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The experiments on the allowed beta transitions, which lead
almost uniquely to the t/' —1.2A interaction, do not have any
bearing on a possible contribution from the pseudoscalar inter-
action. To determine whether or not any contribution from the
pseudoscalar interaction is really needed, an examination has been
made of the P longitudinal polarization and the P shape factor in
the 0 -+ 0 (yes) beta transitions. The theoretical polarization for
the mixture of the pseudoscalar and the axial vector interactions
has been developed. In this work, the formulation of the pseudo-
scalar interaction as given by Rose and Osborn has been used. The
numerical results on the P longitudinal polarization and the shape
factor depend on two parameters, namely, the coupling constant
ratio, CI j3fCg, and A. , the ratio of the two relevant nuclear matrix
elements. 3II is the nucleon mass in units of the electron mass. The

electronic functions occurring in the theoretical formulas for these
etfects are tabulated for Pr'4' (0 -+ 0+) and Ho"' (0 ~ 0+). All
the electronic radial functions vere computed considering the
nucleus as a sphere of a uniform charge distribution with a nuclear
radius as 1.2A&)&10 " cm, and taking into account the finite
deBroglie wavelength effect. The results of extensive numerical
analysis are presented. We conclude that the absence of the
pseudoscalar interaction is consistent with the existing experi-
mental data. The value of Co/3f Cz, which also gives a satisfactory
fit to the experimental data depends on X. The upper limit of the
value of

~
C /1rtICg [ is found to be 0.05 for ~X

~

=200. In this work,
time-reversal invariance is assumed valid for the weak as well as
the strong interactions, and the two-component theory of the
neutrino has been used.

I. INTRODUCTION

HE experiments on the allowed beta transitions,
during the past three years, lead almost uniquely

to the V—1.2A interaction. ' ' The experiments' give
the P longitudinal polarization in the allowed transitions
as —v/c for the electron, and as v/c for the positron,
within an experimental error of about 2%. Here v/c is
the ratio of t:he P-particle velocity to the vacuum
velocity of light. To explain these polarization data, the
vector and the axial vector interactions require the
neutrino to be "left-handed"; whereas the scalar and
the tensor interactions demand the neutrino to be a
"right-handed" particle. The experimental determina-
tion of the neutrino helicity was made by Goldhaber,
Grodzins, and Sunyar' and the neutrino helicity was
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M. E. Rose, Ifandbooh of Physics (McGraw-Hill Book Company,
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For a recent summary of the P longitudinal measurements, see
A. I. Galonsky, A. R. Brosi, B.Ketelle, and H. B.Willard, Nuclear
Phys. (to be published).

M. Goldhaber, L. Grodzins, and A. W. Sunyar, Phys. Rev.
109, 1015 (1958). This result has also been con6rmed by I.
Marklund and L. A. Page, Nuclear Phys. 9, 88 (1958).

found to be negative. The relative sign and the strength
of the vector and the axial vector interactions are de-
termined by the nuclear beta transitions where these
interactions interfere. Burgy et a/. ' measured the ani-
sotropy of the electron with respect to the spin direction
of the polarized neutron. The result of this experiment
is that the relative sign of the coupling constants of the
vector and the axial vector interactions is negative. The
comparison of the "jt values" (comparative half-lives)
of a neutron and 0"give 1.21&0.03 as the ratio of the
absolute magnitudes of the coupling constants of the
axial vector and the vector interactions. The V—1.2A
interaction is also consistent with electron-neutrino
correlation experiments. "

Following diGerent approaches, Marshak and Sudar-
shan, " Feynman and Gell-Mann, " also Sakuraj, " pro-
posed the V—3 theory.

However, these experiments on the allowed beta
transitions do not have any bearing on a possible exist-
ence of the pseudoscalar interaction. This can be readily
understood because the operator for the pseudoscalar
interaction is an irreducible tensor of rank zero and its
parity is odd. Thus, for any contribution from the
pseudoscalar interaction there has to be a change in the

parity of the final nuclear state with respect to the

' M. T. Burgy et al. , Phys. Rev. 110, 1214 (1958),also see Phys.
Rev. Letters 1, 324 (1958).IW. B. Hermannsfeldt et al , Phys. Rev. Lette. rs 1, 61 (1958).
Also see J. S. Allen, Revs. Modern Phys. 31, 791 (1959), and F.
Pleasonton et al. , Bull. Am. Phys. Soc. 4, 78 (1959); see J. B.
Gerhart, Phys. Rev. 109, 897 (1958), and W. B. Hermannsfeldt
et al. , Phys. Rev. 107, 641 (1957).

» R. E. Marshak and E. C. G. Sudarshan, Phys. Rev. 109, 1860
(1958).

~ R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958)."J.J. Sakurai, Nuovo cimento 7, 649 (1958).



initial nuclear state in contrast to the allowed transitions
with which all previous studies were concerned. To de-
termine whether or not any contribution from the
pseudoscalar interaction is really needed, we analyze the
experimental data on the 0 —+ 0 (yes) beta transitions.
The 0 —+ 0 (yes) beta transition is best for this purpose,
because the vector interaction rigorously does not make
any contribution. Therefore, we consider only the mix-
ture of the axial vector interaction and the pseudoscalar
interaction in the beta interaction Hamiltonian for the
0~ 0 (yes) transitions.

The relevant experimental data for the purpose of
determining a possible contribution from the pseudo-
scalar interaction are (1) the p longitudinal polarization
and (2) the p shape factor. The pseudoscalar interaction
and the axial vector interaction, taken separately, give
opposite signs of the beta polarization. This is true
provided we take the neutrino helicity as negative. The
P shape factor for the pure pseudoscalar interaction and
the pure axial vector interaction give different energy
dependence. However, the p shape factor, considered
alone, is not very sensitive to a small contribution from
the pseudoscalar interaction.

We wish to point out that in a'ny investigation of the
pseudoscalar interaction a formulation different than
the so-called "conventional" one must be used. In 1954,
Rose and Osborn'4 suggested that the proper operator
for the pseudoscalar interaction is —e pL(py~)/2M in
the nucleon space. Here L(Pys) is the pseudoscalar
lepton covariant and is equal to (p."pyrfCp+C'p'yt jf,)
for e emission. Also p is the momentum operator. This
pseudoscalar operator was obtained by the application
of the Foldy-Wouthuysen transformation to the total
Hamiltonian of the system comprised of the, decaying
nucleon, the lepton (e—v) field, and the leptons. In this
formulation of the pseudoscalar interaction, the gradient
(p= —iV') appears acting only on the lepton covariant.
If we assume the lepton covariant to be a constant
(independent of the nucleon coordinates), as is done in
the conventional theory, then there is eo contribu-
tion from the pseudoscalar interaction. The Foldy-
Wouthuysen transformation, though, also gives addi-
tional recoil terms for the axial vector and the vector
interactions, but these terms are much smaller than the
leading terms and we can neglect them. Then, apart
from renaming the nuclear matrix elements, explicit
calculations show that we get the same formulas as
given by the conventional theory. Thus, the conven-
tional formulation of the 3 and the U interactions is
essentially correct. But the conventional treatment of
the pseudoscalar interaction is wrong. " Hence, the
proper operator for the pseudoscalar interaction,

epL(Pyt)/235—, must be employed.
The P shape factor for the 0 —+ 0 (yes) transition with

"M. E. Rose and R. K. Osborn, Phys. Rev. 93, 1315 (1954).
'~ For example, see M. Deutsch and O. Kofoed-Hansen, refer-

ence 3, p. 516. Also see M. E. Rose and R. K. Osborn, reference 14,
for a discussion of this point.

a mixture of the axial vector and the pseudoscalar
interaction has been given by Rose and Osborn. "But
the longitudinal polarization of the p particles in the
0 —+ 0 (yes) transition, with a mixture of the axis, l vector
interaction and the proper formulation of the pseudo-
scalar interaction, does not exist in the literature. To
derive such an expression, using the relativistic elec-
tronic functions for a finite nucleus, is part of the
motivation of this work.

Several attempts to investigate the existence of the
pseudoscalar interaction in nuclear p decay appear re-
cently in the literature. Tadic" analyzed the less accu-
rate ( 22%) measurement of the P longitudinal
polarization in Pr"' (0 —+0+) due to Geiger et al
Cohen and Wiener' analyzed their measurement of the
p longitudinal polarization in Pr'44. Also Mehlhop et al ig.
estimated the upper limit on the pseudoscalar contribu-
tion by comparing his measurements with the formulas
derived by Lee-Whiting. "Again using these formulas of
Lee-Whiting, Buhring" set an upper limit on the
pseudoscalar contribution with his p polarization meas-
urement in Ho'". In all these attempts, the conventional
pseudoscalar interaction was used. Moreover, the eGects
due to the finite nuclear size" were completely ignored.
It is well known that these effects are important for the
0 ~ 0 (yes) transitions.

In addition, several attempts" have been reported in
the literature wherein the possible existence of the
pseudoscalar interaction was examined by comparing
the theoretical shape factor as given by Rose and
Osborn" with the experimental shape factor of the
0 —+0+ transition of Pr'44. The general conclusion is
that the p shape factor is not very sensitive to the con-
tribution from the pseudoscalar interaction.

However, for a consistent investigation for the pseudo-
scalar contribution, one must consider all the experi-
mental data, namely, the p longitudinal polarization as
well as the shape factor. Thus, until now such a con-
sistent treatment for the search of the pseudoscalar
interaction did not exist.

The problem considered in this paper, then, is to in-

vestigate the existence of the pseudoscalar interaction
in the interaction Hamiltonian density for the processes
of nuclear beta decay by (i) formulation of the theoreti-
cal expressions for the beta longitudinal polarization and

"D.Tadic (private communication)."J.S. Geiger et al. , Phys. Rev. 112, 1684 (1958)."S. G. Cohen and R. Wiener, Nuclear Phys. 15, 79 (1960). In
this paper the contribution of y~ in the A interaction is neglected.

"W. A. W. Mehlhop et al. , Bull. Am. Phys. Soc. 5, 9 (1950).
And also see W. A. W. Mehlhop, dissertation, Washington Uni-
versity, Saint Louis, 1959 (unpublished)."G. E. Lee-Whiting, Can. J. Phys. 36, 1199 (1958).

' W. Buhring, Z. Physi 1SS, 566 (1959).
~ M. E. Rose and D. K. Holmes, Phys. Rev. 82, 389 (1951).

Also see M. E. Rose and D. K. Holmes, Oak Ridge National
Laboratory Report ORNL-1022 (unpublished)."Graham et al. , Can. J.Phys. 36, 1084 (1958).For a summary of
the previous work, see C. P. Bhalla, Oak Ridge National Labora-
tory Report ORNL-2950 (unpublished).
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the P shape factor'4 in the 0 ~ 0 (yes) transitions with
the correct form of the pseudoscalar interaction and the
axial vector interaction; (ii) making an extensive nu-
merical analysis of the presently available experimental
data, using the derived formulas, with the calculated
electronic functions which include accurately the nuclear
hnite size" and the 6nite deBroglie wavelength" effects.

In Sec. II, we give the details of the calculation of the
P longitudinal polarization in the 0 —+0 (yes) beta
transitions. The results are specialized by assuming the
validity of time-reversal invariance in strong as well as
weak interactions, and the two-component theory of the
neutrino is used. In Sec. III, the electronic functions
occurring in the theoretical expressions for the P longi-
tudinal polarization and the P shape factor are tabulated
for Pr'4' (0 ~ 0+) and Ho'" (0 —&0+). These elec-
tronic functions were computed considering the nucleus
as a sphere of a uniform charge distribution with a
nuclear radius of 1.23&)(10 "cm. Also we give graphi-
cally the results of large-scale computations for the
analysis of the experimental data on Pr'" and Ho'".
Finally, the discussion and conclusions appear in
Sec. IV.

II. FORMULATION OF THE PROBLEM

Throughout, we use the relativistic units: k=m=c
=1.We use the representation" of the Dirac equation
corresponding to the free-particle Hamiltonian

&o= np p— —

We represent by f„l' the solution of the Dirac equation
for an electron with a central potential V(r), where

V(r) = —nZ/r, for r&R,
= —(aZ/2r) (3—r'/R'), for r(R. (1)

E is the nuclear radius and it is equal to 0.428+2' in our
units.

(2)

In Eq. (2), f„and g„are the real radial functions.
Throughout, the normalization corresponds to one par-
ticle in a sphere of unit radius. Here, ~ gives both the
angular momentum j according to

and the parity (—)'+' according to

~ = I~I+-', (~.—1),

where 5„ is the sign of ~.

Ke first use the 4-component Dirac wave function for

~ This was originally derived by M. E. Rose and R. K. Osborn,
reference 14. For a correction of a typographical error, see M. E.
Rose and R. K. Osborn, Phys, Rev. 110, 1484 (1958)."M, E. Rose and C. L. Perry, Phys. Rev. 90, 479 (1953).

'6We follow the notation as used by M. E. Rose and R. K.
Osborn, reference 14.

the neutrino. We denote by F.„and G.„ the radial
functions for the neutrino in a similar representation as
for the electron in Eq. (2). Then,

(3)

where j& is the spherical Bessel function and the neutrino
energy is q = t/t/'0 —8'. 8'0 is the end-point energy and 8'
represents the total energy of the beta particle. After
obtaining the formulas using the 4-component theory of
the neutrino, we specialize these results for the two-
component theory of the neutrino'~ by substituting
Cg=Cg', and Cp=Cy'.

We also use
y= —sPe, v4=

with
7& V&7273747

p1 0~ ~0 1~

(0 —1) E1 0)

In Eq. (5), the first two terms correspond to the (con-
ventional) axial vector interaction and the last term
represents the appropriate operator for the pseudoscalar
interaction. " C~ and C~ are the so-called "parity-
conserving" coupling constants for the axial vector and
the pseudoscalar interactions, respectively. The primed
coupling constants are the so-called "parity-noncon-
serving" ones. Here, M is the nucleon mass in units of
the electron mass.

For the calculation of the P longitudinal polarization
in the 0~0 (yes) beta transitions, we use the first-
order perturbation development as given by Rose et al."
The operator for the longitudinal polarization" is o p,

"T.D. Lee and C. N. Yang, Phys. Rev. 105, 1671 (1957).Also
see A. Salam, Nuovo cimento 5, 299 (1957), and L. Landau,
Nuclear Phys. 3, 127 (1957)."It is in this respect that the present treatment of the 9
interaction divers from those appearing in the literature for the
calculation of the P longitudinal polarization in the 0 ~ 0 (yes)
beta transition. This was originally suggested by Rose and Osborn,
reference 14, where the P shape factor was derived for the 0 ~ 0
(yes l transition."M. E. Rose, L. C. Biedenharn, and G. B. Arfken, Phys. Rev.
85, 5 (1952).

'OThis operator e p commutes with the free-particle Dirac
Hamiltonian. In Eq. (7), the spinor is an eigenfunction of—e p —P, with beta energy IV. For a covariant description of the
spin, see L. Michel and A. S. Wightman, Phys. Rev. 98, 1190
(1955); C. Bouchiat and L. Michel, Nuclear Phys. 5, 416 (1956);
also see H. A. Tolhoek, Revs. Modern Phys. 28, 277 (1956), and
R. H. Good, Jr., and M. E. Rose, Nuovo cimento 14, 879 (1959l.

in our representation. For the axial vector and the
pseudoscalar interactions, the beta interaction Hamil-
tonian density in the nucleon space is given by

&p-=~ (4.*o[C~+C~'Vs]li,)

—,(li,*,[c,+c,',]ll,)
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where p is a unit vector in the direction of the beta
momentum. In the expression of f„,as given in Eq. (7),
r may be identified with p. The P longitudinal polariza-
tion, denoted by Pll, is given by the following:

where

notation:

fz& r and fyz are the reduced nuclear matrix elements
(independent of the magnetic quantum numbers). S„ is
the sign of K. C(l1/; 00) is a Clebsch-Gordon coeScient
and W(ll j2;i-,') is a Racah coeScient. " 5. .„ is the
Kronecker delta.

In our notation, the energy spectrum is given by

K&P

In Eq. (7), we have

W= (p'+1)',

1n (2Pr) argI'(y+—inZW/P)+ri„', zry, ——

and the spin angular function is

Substituting P„, as given in Eq (7.), in Eq. (6), we
obtain, "after some simplification, "

Q exp[z5„—i5 „](2j+1)r*(—a, ~,)r(~,a,)
K& Ki&

P (2j+1)F*(~,a„)F(~,a,)
K& Ki&

where

5:(~,~.) = (iC&5...,—S,Cg'5. , —.,) [6(2l+1)]'

f„represe nts the probability amplitude for the P par-
ticle due to the beta interaction, when a beta transition
occurs between P, , the initial nuclear state specified by
(J,,zr, ) and Pi, the final nuclear st:ate represented by
(Jr,&re). Also P„ is an outgoing spherical wave and it is
the asymptotic form of the solution of the Dirac equa-
tion for the central field on the P particle. In Eq. (6),
the round brackets denote the scalar product with re-
spect to the spinor indices only. The angular brackets
refer (1) to the summation over ~, and p, „of the neutrino,
(2) to the average over the magnetic substates of the
initial nuclear state, and (3) to the summation over the
magnetic substates of the final nuclear state. In the
0 —+ 0 (yes) transition, (2) and (3) are trivial operations
and they give unity. From Eq. (5), for the 0 —+ 0 (yes)
transition, we obtain for the P-matrix element.

1
( )~+'+&5, , ,„—(i C—&5.... S.—C~'5., .,)——

4'

X (6(2l+1)),'C(E1E; 00)W(21j-', ; I-', )(f,G.+g.F',)

X)l zr r+(f„F„g.G,)i—
1

+ (zCp5. ..,—S„Cp 5., —.,)
2M

X (f,F.+g,G.)J"o r .—(g)
dr

In Eq. (8) we have also introduced the following

XC(ill; 00)W(/1j —', ; 7-', ) (f„G„+g„F„) a r

+ (zCp5K, i'&& S&Cp 5K, K&)

2M

X (f F.+g.G—.) r, (10')

and the radial functions are, of course, evaluated at
r= g.

Now we assume'4 the validity of time-reversal in-
variance in the weak as well as in the strong interactions.
This implies that all the coupling constants are
real and the combination of nuclear matrix elements
zfy5 (fs r)~ is real.

Carrying out the calculations" in Eq. (10), we find
that the main contribution comes from terms" for ~= 1
and ~= —1. We neglect terms of relative order p'R' (or
higher orders). Then we obtain, for the P longitudinal

3' We follow the notation and the conventions as given by M. E.
Rose, Elementary Theory of Angular Momentum (John Wiley R
Sons, Inc. , New York, 1957).

3 The details of the calculations in this paper are given by C. P.
Bhalla, reference 23.

"For the application of this formalism to the calculation of the
polarization "vector" of the conversion electrons following P
decay, see R. L. Becker and M. E. Rose, Nuovo cimento 13, 1182
(1959).

'4 For the weak interactions, see M. A, Clark et al. , Phys. Rev.
I.etters 1, 100 (1958), and also see T. D. Lee and C. N. Yang,
Brookhaven National Laboratory Report BNL-443 (T-91), 1957
(unpublished). For the reality condition on the combination of
the nuclear matrix elements, see, for example, L. Longmire and
A. M. L. Messiah, Phys. Rev. 83, 464 (1951), and also see I.. C.
Biedenharn and M. E. Rose, Revs. Xloclern Phys. 25, 729 (1953).

35To check these formulas for Z=O, terms vhich vanish for
~=~1 have to be considered for the pseudoscalar interaction.
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),=i ys rr r, &=Cr/MC~.

cp Be+sqDo pq Aoyl Gi Ao) Gp Do pqAopl (12)

~p= 4{(U'—1)Bo+sqL8UBo—(U'+1)Do —2UCoj
+—'q't 16Bo—4(UDo+Co) —(U' —1)A o]) ) (12')

a4=Bp+sq(UCp+Dp)+ pq (2Cp Ap),

up ———',{UCo+Dp+ sq(2Co —A p)),

and

(12")

bp=Mp sqlVp jpq—'Lo, bi= Lo, br= —2(Ao —sqLo). (13)

b, =-', {(U'+1)Mp —2UQp

+-', qg4 (UM o
—Qo)+ (U' —1)Xo]+-'q'

X((U'+1)Lo—2UPo+ 16Mo+8(UXo —Ro)7}, (13')

b4= Mo UQp —sq(X—p+2Qp)

+oq'( —UPp+Lp 4Ro), —
bp= —{URo+&o

—srqP —UPo+Lo 4Ro+R'(UQp —Mo)j-
+ ', q'R'(UR p 1V-p 4Q p) ) . —(13—")

In Eqs. (12), we have used the following combinations"
of the electron radial functions:

A k i= (p'Po) —'R' —'"fkg k sin(bk —5 k),

Bk—i (p Fp) R f kgk Sin(bk 8 k),

Ck i=(pv'o) 'R' '"(fkf k+gkg k) sin(bk —6 k),

Dk—1 (p'Po) 'R' "(fkf k
—

gkg k)»n(bk —
& k),

(14)

and the following combinations, which appear in the
literature":

L'k—i

Mk i ——

+k—1

+k—i

Qk i=
+k—1

(2p
2p p) 1R2 2 k (g k

2+fk
2)

(2p2P )
—1R—2k(g„2+f 2)

(2p'Po) 'R' '"(f kg k fkgk-), —
(2p2P )

—1RP—sk(g 2 f s)

(2pspo) R k(gk —f—k )

(2p'Po) 'R' "(f kg k+fkgk).

(15)

"See, for example, C. P. Bhalla and M. E. Rose, Oak Ridge
National Laboratory Report ORNL-2954 (unpublished). These
tables give f„and g„ for a = &1 (the nuclear finite size effects and
the finite deBroglie wavelength effects have been taken into
account). In addition, Fo and sin(81 —8 1) are also calculated."See; for example, Rose and Osborn, reference 14.

polarization in the 0 —+ 0 (yes) transition,

rko+rsi) '+res) —
rkpP+ (ri4+~s&) $

~l I

ho+bi)t'+bs)i+bog+ (b4+bpX) $

The P shape factor is given by

Cs = bp+bih +be)t+bpP+ (b4+bph)f . (11 )

We have introduced the following definitions in
Eqs. (11):

In Eqs. (12) and Eqs. (13), we have

U= 8'—U,—q.

For e and e+, V.= nZ/R and V, =nZ/R, respectively.
Here, Fo is the Fermi function.

This completes the 6rst part of the problem con-
sidered in this paper.

III. NUMERICAL RESULTS

Out of the five 0 ~ 0 (yes) beta transitions reported
in the literature, "namely, Pr"' Ho'" Ce"' Ku'" and
Tl"' only Pr"' (0 ~0+) has been studied in detail.
Several measurements of the shape factor of the 0——+ 0+
branch appear in the literature. " We analyze the P
shape factor as given by Porter and Day. This shape
factor can be fitted by the following cubic in p:

Cs- =9459.32—375.752p+ 89.84p' —8.4994p'. (16)

The mean sum of the squared residuals" of this fit from
the experimental data is 1.217. The most accurate
measurement of the P longitudinal pola, rization in
Pr'44 is due to Mehlhop et al. '~ and they give

(P„/(z/c)) = —0.986&0.03

averaged over an interval of P kinetic energy from 1 Mev
to an energy near end point ( 3 Mev).

An accurate measurement of the P longitudinal
polarization in Ho' ' has been reported by Buhring" and
in this measurement,

(P„/(e/c)) = —0.99a0.02,

for P kinetic energy from 0.18 Mev to near the beta
end-point energy ( 1.8 Mev). There are no accurate
measurements" ontheP shapefactorinHo'" (0 ~0+)

We give the tabulated functions for the P longitudinal
polarization and the shape factor, as given in Eqs. (11),
in Table I and Table II for Pr'" (0 —+0), and
Ho"P (0—~ 0+). The details of the actual computation
of the electronic radial functions are given elsewhere. "

In the theoretical expressions for the P longitudinal
polarization and the P shape factor, as given in Eqs.
(11),we have two parameters, namely, $ and X. It is not
possible, as yet, to calculate ) with much confidence.
Several attempts have been made to evaluate X by using

"See, for example, D. Strominger et at. , Revs. Modern Phys. 30,
585 (1958).Tl~' (0 -+ 0+) has been reported by L. N. Zyrianova,
Izvest. Akad. Nauk S.S.S.R. Ser. Fiz. 20, 1399 (1956) Ltranslation:
Bull. Acad. Sciences U.S.S.R. 20, 1280 (1956)g. This assignment
in TP needs confirmation.

'9 See F. T. Porter and P. P. Day, Phys. Rev. 114, 1286 (1959),
and N. F. Freeman, Proc. Phys. Soc. 73, 6QO (1959).Graham et al. ,
footnote 23, give references to the previous works.

~ The mean sum of the squared residuals is defined to be equal to
Z; ~4p

t (a;),—n;p/(46 —4). Here (Nf;). and I; are the computed
values and the experimental values of the shape factor, respec-
tively. There were 46 experimental points in the shape factor of
Porter and Day.

4' W. Buhring, Z. Physik 155, 566 (1959).
4~ Dr. R. L. Graham has advised us that more thorough experi-

mental work needs to be done, as hitherto reported on Ho"'.
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TAsLE I. Pr"' (0 —+ 0+). Numerical coefficients for beta longitudinal polarization and shape factor formulas. '

1.0
1.5
2.0
2.5
2.783
3.0
3.5
40
4.5
5.0
5.5
6.0
6,5

ap

112.3 0.6400
131.5 0.7487
140.7 0.7992
145.1 0.8234
146.6 0.8310
147.3 0.8348
148.5 0.8395
148.9 O.g402
148.9 0.8385
148.7 0.8354
148.2 0.8312
147.6 0.8264
147.0 0.8211

16.97
19.85
21.21
21.86
22.0g
22.19
22.33
22.37
22.35
22.29
22.20
22.09
21.97

14 290
17 740
20 250
22 390
23 520
24 370
26 380
28 410
30 510
32 730
35 020
37 430
39 960

a4

91.54
10g.5
117.7
123.3
125.7
127.3
130.5
133.2
135.8
138.2
140.6
142.9
145.3

1.922
2.182
2.261
2.248
2.229
2.203
2.128
2.047
1.964
1.870
1.770
1.690
1.595

bp

153.4 0.9026
153.9 0.8976
153.8 0.8917
153.6 0.8854
153.3 0.8816
153.1 0.8787
152.5 0.8720
151.8 0.8651
151.1 0.8582
150.3 0.8512
149.5 0.8442
148.7 0.8372
147,8 0.8302

23.53
23.50
23.43
23.32
23.25
23.18
23.05
22.92
22.76
22.62
22.45
22.31
22.15

b3

20 780
21 830
23 050
24 480
25 320
26 010
27 680
29 490
31 400
33 4gO
35 670
37 990
40 460

b4

2260
1768
1445
1217
1116
1050
923.5
825.4
746.6
681.8
627.9
582.0
542.6

175.7
141.1
116.7
99.48
91.95
87.00
77.60
70.33
64.52
59.83
55.94
52.67
49.89

a Equations (11) and (11').These coefficients have been calculated considering (1) the nuclear radius to be 0.428aA. &(5/mc), (2) the corrections due to
the finite nuclear size, and (3) the finite deBroglie wavelength effects.

X= —30 to —37,

for Pr'" and Ho' ' Pearson' estimates

(17)

) =2.5 to 8,

by using two different types of assumptions. The
Coulomb contribution~ 4' provides the dominant term
for the value of ) and this circumstance favors a value
of X as given in Eq. (17). However, in our analysis we

consider a wide range of the values of X.

A. Analysis of Pr"' (0 ~ 0+) Data

First we investigate whether or not the pure axial
vector interaction can explain the data on the p longi-
tudinal polarization of Mehlhop et al. ,

"and the p shape
factor of Porter and Day." In Fig. 1, we plot the
calculated P longitudinal polarization divided by —s/c
versus the beta momentum for X=10, 30, 1.10, —30,
—50, and —150. In this figure, the region of the beta
momentum which corresponds to the data of Mehlhop
et a/. is indicated. Clearly, the upper limit of the
polarization datum of Mehlhop et a/. , namely, 1.016, can

simple nuclear models. Rose and Osborn, 4' Ahrens and
Feenberg, 4' and Pursey4' give

be easily explained by the pure axial vector interaction.
We define a reasonable fit to the beta shape factor as

follows. We normalize the shape factor as given by the
cubic fit, Eq. (16), and the calculated shape factor to
unity at p=5.0. For p= 1.0 to p=6.5, in steps of 0.5, we

compute
1 n=ssfhX;~'

11 „=i.o E X; )

where AX; is the difference of the calculated shape factor
from the corresponding value X, given by the cubic fit.
We take the calculated shape factor as a satisfactory
Qt, if

~&O.005.

This, generally, corresponds to the value of
~

t),X,/X,
~

as being less than 4%. We find that the pure axial vector
interaction gives a satisfactory fit to the experimental
shape factor for

), &0,
and for

However, there is no satisfactory fit for

—50&X& —10.

TABLE II. Ho" (0 —+ 0+). Numerical coefficients for beta longitudinal polarization and shape factor formulas. '

0.76
1.0
1.5
2.0
2.5
3.0
3.5
4.0

ap

95.95
111.8
130.8
139.6
143.9
145.9
146.8
147.0

0.5323
0.6200
0.7239
0.7713
0.7932
0.8026
0.8055
O.g046

14.30
16.66
19.47
20.76
21.37
21.65
21.76
21.76

a3

16 800
20 050
24 820
28 220
31 080
33 700
36 290
38 910

84.46
99.02

117.5
127.4
133.7
138.1
141.6
144.7

1.441
1.661
1.882
1.936
1.919
1.869
1.801
1.724

bp b1

152.6 0.8758
152.8 0.8734
153.1 0.8673
152.9 0.8602
152.4 0.8525
151.6 0.8446
150.9 0.8364
149.9 0.8282

23,12
23.10
23.05
22.93
22.80
22.62
22.47
22.28

ba

28 130
28 670
30 080
31 750
33 620
35 620
37 820
40 120

2809
2505
1983
1615
1354
1163
1018
905.6

217.9
195.1
156.2
128.7
109.3
95.15
84.52
76.26

a Equations (11}and (11').These coeKcients have been calculated considering (1) the nuclear radius to be 0.428nA&(A/mc), (2) the corrections due to
the finite nuclear size, and (3) the finite deBroglie wavelength effects.

"M. E. Rose and R. IC. Osborne, Phys. Rev. 93, 1326 (1954).' T. Ahrens and E. Feenberg, Phys. Rev. 86, 64 (1952).
4' D. L. Pursey, Phil. Mag. 42, 1193 (1951)."J.M. Pearson, Can. J. Phys. M, 148 (1960).
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FIG. j.. Calculated longitudinal
polarization in units of —v/c versus
P momentum for the axial-vector
interaction. The numbers attached
to the curves give X, the ratio of
the nuclear matrix elements.
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REGION OF MUFLLER SCATTERING DATA OF MEHLHOP

0.98

0.97
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MOMENTUM (mc UNITS),
Pr~4~ 0~0 (YES)

Therefore, we conclude that the pure axial vector
interaction can explain the experimental data on
Pri44 (0

—~ 0+)
We may determine the value of $ and X,, which also

gives a satisfactory fit to these data. The results of
extensive computation are summarized in Fig. 2. In the
(g,X) plane, the overlapping regions of satisfactory its
to the shape factor and to the polarization datum are
shown as crosshatched. The values of $ in this cross-
hatched region depend on ), the ratio of the two nuclear
matrix elements. In Fig. 2, the lines denoted by 1.and U
represent the loci for the lower and the upper limits of
the polarization datum of Mehlhop et a/. It is interesting
to observe that, we can find values of $ for X = —35 which
are also consistent with the experimental data. In the
previous work, no such fit was reported.

Buhring. In this figure, L and U denote the loci in the
(P,X) plane for which the calculated values give the
lower and the upper limits of the polarization datum.

We summarize, below, the upper limits on Ci/MC~,
which is also consistent with the experimental data. We
get for Pr'44 (0 —& 0+)

$= —0.05, for ) =200,

)=0.045, for X= —200.

For Ho'", we obtain

)=0.048, for X= 200,

B. Analysis of Ho"' (0 ~ 0+) Datum

We do not attempt to analyze the P shape factor as no
accurate measurement exists. In Fig. 3, we plot the
calculated beta longitudinal polarization in units of
—iI/c versus p

—momentum for ) =10, 30, 130, —30,—50 and —130 for the pure axial vector interaction.
Again, we find that a large number of the values of ) can
be found for which the calculated values lie well within
the measurement of Buhring.

In Fig. 4, the shaded region represents the permissible
values of $ and ) for a satisfactory fit to the datum of

$= —0.04, for 'A = —200.

For any other value of X, the ranges of $ can be immedi-
ately obtained from Fig. 2 and Fig. 4.

IV. DISCUSSION AND CONCLUSIONS

1. We have developed the theoretical formulas for the
P longitudinal polarization and the P shape factor4' in
the 0 ~ 0 (yes) transitions, without any significant ap-

47 This was derived by M. E. Rose and R. K. Osborn, see refer-
ence 24.
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FIG. 2. The permissible values of
the parameters &=Cp/MCg and X
the ratio of the nuclear matrix ele-
ments, for the polarization and the
shape factor data of Mehlhop, and
Porter et al. , for Pr"4 (0 —+ 0+).
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Pro. 3. Calculated longitudinal
polarization in units of —vjc versus
P momentum for A interaction
only. The numbers attached to the
curves give X, the ratio of the
nuclear matrix elements.
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0.97
2 3
MOMENTUM (mc UNITS)

H
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proxlmations, using the Rose-0 born formulation of the 2. By the appllcatlon of these formulas to the most
pseudosca&ar interaction taken together with the axial accurate exis&Asg experimental data on 0~0 (yes) beta
vector interaction. transitions, we have been able to conclude the following:
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Photoneutron Cross Sections of Cobalt and Manganese*
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The total photoneutron yields of Mn' and Co ' have been measured from threshold to approxi-
mately 30 Mev. Analysis of these data using the I.eiss-Penfold matrix indicates that the cross sections for
both elements show a splitting in the giant resonance region in accord with the predictions of the classical
hydrodynamic model. The Mn'5 peaks occur at energies of 16.8+0.25 Mev and 19.75+0,25 Mev corre-
sponding to cross sections of 90 mb and 77 mb, respectively. Co" maxima occur at 16.75&0.25 Mev and
18.75+0.25 Mev with cross sections of 109mb and 92 mb. The cross sections r (y,n)+0 (y,2g)+0.(y,np)+
integrated to 25 Mev are 627 Mev-mb for Mn' and 709 Mev-mb for Co". Breit-Wigner resonance lines
were fitted to both cross sections and the intrinsic quadrupole moments determined from these fits are
+0.78+0.10 barn for manganese and +0,76&0.11 barn for cobalt.

INTRODUCTION

A S initially pointed out by Okamoto' and Danos, '
if the classical hydrodynamic model of the nucleus

affords a reasonable description of the nuclear photo-
effect, one might expect, for strongly deformed nuclei,
the giant resonance to be split into two separate resolv-
able resonances. The detailed calculations as performed
by Danos' show that over the range of nuclear deforma-
tions, the splitting of the energy eigenvalues is accu-
rately given by

Mg 8—= 0.911—+0.089,
M~

where cv and cot, refer to the resonance energies associ-
ated with the axes g and b of the spheroid chosen to
represent the nuclear shape, a being the axis of rota-
tional symmetry. If an eccentricity c is defined as
eR = g —b, where R is the radius of a sphere of equal
volume E'= ED'2, the intrinsic quadrupole moment of a
spheroid with uniform charge distribution can be
written as

Q =-',Ro'eZA**.

In an effort to substantiate the predictions by Oka-
moto and Danos, the initial experiments' ' were con-
ducted on rare earth elements having large intrinsic

* Supported by the Air Force Ofhce of Scientific Research.' K. Okatnoto, Progr. Theoret. Phys. (Japan) 15, 75 (1956).
~ M. Danos, Bull. Arn. Phys. Soc. 1, 135 (1956}.
3 M. Danos, Nuclear Phys. 5, 23 (1958).
4 E. G. Fuller and M. S. Weiss, Phys. Rev. 112, 560 (1958).
~ B. M. Spicer, H. H. Thies, J. E. Baglin, and F. R. Allum,

Australian J. Phys. 11, 298 (1958).' R. W. Parsons and L. Katz, r Can. J. Phys. 37, 809 (1959).

quadrupole moments. Recently, Spicer" has pointed out
that the splitting of the giant resonance of deformed
nuclei into two components should be readily observable
in the region 9&Z&30. Deformations in this region are
comparable to those of rare earth nuclei. In addition,
Spicer has re-examined the published cross sections for
a number of nuclei of 9&Z&30 and interpreted the
results as showing a splitting of the resonance consistent
with the hydrodynamic model.

Using the published values of Qs, the intrinsic quad-
rupole moment, obtained from microwave spectroscopy
or Coulomb excitation, Spicer suggests five other nuclei
in the chosen atomic number range in which a splitting
of the giant resonance should be clearly observable.

Two of these suggested elements, cobalt and man-
ganese, have been selected and closely examined as to
the detailed shape of the total neutron production cross
section in the giant resonance region.

EXPERIMENTAL PROCEDURE

Figure T is a schematic diagram of the synchrotron
area. The x-ray beam is collimated to —, inch at the
sample position by an eight-inch lead collimator located
80 cm from the tungsten target. The center of the
neutron house was approximately two and one-half
meters from x-ray source.

Photoneutrons are detected by BF3 counters em-
bedded in a parafFin cube. A thorough description of
this method has been published by Halpern. ' Eight
counters were placed symmetrically on a cylinder of

~ R. M. Spicer, Australian J. Phys. 11, 490 (1958).
8 J. Halpern, A. Mann, and R. Nathans, Rev. Sci. Instr. 23,

678 (1952).


