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Inelastic Diffraction Scattering*
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The method of distorted waves Born approximation is shown to be equivalent to the first-order adiabatic
method for the calculation of inelastic scattering. The flexibility of the distorted waves method is indicated
and tested by numerical calculation for a simplified model. The calculations treat the inelastic scattering of
alpha particles from strongly absorbing nuclei, and are directly comparable to the adiabatic calculations
considered by Blair in Fraunhofer approximation. Good agreement is found at forward angles. Coulomb
wave functions are used, and the energy difference between initial and final states is taken into account.
Comparison is made to a few representative experiments and good agreement is found.

I. INTRODUCTION

ANY strong inelastic scattering transitions of
- ~ nuclei obviously are surface direct reactions, on

the evidence of their rapidly-varying oscillatory angular
distributions. ' Such rapid variation with angle indicates
the importance of large impact parameters. In addition
the oscillations of the angular distributions often are
very regular, and this seems to agree with some of the
results for surface reactions, as found in plane wave
Born approximation. ' Further evidence that the strong
inelastic scattering transitions take place at the nuclear
surface is found in the property that they mostly seem
to involve collective excitations, ' probably of vibrations
and rotations of the surface. It should be possible to
understand reactions which have such well-defined
properties, and to understand their relationships with
other sorts of direct reactions.

Unfortunately, the clearest oscillatory angular dis-
tributions generally appear in experiments with pro-
jectiles which are strongly absorbed, such as alpha
particles. Although inelastic scattering of such pro-
jectiles almost certainly occurs at the nuclear surface,
the plane-wave Born approximation calculation also
certainly is not applicable. Distorted wave Born ap-
proximation (DWB) and the adiabatic method instead
are applied to understand these reactions.

The DWB method' is the most widely accepted pro-
cedure for treating direct reactions, and gives a rather
unified view of them, In this method the initial state of
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a nucleus is described by v;, say, and the final state by
v~, and the transition amplitude for inelastic scattering
from state i to state f is given by

The cross section is

(do r,/dO) = (M/27rIt')'(kg/k, )Q,»
~
Tr;

~

'. (2)

Here y;&+& and y~' & are the exact wave functions for the
motion of the projectile with respect to the nucleus;
they are eigenstates of the optical model interaction
between the projectile and the target. Thus

(3)

where U is the optical interaction. The potential V
causes the transition, but does not inhuence the "dis-
torted waves" x;&+~ and x~' '. For excitations of the
surface V is that part of the optical potential caused by
deformation of the nucleus from its equilibrium shape, ' '
while U is the equilibrium part of the optical potential.
Slight generalizations of these equations are used when
other direct reactions are treated.

Accurate DAB calculations are laborious. Simplified
considerations6 suggested that for the more strongly
absorbed projectiles such calculations would not even
agree with experiment, that oscillatory angular dis-
tributions would not be obtained. This difficulty led
Blair' to stress the adiabatic method, ' already intro-
duced by Drozdov and Inopin' to study inelastic
scattering.

In the adiabatic method T~; is calculated in two steps,
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a division being made on the basis that the wave func-
tion of the target nucleus, initially v, (n), responds slowly
to the perturbation V. First the elastic scattering
amplitude f(8,&,n) is computed for each fixed value of
the internal variable n, i.e., for each of the variety of
possible nuclear shapes. This gives

f(8,&,n) = (M/2~A') ~d'r p~*(U(r)+ U(r, n) }P,&+), (4)

where gt is a plane wave, and P,'+) (rtn) is the scattering
eigenstate of f U+ V). In the next step an integral over
0, is computed, and

Tr; (2nI't'/——M)(vol f(8,y,n) l v,)
=(~ & I

U+~(r, ) I~4 "+').

Evidently the exact evaluation of Eqs. (4) and (5) is
even more difficult than the corresponding DWB calcu-
lations, because the eigenfunction P;&+) (r,a) is dificult
to compute, and must be computed for each o.. Closed
form expressions for f($,8,n) have been obtained for an
important limiting case, however, for the small-angle
scattering of particles of small wavelength by nuclei
with small deformations. ' Most (n,n') results are for
cases not too far from this "Fraunhofer" limit, so it is
helpful that simple approximate formulas can be ob-
tained. Encouraging agreement with experiment is
found. Unfortunately, it does not seem practical to use
the adiabatic method for much more accurate calcula-
tions than these.

Actually, in the limit of small deformations the
adiabatic method is formally identical with the DWB
method. Thus, let

p (+) =x,(+)+pip

and let it be understood that in hP only the terms first
order in V shall be carried. Then because vy and e; are
orthogonal, Eq. (5) becomes to Grst order

The difhculties of the adiabatic method are concerned
with the calculation of AP. The DWB method instead
eliminates consideration of AP by an exact transforma-
tion" which introduces the distorted final wave y~(: &.

The transformation converts the expression of Eq. (6)
to identically that of Eq. (1).

It is helpful that a return to the DWB method for
alpha-particle inelastic scattering has become possible.
This restores a unified treatment of the direct reaction
theories. It becomes clear that the angular distributions
of (n,u') reactions must be almost independent of the
mode of excitation, so that collective modes and single
particle modes must differ primarily in their absolute
cross sections. The inherent similarity between (n,n)
and all other surface reactions, such as (n,p) also is
clarified. One further advantage is that it is easier to use

"This is discussed by Gell-Mann and Goldberg;er, reference 4.

accurate wave functions in the DWB method than in
the adiabatic method, so several physical phenomena
omitted before can now be studied. Thus, DWB is more
general than the adiabatic method.

If generality is not required the adiabatic method
offers important advantages for the particular problem
of inelastic scattering, and gives simple closed form ex-
pressions for the region of small scattering angles. For
this region it predicts absolute cross sections, and shows
the relationship between the elastic and inelastic scat-
tering cross sections. In principle these results all should
be available from DWB, but not so easily.

The earlier suggestions of failure of the DWB method
were indicated by a "semiclassical" model, ' based upon
the use of WEB wave functions, and exhibiting results
resembling those of physical optics. For surface reactions
the model predicts that oscillatory angular distributions
occur if there is interference between outgoing particle
beams which have traversed widely separated parts of
the surface. Such beams have di6erent path lengths, so
have different phases. The model limits the "active"
regions on the surface, those which the particle beams
may traverse, by relating these regions to the quantized
angular momentum transferred in the reaction. Dis-
agreement with experiment then is demonstrated by
observing that the "active" regions on the surface
generally are so placed that strong absorption of the
particle beams by the nucleus limits one beam much
more than the other, so suppresses their interference.
Oscillations in the cross section thereby are suppressed.
Fortunately, although the semiclassical model was de-
rived from the quantum mechanical DWB expression,
the derivation breaks down if distortion is very strong.
The derivation selects "active" regions in the DWB
integral by a stationary phase technique, this technique
selecting the important parts of the integrand. Now, the
basis of selection ought to become more stringent as the
integrand becomes complicated by the enhancement of
distortion, if the semiclassical model is to retain its
accuracy. However, the regions of stationary phase be-
come dominant in the integral only in the limit bo/h of
large momentum transfer and large angular momentum
transfer. In the applications of interest the uegllar
momentum transfer never is large enough to select
"active" regions in the presence of strong distortion.
Thus the semiclassical model gives false indications of
the nature of DWB results.

The purpose of the present paper is to exploit the
equivalence between the adiabatic and DWB methods.
In Secs. II and III an abbreviated sort of distorted
waves calculation is formulated, and detailed compari-
sons with the Fraunhofer calculations of Blair are made.
The consequences of changing the physical assumptions
are investigated, and are seen to be important in many
cases. The cross sections are also studied at large angles,
where the Fraunhofer method breaks down.

Section II describes in detail the assumptions used to
obtain wave functions for the DWB computation, and
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the nature of the computation. The results of computa-
tion are given in Sec. III, along with discussion of their
sensitivity to the assumptions. Comparison with ex-
periment is given in Sec. IV.

II. DESCRIPTION OF THE CALCULATION

(a) Cross Section Formula for L=2 Excitation

In this section we consider in detail the calculation in
distorted wave Sorn approximation of the transition
amplitude for inelastic scattering. Equations (1) and (2)
already present a formal statement of the method and
indicate how the cross section is computed. These ex-
pressions now will be spelled out more fully, and the
approximations under which numerical calculations are
made will be described.

Angular distributions computed by the distorted
waves method are notably insensitive to the nature of
the nuclear excitation they represent. Rotational excita-
tion, vibrational excitation, single-particle excitation, all
give much the same angular distribution. Glendenning"
has particularly emphasized this result for the case of
surface reactions. For such reactions the expression for
the cross section splits exactly into two factors: One
factor depends on the model for the reaction, carries the
selection rules, and determines the total cross section;
the other factor involves the distorted wave functions
x +' and y~' ' and determines the angular distribution.
Secause of this convenient factoring it is necessary to
conduct detailed computations only for any one reaction
model; then the cross section for any other model is
obtained by multiplication by a suitable constant. Such
multiplicative constants already appear in the papers of
Blair, ' of Glendenning, "and of Goldfarb and Johnson. "
The present discussion will emphasize the convenient
special case of the excitation of a permanently deformed
even-even nucleus from the J=O ground state to the
first J=2 state. This case will be treated in detail, in
order to give meaning to the discussion of normalization
of the cross section at the end of this section.

In Tr, in Eq. (1) the interaction V simply is the
deformed part of the total optical potential. It is ob-
tained to first order by differentiating the optical
potential with respect to the deformation parameter of
the surface, ' on the assumption that the strength of the
potential depends only on the distance from the surface,
Lr—R(8')j.Here E is the effective nuclear radius, given
in terms of the coordinate angles (8',g') with respect to
the body-fixed principal axes of the nucleus. This radius
is

E=E.,fi+pF, '(8') j,
where P is the usual deformation parameter. Then the
first-order term of the optical potential is found to be

V (rp') =pZ, I ss((i') (d V/dr)"¹K. Glendenning, Phys. Rev. 114, 1297 {1959).
'2 L. J. B. Goldfarb and R. G. Johnson {to be published).

The optical wave functions y,'+) and y~& ' are written in
space-fixed coordinate axes. It is convenient to take the
direction of the incident beam as the polar axis of the
space-fixed system. The initial wave function and the
complex conjugate of the final wave function may then
be written in partial wave expansion as

x;&+& (k;,r) = L(4e-)'/k, r]

)&P i'(2l+1)'e'"fq(k;, r) V&'(0), (9a)
L=O

oe lr

xr' '*(kr, r)=(4~/kyar) 2 2 i 'e*"'f& (kr )
l'=0 m' —L'

y Ir, m (O 0) Ir, m e(fi) (9b)

In Eqs. (9) the symbols k, and kr are the incident and
outgoing propagation constants, the corresponding inci-
dent and outgoing energies being

E,=k'k;s/2M, Eg =k'kr'/2M,

in center-of-mass coordinates, " with M the reduced
mass of the system. The angle between k; and kr is 0,
the scattering angle. The wave functions are arranged to
meet the asymptotic boundary conditions

&(&+& - e'&"'&+outgoing scattered waves,

x& & -& e'&"'&+incoming scattered waves.

Equation (9b) is obtained from the usual time-reversal
equation

x&
—&*(k,r) =x&+&(—k, r).

It is especially seen from the discussion of Sreit and
Bethe" that this equation holds without modification
even though the optical potential U is made complex. "
The same result is found by Siedenharn. "

Both the radial functions f&(k;,r) and f&(kr, r) satisfy
the differential equation

L
—d'/dr'+l(t+1)r '+ (2M/fi') U(r)

+ (2ke/r) —k']f& (k,r) =0. (10)

The Coulomb parameter e is

m =ZZ'Me'/&tt'k,

where Z is the charge number of the target and Z' that
of the projectile. The boundary conditions satisfied by
f& are that it vanish at r=0, and that asymptotically
asr —+ ~

f( —-& (i/2) (H&*—r&(H)).

"The distorted waves method achieves an interesting improve-
ment on the adiabatic method in that it is not necessary for Ef to
equal E;."G. Breit and H. A. Bethe, Phys. Rev. 93, 888 {1954)."It may be hei ful to observe that the basic orthogonality
integral, Jo" f~(tr, ,r fq(k', r)dr= 2rrb(k k'), does no—t invo—lve the
operation of complex conjugation."L.C. Biedenharn, Nuclear Phys. 10, 620 (1959).
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The quantity ~~ ~ is the diagonal 5-matrix element for the
channel in question, as defined by Blatt and Weisskopf. "
It assumes the value g ~= 1 if there is no interaction, and
otherwise is given in terms of the phase shift as

z& ——exp(2i8&). Generally ~p~~ (1 because U is complex.
The function H&(kr) is that defined by Hull and Breit"
to be the Coulomb analog of okrh~&'&(kr), where h~"' is

the outgoing spherical Hankel function. "In terms of the
regular and irregular radial Coulomb functions of Breit,

H)(kr) =G)(kr)+iF((kr),

where asymptotically

This integration does inhuence the angular distribution
and may be somewhat model-dependent. Nevertheless
for all surface reactions, as the present case is seen to
approximate, the integration emphasizes only a limited
range of r, and therefore a single characteristic angular
distribution is obtained. Expressions corresponding to
Eq. (14) are obtained for other cases, and for other
values of angular momentum transfer, by suitably
changing the indicated spherical harmonics in Eq. (14),
and by changing the normalization. 7""

The result of performing the various integrations in
Eq. (14) is found to be

and

Ii
~
—+ sin0~,

G~ ~ cos0~,

8~ =kr n ln (2—kr) —(lor/2)+o ~,

o g
——argi'(i+1+ix).

Tf,~=4mPRok; 'kr ' Q o' '(2l'+1)&e'&'&+"'&
L, Z'

XI~i~Yt~ (0 O)Cooo'~"C ~~o'I" (15)

The method for computing the Coulomb wave functions
is discussed in the Appendix.

The only remaining wave functions which must be
known in order to compute Tf; are the nuclear wave
functions e, and mf. These express the orientation of the
ellipsoidal nucleus with respect to a space-fixed coordi-
nate system. In the ground-state band the ellipsoid has
no spin about its symmetry axis, so v, and vf are just
spherical harmonics giving the orientation of the axis.
T'hus

o,= Yoo(8g, 8o),

of = YP(8i,8o),
(12)

where (8q,8o) are the orientation angles with respect to
the space-fixed frame.

To compute the transition amplitude, it is convenient
to re-express the interaction of Eq. (8) in terms of the
space-fixed coordinates, in place of the body-fixed
coordinates. Through use of the addition theorem for
spherical harmonics it follows that

V (r,8') =pRo(dU/dr )(4or/5) l Q„Yo"'*(0)Yo&(8&,8&). (13)

This expression and the wave functions are substituted
into Eq. (1), giving

Tf,=pRo(4~/5) *' Z. (of I
Y~'(8~,8o)

1
o')

X(xf' '
j
Yo"*(&)(dU/«)

~
x,'+'). (14)

Equation (14) displays the factoring of the transition
amplitude, mentioned earlier. Any other reaction model
for quadrupole excitation must involve the same spheri-
cal harmonics as do the two factors of Eq. (14).
Changing the model tends only to change the first factor
and thus only to change a normalization coefficient. The
second factor of Eq. (14) involves an integration over r.

» J. M. Blatt and V. I'. Weisskopf, Theoretical ENclear Physics
(John Wiley L Sons, Inc. , New York, 1952), Chap. VIII.

'8 M. H. Hull, Jr., and G. Breit, EncycloPedia of Physics, edited
by S. Flugge (Springer-Verlag, Berlin, 1959), Vol. 41, Part 1,
p. 410.

'9 L. I. Schi6, QNantlm Mechanics (McGraw-Hill Book Com-
pany, New York, 1955).

I((.=— (d U/dr) f,f, dr.
J0

(16)

X Q oor
~ Q i'—'(2l'+1)le'&"+ E'~

M=0, 1,2 l, l'

XIll Yl' (O'0)Cooo C MM—
&M —2—

81VI p.

(17)

Numerical evaluation of Eq. (17) is done most easily
if the invariant formalism' for summing over 3f is not
used, as that procedure eventually leads to a complicated

multiple sum. Instead, the double sum over I, l' is best
performed numerically for each value of M, and this
result squared and summed over 3f. The Clebsch-
Gordan coefficients limit l in Eq. (17) to the small set of
values I=l', or l'~2. Using suitable approximations for
I~~, to be discussed below, Eq. (17) has been pro-
grammed for the University of Pittsburgh IBM 650
computer. The running time for a typical case is ten
minutes.

(b) Approximation of Radial Integrals

If (dU/dr) were a delta function the difficult radial
integrals I«of Eq. (16) would be easy to compute. The
result would be

I« =Yof~(c')f~ (~f) (18)
~' J.M. Blatt and I . C. Biedenharn, Revs. Modern Phys. 24, 258

(1952).

The notation used for Clebsch-Gordan coefficients is

Cmymom~' " =(j&j&m&mo
~
JM).

To obtain the differential cross section, Tf,~ of Eq. (15)
is squared and summed over values of M, the final state
spin projection. No average over initial states need be
performed, as the ground state has spin zero, and in the
absence of spin-orbit coupling the projectile spin cancels
out. Then

(do. f;/dQ) = (p'Ro'/E;Ef) (kf/k, )
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q~= c~e'&' (20)

where c~ and g ~ are the modulus and phase of the com-
plex quantity p&. This can be accomplished by inte-
grating the differential equation, Eq. (10), from r =0 to
r =Eo and matching the solution to the asymptotic form
given by Eq. (11) at r=Ro, thus determining g&. This
procedure was used for a few cases where optical po-
tentials were available. "

For convenience in testing the distorted waves theory
it was desirable to circumvent the difficult optical-
model calculations, and to '

assume various simple
analytic expressions for the p&. One simple expression
which is valid in the limit of short wavelength and
strong absorption is the sharp-cutoff modep' of Bethe
and Placzcek. The sharp-cutoff model assumes g~=0 for
l&p, corresponding to complete absorption; and as-
sumes g ~

= 1 for /& p, corresponding to no interaction. A
somewhat better assumption has been used by McIntyre,
YVang, and Seeker" who write

cI,= (1+expL(p —l)/All) ', (21a)

f~= V'(1+expL(l —0)/~G) ' (21b)
"We are indebted to Dr. R. Bassel for supplying us with these

calculations.
22This model has been used extensively by Blair. See J. S.

Blair, Phys. Rev. 108, 827 (1957).
'3 J. A. McIntyre, K. H. Wang, and L, C. Beck.er, Phys. Rev.

117, 1337 (1960).

where p, ,r= k,-,-~Ro denotes the argument of f~ a, t the
nuclear surface. (The fE are functions of the product kr
if r &~Ro.) Analysis of the actual radial integrals is given
in Sec. II(c), below, and in the Appendix. It will be seen
that replacing the integral by a constant multiple of the
value of the integrand at some "surface" radius is ap-
proximately correct within the range of values of /'

which contribute strongly to the cross section. Also, it
will be seen that at the radius which is important the
radial wave functions already are accurately asymptotic.
These approximations are suitable for testing the dis-
torted waves method and for showing its more important
improvements upon the Fraunhofer approximation' to
the adiabatic method. Upon introducing the approxima-
tions in Eq. (17) the result becomes

(dar;/dQ) =. P'Ro'(Uo'/E, Er) (kg/k, )

X Q o~~ 2 ~' '(2l'+1)'c"'+"'f~(p)
M=0, 1,2 l, l'

Xf~ (pr)I'v (O,0)c'ooo"'C asMo"'~'. (19)

It will be seen in Sec. II(c) that the parameter Vo varies
with energy, such that (Vo2/E&r) tends to be constant.
It is Eq. (19) which was programmed for the computer.

The radial functions f~ need to be evaluated at the
nuclear surface, where the optical potential already is
very weak, so that the asymptotic form of f&(p) given
in Eq. (11) is valid. Hence, the problem of obtaining the
radial functions reduces to the evaluation of the diagonal
5-matrix elements

The quantities $'o' and LU are to be regarded as free
parameters which are adjusted to fit the elastic scat-
tering. If necessary, Al and p need not be the same in
(21a) and (21b) and p need not be equal to kRo,.
however, we have not used this freedom. By employing
the "smoothing" procedure of Eq. (21), McIntyre el al.
are able to obtain excellent fits to several elastic scat-
tering experiments involving alpha particles. However,
it must be emphasized that there is no theoretical
justiffcation for the functional form of Eq. (21).Another
"smoothing" form is

c)——0; l (p 2d,l-
=

o L1+(l—p)/2d, l]; = ($'o'/2) L1—(l—p)/2hl1;
p —2d l(l(p+2d, l (22)

1 =0; l)p+2hl,

and represents linear interpolation in the modulus and
phase of the 5-matrix elements, over an interval of 46l
centered at l= p. This form is somewhat simpler than the
McIntyre form and consequently was used for most of
the calculations to be reported. For the same value of
Al, the two "smoothing" forms have the same slope at
1=p. In his analysis of the elastic scattering of 40-Mev
alpha particles on Ag, McIntyre finds a reasonable fit
using At= 1.0. To extrapolate this result to other cases,
it seems reasonable to relate Al to the surface thickness
of the nucleus. Since optical-model calculations have
shown the surface thickness to be rather constant, we
set Al= 1.0 for all 40-Mev problems and modify Al by a
factor (E/40) l for other energies. The phase $"& is known
to be small for Ag (about 8') and hence is safely set to
zero for light elements. The eAects of these assumptions
are investigated in detail in Sec. III.

(c) Discussion of Radial Integrals:
Normalization

The distorted waves calculation would be straight-
forward if a correct optical potential were used, such as
that given by Igo,"and if (dU/dr) and the eigenfunc-
tions f& and f& were computed consistently from the
optical potential. For convenience we instead use the
approximate Eq. (18) for the radial integrals. It is
necessary to judge how this approximation affects the
angular distributions, and what the best value of the
parameter Vo should be. It will be concluded that Eq.
(18) gives an angular distribution which is reliable
throughout the forward hemisphere, and that Vo should
be chosen by normalizing to the differential cross section
of the adiabatic theory~ at zero degrees scattering angle.
This conclusion will be possible only for nuclei which
behave rather accurately as black obstacles.

The approximate Eq. (18) assumes that the relative
values of the radial integrals are the same as the relative
values of the products f~f ~ of the radial wave functions
at the interaction radius Eo. To the extent that this is

'4 Q. Igo, Phys. Rev. 115, 1665 (1959).
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wrong the manner in which the terms of the l, l' sum
combine must be wrong, and the angular distribution
must be affected. Inspection of the sum shows that only
the few terms for which l'=lp really are large, however,
and that towards forward angles these terms add in
phase. Only in the backward hemisphere is there ap-
preciable destructive interference in the sum and only
there are the results at all sensitive to the assumptions.
These observations are true both in the exact theory and
with the approximate Eq. (18), and are the reason why
Eq. (18) leads to results which are valid in the forward
hemisphere.

It is easy to see that the exact I~~ of Eq. (16) is large
only for l'=lp, near the classical cutoff. Thus for
t'&to+3, there is very little penetration of the wave
functions into the region of the potential, so I&& is very
small. The approximate Eq. (18) agrees with this fact,
whatever value Vp may have. For l'&lp —3, the values
of I«are small for another reason: The very low partial
waves experience nearly complete absorption. This
means that there is little back scattering of the inward
propagating radial wave, that "impedance matching" is
very good, that a %KB treatment must be very accu-
rate. Thus for the low partial waves

—l(l+1)r '—2krtr ')dr . (24)

for Vp of Eq. (18) which will incorporate this agreement
can be obtained.

It is interesting at this stage to derive the 0 ampli-
tude of the adiabatic theory by a method independent
of the approximations of Blair and Drozdov. Because
the adiabatic amplitude is that part of the elastic scat-
tering amplitude which is first order in the nuclear
deformation, we may apply the "optical theorem, "
which the elastic scattering amplitude must satisfy. "
According to this theorem

Im f(0') = (k/4')(rt, „~, (25)

so that the imaginary part of the forward scattering
amplitude is related to the total cross section. (Here the
amplitude has the usual normalization, such that

~ f t'
is the elastic scattering cross section, and of course we
extrapolate past the region of Rutherford scattering. )
Equation (25) shows that if f(0') were pure imaginary
for some simple reason, then f(0') could be computed
simply from 0-&,&. An estimate of o-t,,& then would yield an
estimate of f(0'). It now shall be argued that this
procedure may be followed for "black" nuclei, i.e., for
short wavelength particles incident on strongly ab-
sorbing nuclei.

For spherical black nuclei the sharp-cutoff approxi-
mation for g~ gives g~=0 if l~&lp, and g~=1 if l)lp. The
elastic scattering amplitude and the total cross section
are expressed in terms of g~ in the form" ""

The integrals J~~ tend to average to zero if the wave
functions f& have such an oscillatory form. "The ap-
proximate Eq. (18) does not give very small values for
the I~~ for the low partial waves, but because of the
oscillations of fq and fr, the values it does give tend to
have random phase. As a result the small angular
momenta do not contribute to the cross section. "

Both the adiabatic theory and the distorted waves
theory thus are best at forward angles; indeed the
Fraunhofer approximation of the adiabatic theory is
based on an expansion about 0=0'. We will now make
use of these facts to normalize the distorted waves cross
section to the adiabatic cross section at 0"=0'. (By
comparing cross sections the uncertainties of the indi-
vidual I«. are averaged out. ) Of course, neither theory
should agree well with experiment at 0=0', because of
the Coulomb excitation which both omit. However, the
theories must agree with each other at 0=0', and a value

"It is interesting that for many of the typical values of the
imaginary potential the inward-propagating radial wave does not
damp to zero at all rapidly, in agreement with McCarthy's graphs.
[1.McCarthy, Nuclear Phys. 10, 583 (1959).g So long as reQection
does not occur, however, the nucleus can be "black" to a radial
wave if the wave does damp eventually. Igo's discovery that only
the surface of U is important is more related to the refIection
coefFicient at the surface than to any rapid damping of f&,.

~6 Inspection of our calculations indicates that omission of the
low partial waves would have some infiuence in the backward
hemisphere, but would cause only minor changes in the forward
hemisphere.

o„.,=2mk 'P (23+1)(1—Rert)).
L=O

Upon introducing the sharp-cutoff approximation these
reduce to

f(0') = —(to+1)'/2ik,
o.coo ——2s k

—'(to+1)'.

The following observations may be made: (1) The
formulas just derived of course verify the optical
theorem. (2) They show that the correct total cross
section to use in Eq. (24) is that computed in terms of
the sharp-cutoff radius, tp/k. Because the value of this
radius is influenced by the Coulomb field, the normaliza-
tion we derive is automatically Coulomb-corrected. (3)
It appears that f(0') is pure imaginary in this case, so
indeed

f(0') = (ik/4pr)o a,„.

VVhen the nucleus is deformed the area it presents to
the incident beam is changed, but the total cross section
for short wavelengths continues to be twice the area.

~~ L. D. Landau and E. M. Lifshitz, Quanturti Mechanics
(Addison-Wesley Publishing Company, Inc. , Reading, Massa-
chusetts, 1958), p. 435; R. J. Glauber in Lectures in Theoretical
Physics (Interscience Publishers, Inc. , New York, 1959), Vol. 1.
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Hence, if f(0') is pure imaginary,

f(0') = (ik/2m) (projected area).

In Blair's notation' the radius of a deformed nucleus in
space-fixed coordinates is given as

R(8g,82)=Ro[1+ Q n(„V( j,

and up to terms linear in n& the area may be computed
to be:

area= n Ro'L1+2 Q ( n(OV P(7r/2) j.
The forward scattered amplitude then becomes

f(0') = ikR02L:,'+Q ( n(OVP (7r/2) j. (26)

Equation (26) agrees exactly with the 0'=0' limit of
Blair s expression, showing the generality of his result,

The 0=0' quadrupole cross section is computed by
squaring the l=2 term of Eq. (26) and averaging over
nuclear orientations. For the averaging it is useful to
note that n20 ——P(4s/5) '*F2'(8~,82). It is found that

(daf;/dQ) 0'= k Ro p /167r. (27)

We now normalize the results of the present paper by
choosing the parameter Vo so that the cross section of
Eq. (19) comes out in agreement with the above result.

Probably Eq. (27) should be regarded as a lower
bound, since the addition of some real part to the
amplitude would increase the 0' cross section. Although
the sharp-cutoff approximation does indicate that f(0')
is pure imaginary for spherical black nuclei, it is not
clear that the accuracy of that result extends to the
small terms that depend on deformation. From Eq. (15)
of the distorted waves calculation it is clear that the
amplitude which depends on deformation can be imagi-
nary only if the average of e'(~'+~')I« is imaginary.
Some indications to this eRect are described in Appendix
B.It seems reasonable to define a "black" nucleus as one
for which f(0') is pure imaginary, and to use Eq. (27) as
a basis for further computation. In this we agree with
other analyses of the adiabatic method. ' '

It is noteworthy that the excitation curve of the 0'
cross section of Eq. (27) is linear with k, a basic scaling
law. ' This is seen to be a special result for black nuclei,
a consequence of the constancy of the total cross section.
To achieve this result Vo must vary approximately
linearly with E. Values derived for Vo in Sec. III show
such linearity. Some further analysis of energy depend-
ence is given in Appendix B.

The distorted waves method can treat nonzero values
for the Q of the reaction (Q=Ef—E~). Unfortunately,
the zero degree cross section appears to depend upon Q
in a sensitive manner, so interfering with the normaliza-
tion procedure. To normalize these cases the distorted
waves calculation may be repeated with Q set equal to
zero, and Vo determined through Kq. (27). The value so
determined for Vo then can be retained when QWO. This
procedure appears proper because the value of Q has

more inliuence upon the manner in which the terms of
the l, l' sum combine than upon the values of the
individual terms.

(a) Comparison with Fraunhofer Formula

The distorted waves theory curves which should be
most comparable with the Fraunhofer calculations of
Drozdov' and Blair' are those computed without the
Coulomb field, and without any smoothing of the wave
function (these calculations also omit the Coulomb
field, and in the Fraunhofer approximation a sharp-
cutoff surface is assumed). For 1=2 excitation the
Blair expression for the angular distribution is pro-
portional to

J0'(*)+3J2'(x), (28)

where x= pO or x= 2p sin20. The form of x is uncertain
because it depends on a somewhat arbitrary choice of
shadow line in applying the Fraunhofer approximation.
Figure 1 shows DWB curves for five values of p and
indicates their comparison with the Blair curves for both
choices of shadow line. All curves have been normalized
to unity at 0=0'.

Evidently the agreement is excellent at small angles,
as it must be, since at these angles the Fraunhofer ap-
proximation is accurate and all choices of shadow line
are equivalent. The Fraunhofer approximation is seen to
give qualitatively good results even toward much larger
angles, although noticeable peak shifts do occur. It
appears that neither choice of argument in Eq. (28) is
to be preferred over any large interval in angle.

The DWB curves in Fig. 1 show the very interesting
feature that the successive peaks are equally spaced in
angle, provided regions very near 0' and 180' are
ignored. This feature has been noted in some ex-
periments. "

The five DWB curves in Fig. 1 are very similar in
shape. We note that the peak spacing varies inversely
as p, a feature which is inherent in the Fraunhofer
theories. " In addition, however, the relative peak
heights in the forward angles are nearly identical. This
tends to give support to the ideas of "universality" of
the diffraction patterns and agrees with Blair's scaling
rules.

2' L. Seidlitz, E.Bleuler, and D. J.Tendam, Phys. Rev. 110,682
(1958).

III. RESULTS OF COMPUTATIONS

Computations were performed for the inelastic scat-
tering of 20-, 40-, and 60-Mev alpha particles from C,
Mg, and Ca, for the case of quadrupole excitation. In
these calculations, the effect of the nuclear charge, the
smoothing of the wave function and the Q of the reaction
were studied independently and in combinations. In
addition, we investigated the consequences of employing
different smoothing functions. Finally, some cases in-
volving L=O, monopole excitation, were computed.
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Both the Fraunhofer curves and the DWB curves of
Fig. 1 have the property that their envelope falls fairly
slowly towards large angles. As additional physical
effects come to be considered, the envelope will be seen
to fall more rapidly. These effects will now be considered
in turn.

(b) The Q of the Reaction

Figure 2 shows the effect of an energy loss of 4.43 Mev
for carbon, both with and without the Coulomb field.
The calculations were done with sharp-cutoff wave
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functions and at the convenient energy of 40 Mev. The
interaction radius was obtained from the approximate
formula
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Fxo. 2. Angular distributions for C"(O,,o.')C"* with incident
laboratory energy of 40 Mev. Sharp cutoff wave functions are used
with R0 ——5.21f. The effect of energy loss is indicated. All curves
are normalized to unity at 0+ =O'. The quantity E indicated on the
graph is the normalization factor by which the curves should be
multiplied to give cross sections in millibarns per steradian.

Rp ——(1.4A '+2.0)f, (29)

V)

O
cr I

5

2

I

U.
C3

1

R

6 R p 183-
V

I
4Q' 80' I 20' I60'

SCATTERING ANGLE (CENTER OF MASS)

Fn. 1. Angular distributions' calculated for several values of
p=kRO. The Coulomb field is ignored and sharp-cutoff wave
functions are employed. The dashed curves give the Blair formula
Kq. (28), with argument p 0~ for p = 7.6, and 2p sin (O~/2) for p = 10.1.
The curves are normalized to unity at 0" =0'.

"J.S. Blair, G. W. Farwell, and D. K. McDaniels, Nuclear
Phys. 17, 641 (1960).

which is used throughout the present paper, and which
agrees well with sharp-cutoff radii used elsewhere. ' '"
Then for carbon Ro= 5.21f. A normalization constant zV

obtained by the method described in Sec. II(c) is dis-

played on the graph.
The primary effect of energy loss enters the calcula-

tion in the form of a reduced momentum for the
outgoing particle. This, of course, shifts the cross-
section pattern to larger angles; however, the general
shape of the pattern is not appreciably altered. Inspec-
tion of the values of E shows that the heights of the
peaks on the two curves also are much the same. Thus
it should be quite possible to compensate for the energy
loss effect by simple calculation, and not to carry it
explicitly.

One of the most important results of the Blair theory'
is the "phase rule. "This rule assigns odd parity to those
excitations in which the inelastic angular distributions
are in phase with the elastic; it assigns even parity to
those in which the cross sections are out of phase. In
Fig. 2, the effect of about 10%energy loss is seen to shift
the pattern a quarter-cycle, i.e., enough to create doubts
in applying the phase rule.

An interesting effect is in evidence near O'. In this
region the cross section can probably be expressed as a
function of q=

~
k,—kf ~, with this quantity being used
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in the form qRO as the argument in the Fraunhofer
formula, Eq. (28). Then if lk'I W Ikrl the value of It

does not vanish at 0, and the angular distribution near
0' must be similar to that which wouM be found at
larger angles if Ik, l

= Ikfl were true. This effect is
clearly visible in Fig. 2, and seems to have been observed
in a striking way in some (d, d') experiments. "

In the remaining calculations we will neglect the Q
of the reaction.

(c) Cou1omb Field

The effects of the Coulomb field are shown in more
detail in Fig. 3, for 40-Mev alpha-particle scattering
from C, Mg, and Ca. Unsmoothed wave functions are
used. The interaction radius Eo was chosen as in part
(b), and for C, Mg, and Ca, respectively, it has the
values 5.21f, 6.04f, and 6.79f.

The Coulomb field causes no very pronounced changes
of the angular distributions, in agreement with the idea'
that the large values of the interaction radius imply a
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Fro. 4. Angular distributions for Mgs4(n, n')Mgs4* with incident
laboratory energy of 40 Mev, Ro =6.04f, and Q =0. Linear
smoothing, Eq. (22), and McIntyre smoothing, Eq. (21), are
presented, with 61=1.0 and $(0)=0. The normalization is as
described in the caption to Fig. 2.
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Fro. 3. Angular distributions for C, Mg, and Ca with R0=5.21f,
6.04f, and 6.79f, respectively, at 40 Mev, with Q=O. Sharp-cutoff
wave functions are used. The effect of the Coulomb fIeld is indi-
cated. The normalization is as described in the caption to Fig. 2.

' A. Blair (private communication).

fairly weak effective Coulomb field. Nevertheless, the
backward angle cross section is diminished relative to
the forward angles, and the peaks of the angular dis-
tribution are noticeably shifted toward larger angles.
These effects become quite important in the Ca curve.

The shift of the peaks of the angular distribution
would seem to cast doubt on the Blair phase rule, which
compares the elastic and inelastic angular distributions.
A preliminary study of this question was conducted by
comparing the three curves of Sec. IV with the corre-
sponding exact optical-model curves for the elastic
scattering. This comparison does agree quite well with
the phase rule.

(d) Effect of Smoothing the Wave Function

Two different procedures for smoothing the wave
function were employed, as discussed in Sec. II. In one
procedure the coefficients of the outgoing amplitudes
were varied according to a "Saxon" form factor, as
employed by McIntyre. ~' In the other procedure a linear
approximation to the McIntyre smoothing was used.
Figure 4 compares these two procedures, both with and
without the Coulomb field, for the case of 40-Mev alpha
particles on Mg. All these curves are much less oscilla-
tory than those computed with nonsmoothed wave
functions. Evidently the cross section is quite sensitive
to the details of the smoothing, especially in the back-
ward angles. This sensitivity to the smoothing assump-
tions also is found upon comparing with Fig. 9, for which
correct optical-model phase shifts were employed.

Figure 5 shows smoothed curves for C, Mg, and Ca,
all at 40 Mev, and all having the same interval of
(hnear) smoothing. A progressive "tilting" of the curves
is apparent. This behavior is very much like that seen in
elastic scattering. The similarity bears out in a gratifying
way the idea of the exact adiabatic method, that the
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Fn. 5. Angular distributions for C, Mg, and Ca with 80=5.21f,
6.04f, and 6.79f, respectively. Linear smoothing, Eq. (22), is
employed with hi=1.0 and «o)=0 for 40 Mev incident (lab)
energy and Q=O. The normalization is as described in the caption
to Fig. 2.

inelastic cross section is obtained by slight modifications
of the elastic cross section.

In several computations a small "nuclear phase shift, "
i.e., $'0) in Eq. (22), was employed with the smoothing
function. The effect was noticeable, especially in the
vicinity of 90', but was small relative to the other effects
under investigation.
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FIG. 6. Angular distribution for Mg~(a, e')Mg~* with Ro=6.04f
and Q=O. Linear smoothing, Eq, (22), is employed with «) =0
and 6/ varied in the manner described in Sec. II(b). The normali-
zation is as described in the caption to Fig. 2,

(e) Variation with Energy

Figure 6 shows angular distributions for alpha par-
t.icles on Mg a,t incident (laboratory) energies of 20, 40,
and 60 Mev. Linear smoothing is employed, as discussed
in Sec. II(b). The three curves are very similar in shape.
By suitable adjustments of the horizontal and vertical
scales they can almost be made to superimpose, in
agreement with Blair's scaling laws, and in agreement
with a recent tabulation of experimental data. " The
normalization factor )7 is given for each curve, and
shows the expected linear increase of differential cross
section with energy. The parameter Vo also is expected
to vary approximately linearly with energy. It has been
extracted, the three values of Vo being 7.4, 15.2, and
20.1 Mev, respectively, for the 20-, 40-, and 60-Mev
cases. These values are reasonable for optical potential
strengths at large interaction radii, and are typical of
the values of Vo found for all other cases.

The approximate sharp-cutoff radius introduced in

part (b) is independent of energy. Actually Eo shouM
decrease slightly with energy, " and according to a
logarithmic law (see Appendix B). The effect is a small

one, however and is safely ignored.

(f) Monopole Excitation, L=0
For monopole excitation Eq. (19) specializes to

(do/dQ) =1P
~

p(2l+1)&e""Vl'(0 0)fl(p, )fl(pr) ~'& (30)

where JV' is a normalization constant which will not be
investigated. It was easy to calculate the monopole
cross section with an abbreviated version of the
quadrupole program.

Figure 7 shows monopole angular distributions for
40-Mev alpha particles incident on C, Mg, and Ca,
using the linear smoothing procedure. Figure 7 is the
analog of Fig. 5 for the quadrupole case. The corre-
sponding curves of Figs. 7 and 5 are astonishingly alike,
not only in the locations of peaks, but in the detailed
structure of the diffraction pattern. This similarity
lends support to the phase rule, in that inelastic transi-
tions of the same parity are in phase with each other.
The monopole curves agree with the Fraunhofer ap-
proximation even better than do the quadrupole curves.
This has been displayed in Fig. 7, where Jo (p()) is

plotted. The curves virtually coincide for 0&25'.
The curves of Figs. 5 and 7 differ somewhat around

the 0' peak. The difference probably is not enough to
distinguish spins.

IV. COMPARISON TO EXPERIMENT

In this section we compare the results of the distorted
waves theory with experimental data. In the calcula-
tions the Coulomb field and the energy loss are ex-
plicitly taken into account. In addition the smoothing
assumptions are replaced by accurate calculations of the
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g~ coefficients, as discussed in Sec. II. Three illustrative
cases have been chosen, primarily on a basis of availa-
bility of data and optical-model potentials. Although
we did not attempt to achieve best fits to the data, it
will be seen that the agreement with experiment is quite
satisfactory, We also did not include Coulomb excita-
tion, so the fits are not expected to be accurate at 0'.

Figure 8 shows experimental and theoretical cross
sections for 40-Mev alpha-particle inelastic scattering to
the 4.43-Mev (2+) level of C".The experimental data is
taken from Yavin and Farwell. ' The theoretical results
have been obtained assuming Eo=5.21f, as taken from
Eq. (29), and have been normalized with ~P~ =0.4. The
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data show little diffraction structure, contrary to pre-
dictions of the theory. " Part of the disagreement may
be du'e to the breakdown of the "black" assumption.
Study of the values of

~
ri &

~

obtained from optical model
calculations" "shows them to be at least as large as 0.1,
even for the lowest partial waves. This value is far
greater than for the other cases investigated and causes
the assumption of Eq. (18) to be more questionable. In
this connection it also is helpful to recall that Eq. (27)

' More recent experiments at 28.4, 31.0, and 33.6 Mev do show
a pronounced diffraction structure, however. See T. Mikumo, H.
Vamaguchi, I. Nonaka, M. Odera, Y. Hashimoto, M. Kondo, and
T. Maki, J. Phys. Soc. Japan, 15, 1158 (1960).

~ The optical-model parameters were obtained from G. Igo and
R. M. Thaler, Phys. Rev. 106, 126 (1957), for the C'2 and Mg'4
cg,yes and from Igo, reference 24, for the A4' case.

FIG. 7. Angular distributions for monopole excitation as de-
scribed in Sec. III (f). The radii and smoothing parameters are the
same as those described in the caption to Fig. 5. The dashed curve
gives the Blair formula, Jos(pO). All curves are normalized to
unity at 0~=0'.

Fro. 8. Angular distributions for C's(a, a')Ca~ (Q= —4.43 Mev)
with incident laboratory energy of 40 Mev. Optical-model phase
shifts are employed and 80=5.21f. The closed circles denote the
experimental cross sections of Vavin and Farwell. ' The normaliza-
tion procedure described in Sec. II(c) yields

~ P~ =0.4.

only is a lower bound to the cross section, a larger cross
section being obtained if the forward scattering ampli-
tude has an appreciable real part. It is possible that the
apparent large value of ~P~ for carbon is due to the
omission of the real part of the forward scattering ampli-
tude in Eq. (27), this being appreciable because the
"black" assumption breaks down.

The Mg"(n, n')Mg"* (Q= —1.37 Mev) reaction has
been extensively studied elsewhere" and good agree-
ment with the simple diffraction theory has been found.
Hence for this case one should expect to find reasonable
agreement between a distorted waves theory and experi-
ment and this is demonstrated in Fig. 9. The 43-Mev
angular distribution data of Shook' is presented. It has
been normalized to the 41-Mev absolute angular distri-
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FIG. 9. Angular distributions for Mg" (a,a')Mg~~ (Q = —1.37
Mev) with incident laboratory energy of 43 Mev. Optical-model
phase shifts are employed and 80=6.04f. The closed circles denote
the experimental angular distributions of Shook' which have been
normalized to the 41-Mev absolute angular distribution data of
Blair, Farwell, and McDaniels. ~ The normalization procedure
described in Sec. II(c) yields ( P ~

=0.20.
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FIG. 10.Angular distributions for A4 (a,n')A * (Q= —1.46 Mev)
with incident laboratory energy of 18 Mev. Optical model phase
shifts are employed and 80=6.79f. The closed circles denote the
experimental cross sections of Seidlitz, Bleuler, and Tendam. ' The
normalization procedure described in Sec. II(c) yields t P( =0.1.

bution data of Blair, Farwell, and McDaniels" (the two
experiments are in good agreement for the shape of the
distribution). Equation (29) yields Es 6.04f for the-—
interaction radius, and the normalization of theory to
experiment yields a deformation parameter, ~P ~

=0.20.
This value for ~P~ of course agrees with the value
extracted by Blair.

Examination of Fig. 9 indicates excellent agreement
between the distorted waves theory and experiment out
to about 75'. It is to be noted that the relative heights
of the 40', 53', and 66' maxima are predicted correctly.
The disagreement in the very forward angles may well
be due to Coulomb excitation. It is seen that the low
magnitude of the backward cross sections is correctly
predicted.

The final case to be considered is presented in
Fig. 10, which shows differential cross sections for
A"(cr,tr')A '~ (Q= —1.46 Mev) for 18-Mev alpha par-
ticles. The experimental data is taken from Seidlitz,
Bleuler, and Tendam. "An interaction radius 80= 6.79f
has been used, as taken from Eq. (29), and in agreement
with the detailed studies of the wave function which are
reported in Appendix B. A less realistic radius value of
7.5f also was tested, and led to a curve with much less
diffraction structure and with a larger cross section in
the backward angles. With the curve shown in Fig. 10
a somewhat uncertain value of ~P~ =0.1 is obtained
from the normalization. Since the A" nucleus is spherical
this number certainly is not a deformation parameter.
Nevertheless, the argon reaction undoubtedly is a sur-
face reaction, and is interesting because the high Z and
low energy imply a large Coulomb distortion.

The agreement between theory and experiment in

Fig. 10 is encouraging. Evidently the general trend of
the angular distribution is correctly predicted, as is the
qualitative shape of the diffraction pattern. The dis-
agreement between experiment and theory in the very
forward angles may well be due to Coulomb excitation.
This effect could be included in more accurate calcula-
tions merely by adding its amplitude to that of the
distorted waves theory. The agreement already ob-
tained suggests that a full-scale distorted waves calcula-
tion using Eq. (16) might well yield quantitative agree-
ment with experiment even at large angles. Further in-
vestigations are planned.

7Jrote added in Proof Furt. her calculations have now
been performed. Explicit numerical evaluation of the
radial integrals of Eq. (16) gives the cross section of
Eq. (17) without any of the further approximations
which had to be carried in the present paper. By the
use of optical potentials which fit the elastic scattering,
an immediate good 6t to the inelastic scattering is
found, without any additional adjustable parameters.
The agreement with experiment found this way is better
than in Figs. 8—10. Values used for P parameters are
typical of those found in other ways. Coulomb excita-
tion also has been included, and gives some further
improvement of the results. Preliminary work with

(p,p') reactions also is encouraging.
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APPENDIX A. GENERATION OF COULOMB
WAVE FUNCTIONS

The Coulomb wave functions satisfy the recurrence
relations"

LL(L+1)'+ti']*"jjl+t= (2L+1)gti+L(L+1)/p]'Jir,
—(L+1)[L'+I']*'Jjz, t, (A-1)

where 'J11, denotes either the regular solution Fr„or the
irregular solution G~. The relations can be used'4 to
generate Coulomb wave functions from knowledge of
the functions for I=0 and L=1. The method is
straightforward for Gl..

For the regular solution, however, Eq. (A-1) is
unstable when applied in irIcreasieg order; it is quite
stable though if applied to F~ in decreasirIg order. Indeed
in the region L&p, the relative accuracy increases
exponentially when Ii I, is recurred downward in L. Thus
we use the approximate asymptotic formula

r"-(p) =p'+'l(2L+1) ', (A-2)

which is valid for L))p. Equation (A-2) is used for the

"J.L. Powell, Phys. Rev. 72, 626 (1947).
~ I. Stegun and M. Abrarnowitz, Phys. Rev. 98, 1851 (1955).
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two high values of 1. and then Eq. (A-1) is applied suc-
cessively until 1.=0 is reached. The Iip function is
independently calculated in a manner described below
and is correctly normalized. The ratio of the normalized
Ii p to the Ii p generated by recurrence is then used to
renormalize the other F~ functions.

In order to generate the irregular functions, it is
necessary to know Gp and G&. These may be obtained
along with Pp by using the formulas in Sec. 12 of
Froberg's article. "These formulas require the asymp-
totic inequality e'+4m+3(12p/5 (which is easily
satisfied in the present work). This method generates
Coulomb wave functions which, for the values of L
which contribute significantly to the cross section, are
accurate to 6 or 7 decimal places.
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APPENDIX B. ANALYSIS OF RADIAL INTEGRALS

Two distinct effects cooperate to cause nuclei to be-
have as black obstacles, and to cause the sharp-cutoff
model to be a good first approximation for elastic
scattering. Blair has discussed these effects." Briefly,
they are: (1) The imaginary part of the optical potential
is strong enough so that any partial wave which is not
reflected back near the surface is completely absorbed in
the nuclear interior. (2) Which partial waves do pene-
trate past the nuclear surface is determined before the
imaginary potential is yet very large, by a competition
between the attraction presented by the tail of the
optical potential (real part), and the repulsion presented
by the centrifugal potential plus the Coulomb potential.
Near the classical cuto6 the competition is very sensi-
tive to l, and p& goes rapidly from zero to one as I
increases.

The wave function f& for the tth partial wave may be
studied in terms of the "net" real potential for that
partial wave,

'U q(r) =Pl (1+1)/2Mr'+ZZ'—e'/r+Re U(r). (A-3)

In terms of U~ the Schrodinger equation for f~ is ap-
proximately of the form

—(fP/2M) fi"——LE—'U
gjfi, (A-4)

inasmuch as ImU may be neglected for the range of r
under discussion. Figure 11 shows 'U ~(r) for argon, for a
few values of I, using Igo's parameters for the optical
potential. '4 The curves are seen to show a pronounced
maximum in the region of the nuclear surface. Other
ranges of / and other nuclei lead to similar graphs. The
maximum of 'U& shifts logarithmically to smaller r as l
increases, and tends to disappear altogether for high l.
It disappears only if t becomes extremely high, however,
and throughout the range of interest of the present

5 C. E. FrOberg, Revs. Modern Phys. 27, 399 (1.955}.

Fro. 11. Sketch of "net" real potential, 'U~(rl, for argon as
described in Appendix B. The dashed curve shows the variation
with radius of the derivative of the real part of the optical po-
tential. The solid horizontal line indicates 1g Mev.

paper all graphs of 'U& look much the same. Evidently
for /=lp, near the classical cutoff, the height of the
maximum nearly equals the total energy, and the
maximum is the principal barrier against transmission
to the interior. Figure 11 illustrates the case of 18-Mev
alpha particles incident on argon, for which /p=11. 2.
On the whole, waves with l ~ tp surmount the barrier,
while waves with t&lp are reflected.

For i=le the quantity LE—'Uqj in Eq. (A-4) is very
small near the maximum of 'U

~, and the curvature of f t,

therefore is small in that region. As a consequence either
the real or the imaginary part of f t, grows very large in
the region of the ma, ximum of 'U~, and this region of r
accordingly tends to dominate in the radial integrals
I« . We have evaluated f» numerically for argon at 18
Mev and have found such a maximum. Apparently it is
for this reason that the inelastic scattering of alpha
particles tends to be a surface reaction. Furthermore,
since the maximum of 'U~ is located on the outermost
tail of the optical potential, the value of Ve in Eq. (18)
must be small, of the order of the values found in Sec.
III. It also is clear that Vp must increase with bom-
barding energy, because lp increases with energy, and
the maximum of 'U

~ shifts to smaller radii as / increases.
The optimum value of Es in Eq. (18) probably is near
the maximum of 'U~.

The phase of I~t expLi(o. ~+o )j is of interest in
Sec. II(c). This phase is diflicult to estimate in any
general manner. However, it was found to be very close
to 90' for the case of argon at 18 Mev cited above
(/=l'=11). Such a value was suggested in the text as
appropriate for nuclei that are ideally black. Further
detailed calculations would show how closely nuclei
approach this ideal.


