
N. A. KRALL AND E. GERJUOY

the sign of the scattering length. The triplet state is
rather unusual. A state of negative energy does exist,
but the exclusion principle rules out this state physi-
cally. In such a case the scattering theory accepts this
state as legitimately bound, predicting a phase bo ~ w

as k~0 and predicting a &0.
If both a+ and a are positive, we have an upper

bound on the integrated total cross section, namely

Experiment (8)

Experiment (F)

r
o.&dk= (10.3~0.5)ao,

2x'~

—~ o~dk= (5.1+0.5)ao.
2~'~

(8)

which measure 0-~, and an earlier paper' used these
measurements to compute the integral in (5). These
results were

o&dk&27rs( 'R+2-as). (5)

Using the (approximate) value of R (at E=O) com-
puted in reference 1, the inequality (5) becomes

1
dk& 7.52ao.

2x'~0
(6)

Using the most recent calculated values6 of a+ and
the same R as above, the equality (4) becomes

00

~,dk =4.5ao.
2X 0

(7)

Two experiments, referred to as (8)' and (F),"exist

' B.Bederson, J.Hammer, and H. Malamud, New York Univer-
sity Technical Report No. 2, Electron Scattering Project (unpub-
lished).

'~ R. T. Brackman, %.I . Fite, and R. H. Neynaber, Phys. Rev.
112, 1157 (1958).

It is apparent, on comparing (6) and (7) with (8),
that experiment (8) violates the inequality, while ex-
periment (F) easily satisfies the inequality, and comes
reasonably close to agreeing with the equality based on
existing calculations of the scattering length and our
estimate of R. The indicated spread in (8) results from
di6erent choices of the cross sections outside the range
of the experiments.

We conclude that knowledge of the sign of the scat-
tering length can be used to place a limit on the inte-

grated total cross sections, and accurate calculation of
the scattering length and bound-state residue gives the
value of Jp 0idk. Thus there is a close relation between

the scattering length, the integrated cross section, and

the bound. -state wave functions of the system (as re-

flected in the residue R).
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A method is derived for finding lower bounds to the energy levels of the Schrodinger equation. This method
is applied to the helium atom. The best lower bounds thus obtained are —3.0637 and —2.1655 atomic units
for the energies E(1 'S) and E(2 'S), respectively. If our lower bound for E(2 'S) is used together with the
best published values of (HP, P) and (Hit, HrP) of the ground state, a rigorous lower bound —2.903/474
atomic units is found for E(1 iS).

I. INTRODUCTION

HE basic ideas of our procedure for lower bounds

go back to the work of A. Weinstein, ' which in-
troduces an explicity solvable base problem with lower
eigenvalues. Weinstein links the base problem to the
given problem by a sequence of sritermedsate problems

which can be solved in terms of the base problem and
which improve the lower bounds. In his work on plates

*This research was partially supported by- the U. S. Air Force
through the Air Force OfFice of Scientific Research of the Air Re-
search and Development Command. The investigation was
initiated when the author was at the National Bureau of Stand-
ards, and a resume of some of the results was published Proc. Natl.
Acad. Sci. U. S. 45, 850 (1.959).

' A. Weinstein, Memorial des Sci. Math. No. 88 (1937).

these problems are obtained by changing the boundary
conditions. By combining his lower bounds with the
upper bounds given by the Rayleigh-Ritz method he
obtained an accuracy of up to 0.18/~.

Later Aronszajn' emphasized that a base problem
can be obtained by a change of the operator and out-
lined the construction of the intermediate problems.
In this paper we simplify Aronszajn s important exten-
sion of the method of intermediate problems by con-
structing these problems in such a way that in order to
solve them in terms of the base problem one need only

2N. Aronszajn, Proceedings of the Oklahoma Symposium on
Spectral Theory and Differential Problems, 179, 1951 (un-
published).
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solve an algebraic equation instead of a transcendent@, l
equation which involves inhnite sums.

No attempt is made to compare our method with
other procedures, which may be more efficient in
certain problems.

II. THE BASE PROBLEM

the inequality

(HV,&&«(H'+H')a a»
for arbitrary f In. fact,

EP=min(H ig, iP) &min(HiP, iP) =Eq.
QA&=~ Q &&=~

(2.'/)

(2.8)

where

H =Ho+H', (2.3)

Let us denote the inner product by Q, q) =J'Py*d~.
We are given the Schrodinger equation in the form

(2.i)
where we assume that the lowest part of the spectrum
of the Hermitian operator B consists of bound states
only. An eigenfunction P; corresponding to an energy
Ei must satisfy

W'=E'O'

where 8,; is the Kronecker delta. We consider the
energy levels to be ordered in a nondecreasing sequence
E&&E2&E3 ~ ~ where each degenerate energy level
is repeated the number of times equal to its multiplicity.
We allow the possibility of continuous energy states
and bound states with energies larger than each energy
Ei in the above sequence.

Rough lower bounds to the energy levels E; can be
obtained as follows. Assume that the Hamiltonian H
can be written as the sum of two parts, where one of
these parts H' is of a sufficiently simple structure that
its Schrodinger equation has an exact solution. Further
assume that the other part H' is a positive operator. It
is not necessary that H' be small as the method of
intermediate problems is not related to stationary
pertubation theory.

We have

The proof of the inequalities (2.6) for all values of i
follows from the maximum-minimum characterization
of the eigenvalues and goes back to Weyl. '

III. INTERMEDIATE PROBLEMS

We now introduce a sequence of intermediate Hamil-
tonian operators H', H', H' . . Each operator B~ will

approximate H in the following precise sense. It will
have energy levels intermediate between those of any
operator which appears earlier in the sequence and those
of H. This in itself would not be very helpful if we did
not have the following fundamental properties of H~.
The energy levels and eigenfunctions of H~ are, as we
shall see, obtained by a k-dimensional matrix problem
which is explicitly solvable in terms of the known
energy levels and eigenfunctions of H'.

To define H~ with these properties we temporarily
introduce a second scalar product ((ppfi)) defined by

(&vA))= (H'~)Ãd~=(H'~, 4) (3.1)

Here we restrict y and jf so that H'yNO and H'QWO

for p, QWO. Let p~, p2, p3 be an arbitrarily chosen
sequence of linearly independent, not necessarily
orthogonal, elements in the vector space with scalar
product ((gpss)). Using this new scalar product ((@pe))
we compute the projection I'~ p of an element q on the
finite space spanned by the first k vectors p&, , pz
so that

H'P =E P,o and (H' P,P)= (H'P)P*) 0, any P. (2.4) P'q =Q c,p;. (3 2)

E.o(E. s=i) 2) 3 (2.6)

The proof that E &Ei follows immediately from the
minimum characterization of the first eigenvalue and

Here the E,' are the ordered energy levels of the lowest
part of the spectrum of the operator H', E~'& E2'&
Each energy level E,' is repeated in the sequence the
number of times equal to its multiplicity. The eigen-
functions P;o corresponding to the E;0 are considered to
be orthonormalized so that

(2.5)

We call the eigenvalue problem for H' the base
problem.

The known energy levels E,' of Ho give rough lower
bounds to the unknown energies E, of H according to
the basic inequalities

Since p&, , pz are not necessarily orthogonal we
compute the elements ci from the system of equations

((P"~,p &)=&(9,P ))=z c'&&P',P )» i&i&I (33)

If B'q =0 we de6ne I'~q =0.
We define the intermediate Hamiltonian B' by the

equation
(3.4)H~= H'+H'P", i& k,

o&(&PV V&)«(P"'V P"'V))&(Q 4»
(3 5)

k, t=i, 2, 3
' H. Weyl, Bull. Am. Math. Soc. 56, 115 (1950).

and prove its fundamental properties.
As the projection increases in magnitude with k, we

have the inequalities
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or equivalently

(HV,C)& (HV A)& (H"'V,a)& (W O) (3.6)
7 ) )

The operator Hk now becomes

HV =He+2 2 Q,e")b.W",
i 1 j=l

HV+2 2 (PAP)bid" =El, (4.6)+.0+g.k Q g.k+tQ g.
i, k, t=1, 2, 3

i=1 j=l(3.7)

where b;; is the matrix inverse to that with elements

9",p) H' p, =&'
It is now possible to discuss Hk in a simple way. In

fact, let idio be an eigenfunction of H' which is not used
in forming any element p; according to (4.5). Then
H"ip~'=H'idio and ip~' is an eigenfunction pp of H";
hence, the energy level Et' is also an energy level Etk
of Hk. In a similar manner one can show that the con-
tinuous spectrum of Hk is identical to that of H'. '

We now proceed to find all other eigenfunctions and
energy levels of Hk. To do this we investigate whether
(4.6) has solutions of the form

As in Eq. (2.6), the proof of (3.7) follows from the
maximum-minimum characterization of the eigenvalues.
The inequalities (3.7) justify the name of intermediate
problems.

IV. SOLUTION OF THE INTERMEDIATE PROBLEMS

In order to determine the energy levels of Hk starting
from the energy levels of H we first find an explicit
expression for H~. Equations (3.2) and (3.3) show that
for arbitrary iP

If we denote the ordered energy levels of H" by so that the equation H"p=Ep can be written as
Ei &E2 &E3 . then the inequalities (3.6) assure
that k k

H'I'"f=Q c,H' p;, (4.1)
k.=Z «"4P, (4.7)

where the ci are determined as
where each fio is used in defining a pi according to
(4.5). Equation (4.6) now reads

c;=Q b;;(H'iP, P;), 1&i&k, ( )

2 «"EiVi'+2 2 b « "V" Er, at"0'i—'=0 (4 g)

and (b;;) is the matrix inverse to that with elements
(H'Pi, P'). We corn»ne (4 1) (4 ) an ( 4) " The linear independence of the functions Pio reduces
that the operator Hk becomes (4.8) to

H"iP=H'iP+P Q Q,H' p, )b;;H'p;. (4.3) Z (PEi' —E)~„+b,,)~, & &=0, 1«&u, (4.9)
i=1

Summary

The eigenvalues of the intermediate Hamiltonian Hk

are given by the following rule.

To avoid essential difhculties in the discussion of the where~it is the Kronecker delta. Hence, k eigenfunctions

equation H"ip=EQ, we simplify the operator H" by a and energy levels of H" are found by the solution of

special choice of the elements p;, 1(i&A, which up to the matrix eigenvalue problem (4.9).
now were selected in an arbitrary manner.

We require that each element f belong to the range
of the Hamiltonian H', and we define from now on
each p; by the equation

H' p; =iP,O, i=1, 2, k (4 4) (a) b of the bound states are the roots of

p, =(H')-V, i= 1, , k. (4.5)
' It turns out that our sequence has the properties of the dis-

tinguished sequences of A. %einstein in 1937. In a forthcoming
paper by the author and D. W. Fox a new procedure for an
arbitrary choice of the p s has been developed.

This special choice of the elements p; is usually possible
and distinguishes our procedure from that of Aronszajn. '
If H' is positive definite then the Hamiltonian (H') '
satisfying the relationships (H') 'H'=H'(H') '=I (I
the identity operator) exists, and we can equivalently
write (4.4) in the form

0=
~
(E,o E)b,,+b,; ~,

— (4.10)

where b,; is the element of the matrix inverse to that
with elements Q;O,P, ), H' P, =iP .

(b) All other bounds states of H" are those bound
states Eio of H' whose corresponding eigenfunctions fio
have not been used in forming the elements p;, 1&i& k.

(c) H" has a continuous spectrum identical with
that of H'.

' For a detailed mathematical discussion of this and some other
facts see the paper by ¹ Bazley which will appear in the January,
1961, issue of the Journal of Math. and Mech.
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Since the E's determined from (4.10) are not neces-
sarily the k lowest E's of B~, one must reshu8e the
E's in (a) and (b) into a nondecreasing sequence
E1~&E2~&E3~. .. We then have the fundamental
inequalities.

P.O( g.k(g.k+t (g.
i(i, k, t.

(4.11)

(HV 4')+cQ'4')+d(4'A') (4.12)

for some positive number d. Then B has the decom-
position H =H.0+H.' where H, ' is positive definite and
it is known that (H, ') Q exists for every vector P. The
base problem with Hamiltonian H,' has the same eigen-
functions lP,0 as does H'. Its lowest energies E,,0 are
related to the E by E„'=E —c. The solution of the
kth intermediate problem is again reduced to the evalua-
tion of the integrals ((H, ') 'P;0,PP) for 2,j= 1, , k.

'

V. GENERALIZATION

We are able to extend our method to the more general
equation

Hill, =E;H2$;, (5.1)

where Bi and H2 are linear operators. We assume that
it is possible to effect the decomposition

Hl=Hl0+Hl',

where B1', B2', B2' are positive and where

H 0$,0 —E,OH 0$,0

(5 2)

(5.3)

has known orthonormalized eigenfunctions lP,0 with
energy levels E; hence 8;0(E;,i = 1, 2,

As in the previous section, we introduce operators
H1~ and H»' which, respectively, approximate H1 and
B2 so as to give intermediate lower bounds. We take
j=k for simplicity. The energy levels of Hl"P= E" "H2'P
are given here by the following rule:

(a) k of the bound states are the roots of

O=
t (E, E)~„+e,,+Ef,, ~,

- (5.4)

where e;; is the matrix inverse to that with elements
(H2 lp pj) Hl pj H'2 lp;, and f;; is —the matrix inverse
to that with elements (H20fp, q;), H2'q, =H20pr0.

(b) All other bound states are those states with
energy El0 whose eigenfunctions pl0 do not appear in (a).

(c) The continuous spectrum of the intermediate
problem is identical with that of the base problem.

Remark

Our method requires that H' be positive and that our
choice of the elements p; is possible. If H' is bounded
below we can always choose our base problem in the
following manner so that these conditions are satisfied.

Defined the Hamiltonian H,' by H,'= H' —cI and the
Hamiltonian H, ' by H, '=H'+cI where I is the
identity operator and c is any real number satisfying

The ordered energies give lower bounds according to

E &E2 "&E"+'"+'&E 1&2 k t (55)

HP = —', hi/ —262lP-—
~1 ~2 ~12

(6.1)

in atomic units. Here 6; is the Laplacian operator in the
coordinates r;, i= 1, 2. Also, rl2 ——

) rl —r2~ and rl=
~
rl (,

~2=
In order to take advantage of the symmetry proper-

ties of the operator (6.1),we restrict ourselves to 5 states
of parahelium. For these states the eigenfunctions of H
depend only upon r&, r2, and r» and are symmetric in
the spatial coordinates of the two electrons. Accord-
ingly, we restrict the operator H to the subspace of the
square-integrable functions which are dependent only
on the variables r1, r2, r» and which are symmetric in
Y1 and fQ.

If we neglect the electron interaction term 1/rl2 in

(6.1), the resulting Hamiltonian
2 2

HV= 2~le 2~20— —
~1 ~2

(6.2)

has a well-known spectrum whose initial part is discrete
and bounded below. Further, H'=1/rl2 is a positive
definite operator so that the eigenvalue problem for
H' is suitable as a base problem.

The eigenfunctions of B' are given by

lan ln2l =

%[Anil�

(r1)Rn2l (r2) +Anil (r2)Rn2) (rl)j
XPi(costti2), (6.3)

where the elements E. & are the normalized hydrogen
radial wave functions, I'~ is the 3th normalized Legendre
polynamial, and 0» is the angle between r1 and r2. Here
E is chosen so that the eigenvectors are normalized.
The corresponding energy levels are

2(1/22l2+ 1/—2222), (6.4)

each with multiplicity max(ei, 222). There is a spectrum
of continuous energies, overlapping (6.4), from —2 to
infinity. The lowest part of the spectrum of B is
given by

E;0=—2(1+1/22), 2=1, 2, (6.5)

VI. APPLICATION TO THE HELIUM ATOM

The method of intermediate problems can be used
to approximate the bound states of ordinary differential
equations such as the radial Schrodinger equation.
However, in this paper we will apply the method to
the partial differential equation satisfied by the helium
atom. We will neglect nuclear motion, relativistic
effects, and the inhuence of spin. We use atomic units
throughout.

let r1 and r2 denote the position vectors of each
electron with the nucleus as origin. The helium atom
Hamiltonian operating on suSciently regular func-
tions P is
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and the corresponding eigenfunctions are

fi'= (1/4tr)%o (t&)R&o(ro),

=('1/v2 4tr) LR ip( ti)R p('t' p) +R ip(t' o) R p(t'i)),
2& i. (6.6)

articles of Pekeris') we have

and

—3.063t&E(1'5)& —2.9037237,

—2.165p&E(2 'S) & —2.1458.

(6.15)

(6.16)

Kato' has shown that the lowest part of the spectrum
of H consists of a sequence of discrete energy levels

E(1 '5) &E(2 'S) &E(3 '5) before the presence of
continuous spectrum.

Since H' is the base problem operator we have, by
(2.6) and (6.5),
—4&E(1 'S), —2.5&E(2 'S),

—20/9& E(3 'S) . (6.7)

We now solve the first intermediate problem and choose

p],= (f12/4tl)Rlo(r&)Rio(r&). By the summary at the end

of Sec. IV we see that the first intermediate problem
has the lower part of its spectrum identical to that of
H', except that the eigenvalue —4 is replaced by

—4+1/((H') Vi'A'i'} (6 8)

The term ((H') —Qi', Pio) is calculated in Appendix A

as 1,093 750. The first intermediate problem has the
ordered spectrum

—3.085'7, —2.5, —20/9 . (6.9)

Accordingly, we have shown that

—3.0857 &E(1 'S). (6.10)

—3.063', —2.1655, —2.039p. (6.12)

The lower part of the spectrum of this third intermediate
problem still has the eigenvalues

'I

—2(1+1/i'), i=4, 5, 6, . (6.13)

Since —2.039»E4' we must throw it away and use
E4'= —2.125 as E3'. The first three ordered eigenvalues
of the third intermediate problem are

Eio= —3.063t, Epo = —2.165p, Epo =—2.125. (6.14)

We have thus shown

—3.063'&E(1 '5) and —2.165o(E(2 'S).

Using the Rayleigh-Ritz upper bounds as determined

by Kinoshitat and Coolidge and James' (see also

'T. Kato, Trans. Am. Math. Soc. 70, 212 (1951).
7 T. Kinoshita, Phys. Rev. 115, 366 (1959).

A. Coolidge and M. James, Phys. Rev. 49, 676 (1936).

We now solve a third intermediate problem with a
projection on the terms p;=rioPP, i= 1, 2, 3. We calcu-
late the nine matrix elements ((H') Q,',ftp) for
i, j=1, 2, 3. The numerical results are given in Appen-
dix A. We then find the inverse matrix (b,;) and solve
the 3)&3 equation

0=dett (EP—E)8,,+b;;$, i, j=1, 2, 3, (6.11)

where Eio= —4, Eoo ———2.5, and Epo= —20/9. The
roots of (6.11) are

E* (Hf,f}—(7 1)

This formula gives a lower bound for the erst energy
level E(1'5) provided (a) the quantities (Hf,P) and
(Hf,HP) have been numerically computed for any
norma1ized test function g, (b) a numerical bound E*
is known which satisfies the conditions

(HPpP) &E*&E (2 '5). (7.2)

The condition (a) is met in the case of the helium atom
because Kinoshita~ computed the expressions involving

P by taking a 80-term test function. As to the condition

(b), expressed by the inequality (7.2), a numerical
value for E* can be taken as E*=E2'———2.5. This
follows from the well known maximum-minimum
theory. Actually, Kinoshita prefers to use the experi-
mental value E*=—2.146.

Our method provides for E* the value —2.1655. Sub-
stituting this last value into Temple's formula, we
obtain the final inequality (in atomic units)

—2.9037474&E(1 's) & —2.9037237. (7.3)

It should be noticed that we are not able to apply
Temple's formula to obtain lower bounds for E(2's)
without the use of intermediate problems, since no
value corresponding to E* is known from the base
problem. In the case of E(2 's) an application of
Temple's formula would require several additional
computations and the solution of higher-order inter-
mediate problems. Unless such computations are made
we have to use the lower bounds given by (6.16).

VIII. APPENDIX: CALCULATION OF THE MATRIX
ELEMENTs ((H') 'f;o, stol, (i,j=i,2,s,)

Our basic integrals involve the terms

R~io(ti) Rnpo (ro)Rsoo (ri)Rn4o (ro)
"0 ~O

XI(ri,ro) ri ro'dradtp, (A. 1)
C. Pekeris, Phys. Rev. 112, 1649 (1958); 115, 1216 (1959)."G.Temple, Proc. Roy. Soc. (London) A119, 276 (1928).

VII. APPLICATIONS OF INTERMEDIATE PROBLEMS
TO TEMPLE'S FORMULA

The inequalities (6.15) and (6.16) could be regarded
as final results, as the procedure developed here always
leads in similar circumstances to lower bounds for the
first and higher energy levels without recourse to any
other theory. Sometimes our procedure can help to
rigorously establish lower bounds by other methods.
For instance, consider Temple's formula, "
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aIld

Now,
XSin82d81d82d 001022 (A 2)

J(rl, r2) = F'12 sln01
(4~)' o o "o Jo

The terms 810, R20, and 830 are given by

Rip ——4v2e '",

Rlp ——2e '(1—r),
R20= (4%2/81') e &'(27—36r+8r') (A.10)

r» ——(rl'+r2 2riy2 co—s812)

X—P ~' —'
~

P, («SH„), (A.3)
y) t=o Ey)&

where r& and r&, respectively denote the larger and
smaller of the magnitudes of r1 and r2. Since

The matrix element ((H') 'tP10,$10) is thus given by

2 (32)2 ~co ao

'f2 ~1& 4 2g
—4&1d~1 d~2

"0

cos812P g (cos812) +2(32)' y 2yloe 4rge 4rtd—y d—y2. (A.11)
t 1 t 0 7'2

Pg+1(cos812)+ Pg 1(cos812)—g (A.4)
2t+1 2t+1 Explicit evaluation of the integrals shows that

we rewrite (A.3) as

(y&)'
y12 Q (yl +r2 )Pt(COS812)

0 (y )t+1

n 2rlr2(r&)'(t+1)
P g+1 (cos812)

t=o (r))g+1(2t+ 1)

2rlr2(r&)'t
Pt 1(cos812). (A.5)

=o (r )'+'(Zt+1)
But,

4x'
Pg(cos812) = Q I tp(81ggtpl)I tp(82gpp2)g (A 6)

2t+1 p= t

that

~2m. ~2'
Pg (COS812) S11181

(42r)2 ~0 J o ao ao
Xsin82dHld82dgpldttt2=8gp (A.7).

We combine (A.5) and (A.7) to find

((H') 'pl' /10) = 1.093 750 0.

For the third intermediate problem the elements p,
are given by

pl (r12/42r) (Rlo(yl)R10(r2) }
p2= (r12/v24~) (Rip(rl)R20(r2)+Rip(r2)R20(yl) }, (A.12)

po= (ri2/~4~) (Rio(ri)RDD(rp)+Rip(rp)RDD(ri) }.
In order to aid in the evaluation of the matrix

elements

(p 0')=((H') '0"0'), (p, i=1, 2, 3), (A 13)

a table of integrals

I (gglgg22tPlgP2)

ringe ttgrtdyl dr2 (A 14)J, ' J„, ' 'J

I12
rl +y2 2ylrpy&

y) 3(y))'

was evaluated from a closed-form expression on the
(A 8) IBM 704. The final results for (A.13) are

We can therefore write

R'nlo(rl)Rn20(y2)R'noo(rl)R'n4o(y2)

XI(yi y2)rl r2 drldr2

+r22ylp
J,

((H') 'gtt 1' gal') = 1.093 750,

((H') Ql', ggt 2') = —0.318 511,

((H') '$1',$2') = —0.134 091,

((H') '$2'gtt2')=3. 085 264,

((H') 'gtt 20 $20) = —0.909 351,

((H') 'gtt 20 gtt 20) =6.795 531.
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t'2 f1
+y2 yl.2 3

XR»o(r2)Rnpo(rl)R go(r2)R go(rl)drl dr2. (A.9)
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