforming to the c.m. system.
We can think of this effect as reducing the effective
value of H for these particles, and consider it no
further.

We neglect spin-Qip processes in the hydrogen, for
the time being. LThis is why there is no subscript n«

on A (0) in (1,1').]
The general solution is (we temporarily suppress

the index n«)

short-lived particle amplitude, ni. (We can refer to it.
as the Ei amplitude henceforth. ) We note erst that for
small R, there is a long-/ised E& component, of intensity

~
R

~

' compared to the short Ei component. LSee Eq.
(2) ]

Let us assume that this is looked for and not seen.
This sets a limit, ~R~'&~e, e&&1. We can then expand
(2) for small R, and believe the result.

Small R corresponds to

pck (n —n') « (1/y) Li (o)«' —o)i') +1/(2r i)];
in this limit:

pyck(n n')—
R~

2L—«(~«' —~i')+ 1/(»i)]

n& 2 i((—1 iR)e —i"+iRe "")
"&'+iR(e "s)—e &)')] (4)

~—«f «(»' o)t')/7+1/(2'Y») )

«o)i «+1/(2yri «)
—«Pck(n+n')/2.

We have the ikey result that the eigenvalues (X&,4) do
not depend on the magnetic field. This is because in
n+n', the magnetic term just cancels. There will
therefore be no precession of the spin at the Larmor
frequency. Rather, to order R, initial E&' turns into
X2' and vice versa.

Expanding the solution to first order in R gives

fni(t) ~ 1 iR —
t 1 q

~
—P1t

(n«(t)) 2'(1—R«) t R)
i(1+iR) (R)+

I le
—"s'

2&(1—R') E1 )
where

pck(n —n')
R=

i (» o)i )—/y (1—/2y) (1/—r« —1/ri)+26
00

A *(t)A (t)
(Vri)

7),i=o)+6; 7t«=o) —6,
cc= ,'$i (o)&+»—)+(1/2y) (1/ri+1/r«) iPck(n+n')—],
~=

2 f l «(~i' —»')/&+ (1/2&) (1/r i—1/r«)]'

+L«pck (n — ')]n'}I

which in turn is

2A„*(0)A (0))~ni *(t)n,;(t)Ct/(yr&),

where n~, ei ~ are the E~' amplitude, as a function
of time, in the two magnetic substates corresponding
to m, m'. So what we need is

where n~, n2 are the amplitudes for E~, E2 if CP is
conserved; and are the amplitudes for the (in vacuo)
short-lived and long-lived particles, if CP is not
conserved "

5'ithont invoking CP, we now appeal to experiment:
in vacuo, the long-lived particle does not decay into
«r++«r —Lrate &~(10 ')&ri/r«10 'X2&(10 ' 2)&10 ')
of E'ie rate]." So what we are interest. ed in is the

)"ni„*ni dt/(yri);

from (4) this is

We are now ready to see what effect the magnetic
field has on the inequality proved in the text.

Let us take first those events in which the plane of
production is Rat in the chamber, and choose the

(2) direction of quantization along the magnetic field. For
these, quantities like (A 'A ) appearing in the text
L'Eq. (8), say] are to be replaced by

"M. Lederman, 1058 Annual International Conference on
High Energy Physics ot CER7-)t, edited by B. Ferretti (CERN
Scienti6c Information Service, Geneva, 1958), p. 275.

&)&+«R (e-&«& e-4&)]a-
XLe—x) +«R, (e 4) e

—x) )]dt/(~r )—'
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which may be integrated readily for E«1:
( 1

1 LRm

(pri(Xi+f2 )

L1—R *rt+iR„it),
where

1
+iR

E yri(Xi*+f2)

A *A dt/yriJ,
=A *(0)A .(0)(1+i&R„)*(1+i&R).

Now this is just what we wouM have had for
J'A *(t)A (t)dt/yr i had the magnetic field been
turned off and had A (0), A ~ (0) been replaced by

A„"(0)=A (0)(1+iitR„),
A "(0)=A„(0)(1+iitR„),

and so on. But, since the inequality was proved for
arbitrary A, 3, it is still orle to order E..

Any corrections to a given 8 are of order E.', i.e.,
of the order of the intensity of the long-lived tail of
Eio decays. The fractional correction to g ~B
is therefore of this same order, i.e., completely negligible.

All the above argument applied to the quantization
direction chosen along the magnetic field.

This restriction can now be lifted. Suppose the
quantization axis makes an angle C to the field. Call
the amplitudes of the various substates quantized
along this axis a;, and call the amplitudes obtained by
quantizing instead along the field, $;. Then

a'=2, C', (C)4,
where the C;; are the spin transformation matrix, and
do not depend on the time. Now form

a;*a,dt= P C; 'C; ~ g„*g dt.

1—2z r i ((o2' —(ui')

1+2iri(~i' —(oi')

(it is 1 if the mass difference co20 —~io is zero, and —1

if it is infinite. So rt is of order 1.) Also

The integrals on the right are the ones we have studied.
They are the same as if the field were turned o6 and
the g„replaced by

g„"=P(0)(1+iR it), etc. ,

so

a;*a,dt= Q C, *C,
tnml

But, this is just what we would have had forfa,*a,dt had the field been turned off and the original
population of P replaced by the $ ". But since the
inequality was proved for arbitrary $, it is still true,
to order E, and any corrections are still of the order of
the intensity of the long-lived tail.

We can now go back and see what inclusion of a
spin-dependent cross section would do. Arguing by
analogy to the case of turning E& into E2 by differential
absorption of E', E', the biggest effect we can get on
the amplitude of any one spin substate is of the order
of the ratio of the E~.decay length to the mean free
path for the particular spin-Qip process concerned Li.e.,
(m=+2) -+ (m= —1), sayj. On the intensity, the
eGect is of this order at worst, and may be of this order
squared. Now this order is necessarily smaller than the
ratio of E&' decay length to total absorption length.

This latter ratio is observed experimentally, and is
~X10 '. We are therefore safe in neglecting nuclear

spin-Qip processes.
All the above arguments are good for arbitrary spin,

so we should not have to consider the particle-mixture
aspect any further.
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