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Atomic-beam measurements on Am?" have confirmed that the nuclear spin is /=%, and have established
that the electronic ground state is characterized by an angular momentum J =% and a Landé splitting factor
gr=—1.9371(10). In addition, the magnetic-dipole and electric-quadrupole hyperfine-structure coupling
constants have been found to be, respectively, 4 ==+17.144(8) Mc/sec and B=F123.82(10) Mc/sec. It is
hypothesized that these values arise from a state that is primarily formed from the Hund’s rule term 8S of
the configuration (5f)7(7s)2. However, important contributions to the measured gs, 4, and B values are shown
to come from the admixture of other terms in the ground state by means of the spin-orbit interaction, and
also from the excitation of s electrons in the core to higher s states.

INTRODUCTION

ECENT investigations of Am?* have thrown much
light on the structure of the electronic and nuclear
ground states of this isotope. Optical spectroscopic
investigations have established the nuclear spin as
I=4%1? and the nuclear magnetic dipole and electric
quadrupole moments as, respectively, +1.4 nuclear
magnetons and 4.9 barns.! These measurements have
shown, in addition, that the configuration of the
electronic state of Am1is (5£)7(7s)%! thus supporting
chemical evidence bearing on this point.?

The atomic-beam research described herein was
undertaken to measure the gy value of the electronic
ground state of americium and to determine the mag-
netic dipole (4) and electric quadrupole (B) hyperfine-
structure coupling constants in the electronic ground
state. These measurements yield detailed information
concerning coupling of the electrons in the ground
state. In addition, the measured 4 and B values taken
together with the optically measured moments can
serve as the basis for determination of the moments of
other americium isotopes.

Measurements on other elements containing 5f elec-
trons, specifically Pa, Np, Pu, and Cm,* have all
indicated that pure L-S coupling to the Hund’s-rule
ground state is an excellent approximation to the actual
coupling. Most striking, and most relevant to the
situation in americium, are the curium data. The
ground-state configuration of Cm is (51)7(6d)!(7s)?,
giving rise to four J states whose gy values can be very
well fitted on the assumption of pure L-S coupling
among the 5f electrons to the Hund’s-rule ground state.

* This work was done under the auspices of the U. S. Atomic
Energy Commission.

1T, E. Manning, M. Fred, and F. S. Tompkins, Phys. Rev. 102,
1108 (1956).

2 R. P. Thorne, Nature 178, 484 (1956).

3 See the article by I. Perlman and K. Street, Jr., in The Actinide
Elements, edited by G. T. Seaborg and J. J. Katz (McGraw-Hill
Book Company, Inc., New York, 1954), 1st ed.

4J. C. Hubbs and R. Marrus, Phys. Rev. 110, 287 (1958); J. C.
Hubbs, R. Marrus, W. A. Nierenberg, and J. L. Worcester, Phys.
Rev. 109, 390 (1958); J. C. Hubbs, R. Marrus, and J. Winocur,
Phys. Rev. 114, 586 (1959); J. C. Hubbs and J. Winocur, Bull.
Am. Phys. Soc. 3, 319 (1958).

Hence, it is expected that a similar situation should
prevail in americium, and that the electronic ground
state ought to be 357, giving rise to a pure spin gs
value and no hyperfine structure. Perturbations whose
sources are discussed in the text cause deviations from
these values.

BEAM PRODUCTION AND DETECTION

Americium-241 can be obtained in a weak HCI
solution from the AEC stockpile. The procedure used
to produce a beam of atomic americium was to reduce
the oxide in the oven. Americium oxide can be pro-
duced by adding concentrated NH,OH to americium
chloride, boiling the material down, and then heating
the residue. The residue easily decomposes to leave
americium oxide.

Barium, carbon, and lanthanum reductions were
all tried; lanthanum yielded the only satisfactory
beam. The barium reduction was altogether un-
successful because at the temperature at which the
reduction takes place barium has such a high vapor
pressure that it boils out of the oven too quickly for the
reaction to go. The carbon reduction yields an atomic
beam, but at such high temperatures (about 1500°C)
that there is appreciable interaction between the
americium and the tantalum oven, and only about 109,
of the activity is recovered in the beam. With lan-
thanum as a reducing agent, beams of atomic americium
of useful intensity are formed at about 1000°C.

The materials involved in americium beam produc-
tion are suitably contained by a molybdenum oven
with a sharp-edged inner liner to prevent creep. The
oven is heated to the beam temperature by electron
bombardment.

The radioactive americium beam is collected by
deposition on uncooled platinum foils at the detector
end of the apparatus. The collection efficiency of
platinum for americium is found to be at least 20%,
and very highly reproducible. After exposure of the
foil to the americium beam, the deposition is measured
by placing the foil in low-background 2= alpha counters
(about 0.1 count/min). Resonance counting rates are
typically of the order of 1 to 5 counts/min.
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Fic. 1. Hyperfine structure of the electronic ground state of Am?,

HYPERFINE STRUCTURE

The qualitative features of a hyperfine-structure
system with 7=4% and J=1% and normal ordering of the
states of total angular momentum F are shown in Fig. 1.
It can be seen that in an atomic beam machine with
flop-in magnet geometry, four transitions of the type
AF=0, Amy==41 can be refocused. The quantum
numbers of the states between which these transitions
take place, as well as those for the transitions of the
type Amr=0, £1; Am;=0, £1 are given in Table I.
The Hamiltonian that gives the energy of these states
in a low field or I, J, F, m; representation is

se=AI-J BA-+3d-)

+2[](21— 1)@27—1)
—I(I+1D)J(T+1)]—gmd-H/h. (1)

Here octupole and higher order multipole moment
terms and a field-dependent term in the nuclear mag-
netic moment have been neglected.
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The small value of the hyperfine structure means
that elements of the operator gsuoJ-H that are off-
diagonal in F become important at relatively low fields
(about 1 gauss), and a scheme for solving the secular
equation for a state of given m, is needed. Approximate
solutions obtained from the lowest orders of pertur-
bation theory soon break down, and it is therefore
found most useful to employ an electronic computer
in the determination of the energy levels. A step-wise
technique employing the Newton method for solving the
secular equation for the desired root was used. This
technique is described elsewhere.5

A feature of the hyperfine structure useful in deter-
mining an accurate g; independent measure of the
constant 4 can be obtained from the high-field limit
of the Hamiltonian—i.e., in the limit in which I, J,
mr, my are good quantum numbers. In this limit, the
approximate Hamiltonian has the form

B
r 2 .
-y Tr+1)]

X[Bmp2—T(J+1)]—gmomsH/ k. (2)

Each of the observable transitions occurs between
states in which e is the same for both states and m,
changes sign only (Table I). Since the term in B is
quadratic in my and my, it contributes nothing to the
transition energy, which becomes

v=Amr— gsuoH/h. 3)

Since successive transitions differ by m;=-=+1, the
energy difference between two resonances is

vp—vpp=A. 4)

3= Amm s+

Examples of such transitions are shown in Fig. 2.

EXPERIMENTAL DATA AND OBSERVATIONS

An initial search for resonances made at a low field of
~1 gauss yielded a set of four resonances. These were
ascribed to the four flop-in transitions arising from the
system I=1%, J=7. The positions of these resonances
indicated deviations from the Zeeman frequencies; the
deviations were verified by a search at 3 gauss. The

TasLE I. Observable transitions in an atomic beam apparatus
with flop-in type magnet geometry.

Single-quantum transitions (AF=0)

F mp mr  my F me’ my my
6 -2 -3 <06 =3 -3 -3)
(5 -1 -3 3)«< —2 -3 —3)
4 0 -3 3@ -1 -3 -3)
3 1 i 3@ 0 3 —3)

8 H. L. Garvin, T. M. Green, E. Lipworth, and W. A. Nieren-
berg, Phys. Rev. 116, 393 (1959). See also W. A. Nierenberg,
University of California Radiation Laboratory Report UCRL-
3816, June, 1957 (unpublished).
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F1G. 2. Transitions of the type (mr, my=1%)<>(m1, my= —1%) observed in the Paschen-Back region of hyperfine structure.

existence of such shifts confirmed our a priori expec-
tation of a small hyperfine structure.

Since resonant frequencies in the intermediate-field
region depend critically on all three parameters gy,
4, and B, we decided to follow the most intense of these
lines through intermediate field into the high-field
region. Here the energy levels are linear, and the gs
value can be accurately obtained from the slope of the
curve for resonance frequency vs field. The searches in
intermediate field were very difficult because we had
only very crude information for gs, 4, and B. In
addition, the energy-level diagram is extremely compli-
cated, with the feature that in intermediate field the
curves for resonance frequency vs field in the F=35 and
F=6 states cross. This led to a misidentification of the
transition under observation.

The observations made in high field on the transition
(mr=—%;ms=3%) o (mr=—% my=—3%) were fitted
by a straight line governed by Eq. (3). The value of gs
was obtained from the slope, and the product Amr
was determined from the frequency intercept. A search
at a field of 540.9 gauss (Fig. 2) yielded five equally
spaced resonances, which yielded the value of 4
according to Eq. (3). A crude value of B was then
determined from all the existing data, and a search of
the AF=441 transitions was undertaken. All the
observations are listed in Table II.

The final values obtained from the data are
gr=—19371(10); A=-17.144(8) Mc/sec, and B
=F123.82(10) Mc/sec. These were obtained from an

IBM 704 routine designed to choose g, 4, and B so
that the root-mean-square error in the data is an
extreme. This routine is similar to one described
elsewhere® but has the additional feature that g, is
variable. A description of the g; modification is given

TasrE IL. Fit of the Am?! data based on the indicated hyperfine-
structure constants. [=%, J =1, gy=—1.9371(10), 4 =+17.144(8)
Mc/sec, B=F123.82(10) Mc/sec.

Data Vobs— Veale
No. H (gauss)  wvobs (Mc/sec) (Mc/sec) X'n
1 8.248(40) 14.08(67) —0.016 b
2 12.150(38) 21.95(10) —0.012 c
3 20.754(35) 42.35(25) 0.152 a
4 20.754(35) 39.86(10) 0.003 ¢
5 26.517 (44) 56.30(20) —0.184 a
6 36.198(41) 82.40(20) —0.244 a
7 46.077(47) 110.45(25) 0.050 a
8 71.628(39) 181.85(30) —0.022 a
9 93.043(40) 240.80(40) —0.129 a
10 121.670(42) 319.10(50) —0.189 a
11 169.074(59) 448.50(60) 0.062 a
12 250.442(81) 669.60 (60) 0.086 a
13 540.903(146) 1425.00(80) —0.200 c
14 540.903(146) 1441.20(100) 0.409 b
15 540.903(146) 1457.50(100) 0.063 a
16  540.903(146) 1474.50(60) —0.138 3,13,0)
17  540.903(146) 1492.70(60) 0.351 3,2e2,1)
18 1.418(28)  90.10(10) —0010 (3,12, 1)
19 1.418(28) 96.84(12) —0.000 (4,0 3,0)
20 1.418(28) 81.45(10) —0.007 (5, -1 4, —1)
21 1.418(28)  39.75(05) 0001 (6, —2 <5, —2)

05(4)0H4)_1)) bE(S,—le,—2), 55(6) —2H67 _3)

S$E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, 1957).
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in the Appendix. The error in g is chosen to be about
one part in 2000 of the measured g in order to include
the possibility of systematic errors in the apparatus,
which are proportional to the field. The errors in A4
are about 2.5 times the rms error. By using the chosen
and B values of 4, B, and g, the frequency for each
transition was calculated at the field of observation.
These frequencies, and the difference between the
calculated and experimental frequencies, are given in
Table II.

EFFECT OF BREAKDOWN OF L-S COUPLING

The observed deviations of the g7, 4, and B values
from the values expected for a pure 8572 ground state
indicate considerable perturbation. A contribution to
these deviations can come from the admixing, by the
spin-orbit interaction, of terms other than 85 into the
ground state. The order of the perturbation required
to mix a given term into the ground state is determined
from the selection rule that the spin-orbit interaction
can directly couple only those states with AL=0, +1;
AS=0, &=1; and A7=0. Thus, of all the terms that can
arise from the configuration f7, only P, is coupled
by first-order perturbation into the ground state.
However, as shall be seen, the quadrupole interaction
vanishes for a wave function that is a mixture of 857/,
and P, only. In order to explain the large observed
quadrupole interaction, it is necessary to go at least
to second order and include ®Dy;; as well. To this
approximation, the angular part of the ground-state
wave function is

|J=%, my)=[1—a?—B]}| 8512, m.s)
“+a|Prjo,my)+B| Drjaymy),  (5)

where « and B are coefficients determined from the
diagonalization of the matrix of the spin-orbit plus
electrostatic energies. The matrix elements of the
electrostatic energy can be determined by the procedure
outlined in Condon and Shortley utilizing the diagonal
sum rule.® Such a calculation has been carried out to
yield

(s[C|es)=0,

(SP|C|®P)=15F 4 165F 4+ 3003F, (6)

(8D|C|®D)=41F,+297F ++1001F,,

where C is the Coulomb interaction 3 _.;€%/7;; and the
Fy’s are the Slater radial integrals. The ratios of the
radial integrals have been calculated from hydrogenic
functions” and also from relativistic wave functions for
uranium.® These yields F4/F;=0.142, F¢/F2,=0.0161
from hydrogenic functions, and F,/F,=0.159, F/F,
=0.0204 from the relativistic functions. For the electro-
static energies, we obtain :

7]. P. Elliott, B. R. Judd, and W. A. Runciman, Proc. Roy.
Soc. (London) A240, 509 (1957).

8 Stanley Cohen, University of California Radiation Laboratory
Report, UCRL-8633, February, 1960 (unpublished).
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Relativistic

Hydrogenic Hartree
(S[C|8S) 0 0
(SP|C|%P) 86.8F 102.3F,
{D|C|*D) 99.3F, 108.5F,

The values derived from the relativistic functions are
used in the following calculations, since they are
expected to be a more accurate approximation to the
actual wave functions.

The spin-orbit matrix elements are derived by
expanding the wave functions for the state in terms of
the single-particle states and then evaluating the spin-
orbit operator A=3}_;as/;-s; in a straightforward way.
The results are

(3S72| A °Py2)= (14)%asy,
(*Pu2| A|®Dyp2) = — (9/10) (5)asy,
(*P12| A|®Pr/3)= (®Drjs| A| ®Dy/5)=0.

When these values are used, the energy matrix that
determines the ground state is of the form

8g 6p 7))

S 0 +(14) by 0
W=0P| (14)kx 102.3 —(9/10)(5) |,

DL 0 —(9/10)(5)%x 108.5

where x=as;/F». The diagonalization of the matrix W
and the computation of the unitary matrix which
transforms it into diagonal form was performed on an
IBM 704 for different values of the parameter x. In
this way, the coefficients of the wave function (5)
could be calculated as a function of x, and the g; value
determined from the formula

gr=(1—a?—0%)gs (8S7/2) +ags (*P1/2)+B%¢s (°D1y2).

That value of + was chosen which gives best agreement
with the observed g;. The value corresponding to
gr=—1.937(1) is x=17.7(2), and the ground-state
wave function that this yields is

3,3)=0.8828575,3)—0.457| Py, %
—0.114]Dsp3).  (7)

The eigenvalues of the energy matrix for x=17.7 are
0, 123F 3, and 203F, for the states that go adiabatically,
in the limit of x=0, to 8573, $P7/2, and 8Dy, respectively.
A value of a5y of about 2700 cm™ has been observed
by Conway for Am*® in LaCls.® This can be com-
bined with the value x=17.7 to yield F,=153 and
6P=123F,=18 800 cm™*. This is in reasonable agree-
ment with the value of 27 000 cm™ observed for the
energy of the 8Py, state of Cm™® in LaCl;,%° since it is
expected that the effect of the crystalline field is to
increase the energy above that for the free atom.

9 John G. Conway, Lawrence Radiation Laboratory (private
communication).

©J, G. Conway, J. C. Wallmann, B. B. Cunningham, and
G. V. Shalimoff, J. Chem. Phys. 27, 1416 (1957).
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Calculation of Quadrupole Interaction
Constant B

The quadrupole interaction constant B is deter-
mined by the expectation value of the operator
B=—¢2Q 3" ; {(3 cos’—1)/7*}; in the ground state of
Am?%. Here e is the electronic charge, Q is the quad-
rupole moment of Am?!, and the sum runs over all 5f
electrons. If the wave function is separable, the angular
part of the operator can be evaluated independently of
the radial part. The procedure used for evaluating the
expectation value D_; (3 cos?f—1); is to expand the
wave function (7) into the m; and 7, quantum numbers
of the individual electrons according to the techniques
of Condon and Shortley, and to evaluate the contri-
butions from the individual electrons according to the
formula

(smyms| (3 cos?— 1) |lsmym,)

2
=——————"[3m’— ®)

10+1)7.
(21—1)(2143) '
It is found in this way that the only nonvanishing
contribution to this expectation value arises from a
matrix element that is off-diagonal in the term, that is,
between the states ¢D and ¢P, and has the value

<6D7/2]Zi (3 cos?f— 1)@[ 6P7/2>: - (2/15)\/5. 9)

A value (1/7%)=3.9/a¢™, based on the relativistic
uranium wave functions of Cohen, was used, and the
value of the quadrupole moment Q=4.9 barns was
taken from the optical spectroscopic measurements.
By using these values the quadrupole interaction
constant was found to be B=-4145 Mc/sec, to be
compared with the measured B=-123.82(10) Mc/sec.
The relativistic correction factors of Casimir! were
neglected in this calculation.

Calculation of Magnetic Dipole Interaction
Constant A

A contribution to the magnetic dipole hyperfine
structure arises from the breakdown of L-S coupling.
For evaluation of this contribution, the matrix elements
of the magnetic field H must be found; the classical
expression for H is given by

[e rXv u(r)i— (10)

-y [ 3r(v-r)].

c r®

This is the field due to a point particle of charge ¢ and
magnetic dipole moment u located at the point r with
respect to which the field is being calculated. Writing,
for electrons, u= — 2u¢s and mrX v=%l, one obtains the

1 H. B. G. Casimir, On the Interaction Between Atomic Nuclei and
Electrons (Teylers Tweede Genootschap, Haarlem, 1936).

or
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quantum-mechanical form of the z component of this
field: '

Hz=2 (Hz)i

1 3
=—2u Y. —3[l,—s,+;—[z(s-r)+ (s-r)z]] .1y
72 i

i 7

For the wave function (7), the expectation value of this
operator has contributions that are diagonal in the
term and that are off-diagonal in the term. The only
nonvanishing contribution that is diagonal in the term
is (SP7;2| H,|%P7/2). Evaluation of this matrix element
was performed in the same way as the evaluation of the
quadrupole interaction matrix element, making use of
the formula

(Ismyms| (H.);|lsmyms)

_“—2”°< r3> [ (- 1)(2l+3)[ i

In this way, we obtain
(Prja|H. | Prjn)=— (8/5)uo(1/7). (13)

The nonvanishing contribution that is off-diagonal
in the term is (®D;s]| H,|8S7/2). It is found that if the
single-particle expression for the wave function is used,
then matrix elements of the form

(s mi+1me—1| (H.):|lsmyms)

must be evaluated. This reduces to
1 z(s_rp)+ (res )z
Y im0
,.

7’2
ry=x-iy=r sinfe’?;

l(l+1)]] -
(12)

lsmlm,,>,

z=17 cosf;

where s_=s,—15s,;

therefore
((H.)i)=—3uo{1/7*){I mi+1|cost sinfe*¢ | lm,).

The angular part of the matrix element can be
expressed as the product of three spherical harmonics,
where, for the case at hand, /=3. From Condon and
Shortley!? one has

(=3, m+1|cosd sinfe’*|l=3, m,)

=—(1/45) 2mi+1)[ (4+m) B—mi) 1. (14)
Use of this formula yields
(®Drj9| H,|8S7/2)= (2/3) (14/5)}uo(1/7%), (15)
(H.y=—0.41uo(1/7%.
Now,
— (/1) (ur)(H..). (16)

Using the optical spectroscopic value of ur and the
value of (1/7%) from the uranium wave functions, one

12 See reference 6, p. 176.
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obtains A=-416.6 Mc/sec, to be compared with a
measured value 4= 417.144(8) Mc/sec.

Summary of Effect of L-S Coupling Breakdown

If a value of the parameter x= (as;/Fs) is chosen
which is in good agreement with related experimental
quantities and which gives the correct g, value, good
numerical agreement is also obtained between the
absolute values of the calculated and measured 4 and
B values. However, the sign (B/A4) is calculated as
positive, whereas the measured sign is negative. There-
fore, for at least one of these quantities an effect more
important than the breakdown of L-S coupling plays a
role.

It is known that in many elements the effect of
configuration interaction, exercises a considerable
influence on the magnetic dipole constant 4.3 The
excitation is of a type in which one electron of an s-
electron pair in the ground state is raised to a higher s
state. The excited electron then recouples with the
unexcited member to form either the singlet or triplet
spin state. This state then recouples with each of the
admixed terms of the core in such a way that the L, .S,
and J values are all unchanged. Therefore, both the g
and B values are unaffected, but the admixture of an
excited s electron gives rise to a net spin density of the
electronic system at the nucleus and hence a resultant
magnetic dipole hyperfine structure.

CALCULATION OF CONFIGURATION INTERACTION

Since many of the parameters entering the calcu-
lation can be only crudely extrapolated from existing
data, this calculation is performed in the spirit of
obtaining an order-of-magnitude estimate for the effect.
The ground state of americium is therefore taken as the
pure spherically symmetric state |[8S7,s,7/2), which is
denoted by az/2"/2. The unperturbed state is written as
Yu=az,2"?010~, where the notation 0t0~ indicates an
electron pair in an unexcited s state, both having
my=0, one with spin up (4), the other with spin down
(—). Antisymmetrization of the wave function is
assumed throughout, and to avoid sign difficulties, we
adhere to the notation of Condon and Shortley.

For the singlet state, the wave function is

Y (1) =a,"2(1/¥2)[0F0-—0-0+], 17)

where the bold-face notation indicates an electron in the
excited 8s state. With the same notation, the wave
function for the triplet state is

¥ (2)= (1/3V2)[[ T3z ;2"2(0+0~+0-0F)

— 207252010, (18)
and for the ground-state wave function,
Y= 1= =Nt (1) (2). (19)

13 A. Abragam, J. Horowitz, and M. H. L. Pryce, Proc. Roy.
Soc. (London) A230, 169 (1955).
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The hyperfine structure in this state (4) is given by

A =5 (un/Dpo(x), (20)

where X is an operator defined by Abragam ef al.1® and
is related to the net spin density at the nucleus,

X=(41/S) X1 6(1) £S5k (21)

Evaluation of x for the stated wave function yields
a nonvanishing term linear in the perturbation
amplitude

1676
<X>linear—“ _3(14)%,¢n3 (0)‘ ,¢88(0) ! 3
and two terms quadratic in the amplitude,
8w (7)4yd

<X>quadratic=T{ l'l/ns(o) !2_ !‘P88(0) ’2}
+87r’)/2 o2 o
E{l‘pns( )l +h[/8s( )’ }5

where # is the principal quantum number of the state
being excited.

To calculate the coefficients v and 4, it is necessary
to evaluate the noncentral part of the Coulomb inter-
action (¢’) coupling the unperturbed state with excited
states. Such a noncentral interaction arises from
exchange integrals and can be calculated in ‘a straight-
forward way,

Wl ) R

 E—~E()  \AE~EN)]

sl v @) 3RS
E~EQ2) (14)[E~E2)T

where R? is a Slater radial integral given by

0 © g 3
Ri=e f f —Ry*(15) Ry (5 /) Ra(5 ) Ro (85)dridr,
o Yo 7>

where 7. is the smaller of 7; and 7s, - is the larger of 7,
and 7, and R, and R, are radial wave functions for the
indicated states. The wave functions used in this
calculation are the relativistic wave functions of Cohen.
It was necessary, however, to extrapolate the 8 wave
function from the wave functions for the other s orbits.
Such an extrapolation could be reasonably performed,
since the nodes and peaks of the ns wave function
coincide with those of the (#-+1)s wave function. This
radial integral was calculated for =7 and was found
to be R3=2000 cm™.

For 7s electrons, the quantity [¢7:(0)| can be taken
from the optically measured hyperfine-structure con-
stant A4 (75)=0.666 cm™, and the energy separations
can be estimated from the optical work to be about
32000 cm™. From the optical data on the hyperfine-
structure widths of the term !°Sg and &Sj, arising
from the configurations (5f)7(7s)(8s), we have inferred
a value 4 (85)=~0.024 cm™.
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Using these values, one finds the perturbation
amplitudes

')’='__'= _=——=

) 050,

16 (14)}

and the contribution to the hyperfine structure is
Ajtinear=—+70 Mc/sec and A4 quadratic= — 13 Mc/sec.

It is seen that the effect of the above correction is to
enhance the discrepancy between the measured value
and the value obtained from the breakdown of L-S
coupling. However, this treatment cannot be regarded
as complete, since the effect of electrons from inner s
orbits has been neglected owing to lack of information
concerning the parameters involved. It is also possible
that a calculation of the radial integrals with more
accurate wave functions might improve the agreement.
It is felt that the importance of s-electron excitation
for the hyperfine structure of americium is clearly
demonstrated, although its treatment must still be
regarded as an open question.
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APPENDIX. DETERMINATION OF 4, B, AND g,
FROM THE EXPERIMENTAL DATA

The problem is to minimize the function

(M—My)gH? . T .
—_— X X | wi.

(A1)

0 B.g)=E | (foni=

OF Am?24!
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Here foe' is the 7th of a set of measured resonance
frequencies corresponding to a transition between the
states X1 and X, with magnetic quantum numbers M,
and M, whose energies are X1?and X,*for the particular
value of the field H?at which the observation was made.
The term in gr is a correction for the nuclear moment,
and the quantity w’ is a weight factor related to the
error in the frequency and field measurements by

wi={(Afos")*+-[(0.f/0H) AH P}

The extreme points of Q [commonly called x2?7] are
determined from the condition §Q=0, where

80=(3Q/3A4)8A+ (0Q/dB)é B+ (8Q/dgs)6gs=0,
and so the equations

90/04=00Q/0B=098Q/dgs=0 must be solved. (A2)

The procedure is to compute energies X; and X (see
reference 5 for the method) for some initial starting
values of 4, B, and g and then to calculate improved
values 4’, B/, and g;’ by the Newton method,

A,=A+5A, B'= B+BB, gJ'=gJ+5gJ.

The increments are determined from the three
simultaneous equations

6%Q 0°Q °Q 0Q
—4 3B+ dgs=——oj
04>  940B  04dg, 04
020 B o a0
8A+—3B+ Sgr=——, (A3)
0BoA  9B*  9Bags 0B
é°Q %0 0°Q 9Q
5A+———8B+—bg = ——.
agJaA GgJaB 6g12 agJ

By treating the partial derivatives as numbers to be
determined from (A1), one can conveniently program
the systems of Egs. (A3) for a computer.



