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In the usual shell-model procedure, the effective Hamiltonian contains only half the sum of the shell-model
potentials of nucleons in order to avoid counting average pairwise interactions twice. Because of the factor
one-half, the nondiagonal elements of this Hamiltonian in the harmonic oscillator representation do not
vanish, but they have been neglected in previous calculations of nuclear deformations by Nilsson and others,
in which one minimizes total shell-model energy at constant volume. It is here shown in typical cases (without
taking spin-orbit coupling into account) that the equilibrium deformation is unaltered in second and third
order and that the fourth-order modification arising from the nondiagonal elements is very small. The re-
lation of these nondiagonal elements to those of the pairwise interactions is also discussed.

INTRODUCTION

HE shell-model potential is to be thought of as a
function of the position coordinate of one nucleon
giving the average dependence of the potential energy
of the entire system on that coordinate. It thus consists
of a sum over the (4—1) other nucleons:

Vi=2; 0y, JHi. ¢Y
The sum »_; V, includes each interaction v;; twice so
the average value of the potential energy of the system

is one-half of this sum. The mean value of the effective
Hamiltonian 3C.; contains this factor %;

(a|3Ceit| @)= (a| Zi(T:+35V )| ), (2

and is thus not approximately equal to the mean value
of the zeroth-order Hamiltonian

{al5e?|@)y={(a| T+ V)| a), 3)

the difference being made up by the first-order con-
tribution to the energy

E,—E,O=~E,Y={(a|3'|a)={a|3C—3C°| a)
=—(a|3X:Vila). (4)

If for V; we take an oscillator potential, the virial
theorem for the harmonic oscillator, ({a,|7:|a;)
=(a;| V| a;), simplifies the evaluation of (3) and the
corresponding relation with a minus sign for non-
diagonal elements,

(a;| T:|b)=—{a;| V:|b;) for b#a; ©)

assures that the nondiagonal elements of the zeroth-
order Hamiltonian wvanish in the oscillator repre-
sentation:

(a]3e°|by=0 for a==b. (6)

Because of the factor 3 in Eq. (2), the corresponding
nondiagonal elements of the Hamiltonian, (a|3Ces|5),
do not thus vanish in this approximation and it is our
purpose here to investigate their importance in a case

* Work performed under the auspices of the U. S. Atomic
Energy Commission.
T Now at Marquette University, Milwaukee, Wisconsin.

of interest. More explicitly, the nondiagonal element
of the Hamiltonian may be written

(a]3Ceit|)=(a| X T3 2 v,;]0)
=(a1--aa|§ 2 vij—2 Vilbi--ba), (7)

in view of Eq. (5). On the assumption that there is an
approximate simple proportionality between the di-
agonal and nondiagonal elements; ‘

(a] X vi510)/al X vil @y ={a| V| 0)/(al Vi|@) (8)

there would be a systematic tendency for the non-
diagonal element similar to (7) to vanish if there were
no factor 3 in the Hamiltonian, but with the actual
factor % there is no such tendency.

As a basis for assumption (8), we note that the large
matrix elements, between states differing in only one
nucleon function so that {a|V.|d) does not vanish,
may be written

(| Zjvij|Oy=(ar - -ai - -aa|Zsvig| b - bi - -ba)

=(ay- @i+ -aa| ;05| are - bie - -aa)

=fdx1d¢*b, ijdxj ‘Ui]‘(lj*(lj

—ijdxi ai*a; f dxj v,a;*b:.  (9)

Here the symbol a¢;* is used alternatively as the wave
function a;*(x.). The main term is in the third line and
contains the expression

2 f dw; vija*a;= Vs, (10)
which defines V; in a no-exchange approximation. This
term if alone in (9) would lead to the relation (8) as an
equality. Equation (9) remains a plausible approxi-
mation because the exchange term in the last line of
(9) is expected to be considerably smaller, in view of
the presence of an additional factor a;*b:(x;) having
the nature of a wave with positive values at some places
and negative at others, and also because of the can-
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NUCLEAR DEFORMATION IN
cellation of positive and negative terms in the sum over
J. We have assumed that b differs from a in only one
factor b;7a;. If it differs also in a second factor b;a;
the matrix element is much smaller because it contains
only one term of the sum over j, thus avoiding the
cooperative buildup that makes V,; There are many
such small terms but they appear quadratically in
applications and one may hope they are thus relatively
unimportant.

This neglect of the sum of squares of single terms
compared to the square of a sum is questionable in the
light of the saturation nature of nuclear forces. If we
want to use realistic interactions v;, with exchange
properties not sufficiently pronounced to effect satu-
ration, v; must have a repulsive core and the per-
turbation procedure here used is not valid. With this
procedure we must mock up the saturation properties
by using appropriate exchange operations rather than
a repulsive core. Then one nucleon interacts, in effect,
with only a few others, the sum over many others in
the second line of (9) is not so much greater than some
single terms, and the neglect mentioned may not be
justified. However, the assumption (8) permits a simple
discussion of deviations expected from the simple
Nilsson treatment of the nuclear shape, and we wish
first to examine its consequences.

EQUIVALENT HAMILTONIAN

With the approximation (8) the shell-model potential
V; may be used in place of }_;v; in calculating non-
diagonal elements as well as diagonal elements. The
replacement may then be made in the Hamiltonian
itself, and we may write an equivalent Hamiltonian
in the convenient form

=2 Ti+32 vii=Ress=2. Ti+52 V; (11.1)
=33 (THV)+:2 (Ti—V)=3(EC"42 k), (11.2)

with

With oscillator functions the diagonal elements of %;
vanish, from the virial theorem, and the expectation
value of 3¢ is E=32E,, the factor % arising from avoiding
counting the pairwise interaction twice. The same
relation (5) which makes the nondiagonal elements of
3C° vanish, as stated in Eq. (6), also makes the non-
diagonal elements of %; systematically large. The factor
§ mitigates their effect, however, and we shall see that
the higher-order contributions apparently cause no
serious trouble in the example to which we now proceed.

THE MAGNITUDE OF THE COLLECTIVE
DISTORTION

Our knowledge of nuclear forces and computation
methods has not yet proved sufficient to calculate well
the magnitude of the binding energy of a finite nucleus,
this being a small difference between large potential
and kinetic energies. In attacking the problem of
calculating the equilibrium deformation of a non-
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spherical nucleus, one requires not the absolute magni-
tude of the energy but the change of the energy when
the shape is altered, so as to be able to minimize it. It
has seemed reasonable to avoid the problem of the
saturation properties of nuclear forces, which determine
primarily the density of nuclear matter, by assuming
the volume to be kept constant as the shape is varied,
and then to calculate the energy as the sum of the
deformed shell-model energies of the occupied single-
nucleon states. It is the change of total energy with
change of shape that is then significant. With oscillator
functions the nucleus has no definite surface and it is the
volume within equipotential surfaces that is kept
constant. Since the problem is separable in the Cartesian
coordinates x, ¥, z, the competition between potential
and kinetic energy is resolved in the same way in each
direction, and there remains the competition between
the energies associated with the different directions to
determine the shape, depending upon how the nucleon
quantum numbers are distributed between the
directions.

This approximation has been used to obtain nuclear
equilibrium deformations in connection with the
“cranked model” calculation of the moments of inertia
of rotating spheroidal nuclei' and in connection with
determining the parity and angular momentum of low
nuclear states with spin-orbit coupled nucleon wave
functions in spheriodal nuclei.? In the latter problem,
Nilsson employed the equivalent Hamiltonian explicitly
in the form (11.2), with neglect of the nondiagonal
elements of %, Because of the great interest of his
results, we wish here to investigate the importance of
this neglect, and shall find it gratifying that the in-
accuracy is apparently not serious. The same problem
arises in very nearly the same way in the simpler
problem of calculating the deformation for a nucleus
made of nucleons with no spin-orbit coupling, suitably
remote from the condition of closed shells in that model
(in which the magic numbers are 40 and 70, etc.,
rather than 50 and 82), and we confine our attention
to this model.

One assumes that the shell-model potential is a three-
dimensional potential- having spheroidal, rather than
spherical, equipotential surfaces:

Vi=§h[ws (84 +ws?], (12)

with ¢= (Mwy/%)x, etc. We carry out a perturbation
theory in terms of shell-model wave functions
¢o=1T1a:(i)=T]a. (but antisymmetrized) satisfying

(JCO— an>¢a= 0; (JC'L“ gai)uai ('L) = 0,
3= 3= (Ti+Vi). Ed=2;8.=2 8. (13)

1 A. Bohr, Rotational States of Atomic Nuclei (E. Munskgaards
Torlag, Copenhagen, 1954); D. R. Inglis, Phys. Rev. 96, 1059
(1954); 103, 1786 (1956); Am. J. Phys. 26, 82 (1958); Nuclear
Phys. 8, 125 (1958). A. Bohr and B. M. Mottelson, Kgl. Danske
Videnskab Selskab, Mat.-fys. Medd. 30, 1 (1955).

2S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat.-fys.
Medd. 29, 1 (1955); B. R. Mottelson and S. G. Nilsson, Phys.
Rev. 99, 1615 (1955).
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In the oscillator representation the shell-model Hamil-
tonian 3C; contains a sum of three terms of the form
$hw(8—0%/98) and ¢, contains three factors, each
consisting of a Hermite polynomial and an exponential
of the form exp(— £2/2) where £2=cax? and ca= Mwy/%,
which is related to 8;=7%ws(ls+3)+---. The V; ap-
pearing here is considered to be the average potential
of one nucleon in the field of all the others and therefore
the potential which determines the size of the wave
functions. This size is related to the observed size of
nuclei by an empirical determination of the parameter
oa and thus of the &; by means of these equations.

In calculating expectation values of the equivalent
Hamiltonian (11.2)

FCett=Cos®+0Cer’, With JCers®=53C0
and

ICett’ =2 3 hsy

we denote energies on the contracted scale by small e
rather than large E:

ea:%Eazeao_}-ga(l)_{_ea(Z)_l_ e,

For the first-order correction to the energy we
obtain

eaa):(a!gc’]a):Zi (ai| 3hs| @)
=313 ton | Ti— V| lmn)=0,

vanishing for harmonic oscillator functions. Here /, m
and # are the oscillator quantum numbers in the three
dimensions, £, 9, and ¢. The second-order contribution
to the energy of the ground state ¢ with the Hamiltonian
(11.2) is

6a(2)zza[<a|% 2 kila>l2/(ea-‘ea)
=2 ai 2ail{ai| $hi| )|/} (8a— E4)
=% Zlmn ZMV‘O““’,hillmn>l2/(8)\ﬂv_ glmn)~

The e, appear directly in the energy denominators,
but we express results in terms of the §; because these
are empirically determined. The X .. extends over
occupied nucleon states. The other summation is
limited only by the selection rules. In this statement
we conveniently ignore the Pauli antisymmetry as we
may for a single-particle perturbation, since we thereby
spuriously include only pairs of terms that cancel one
another, having matrix elements between the same pair
of states and denominators of opposite sign.

The evaluation of the matrix elements involves
Ti=—(h*/2M)0%/ x>+ - - = — §hws0%/ 98+ - - and V;
from Eq. (12) with the matrix elements implied by the

(14)
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TasiE I. Coefficients for specific nuclei.

A b be C1 C2
28 11 17/2 —0.0280 —0.0479
180 135 175/2 —1.2579 —1.0961

following equation relating the #;=1%;(£)2%n(n)2.(7)
(which contain normalized Hermite polynomials):

2y, (0408 u=3{L(I+1) (1+2) Jusy»
+ (24 D+ [I0— D) T2y, (15)

The choice indicated by the comma refers to the choice
of the & sign. The selection rules are clearly A=/, I+2,
etc., with only one of the three quantum numbers
differing from I/, m, n, because %, is a sum of terms in £,
1, and {:

hi=— (1/6) L we(£4-0°/98). (16)

When the substitution is made in the last member of
(14), one obtains the same type of nondiagonal con-
tributions from each of the three dimensions and from
each occupied state I, m, n:

3{14+1) (1H2) — 1(1+1)} (hewos/6)?/ 2hews
= %(l‘*‘%)hwz/ls, (1 7)

which is just one-eighteenth of the zeroth order con-
tribution from the same coordinate. Thus we have the
simple result in second order:

EZZlmn (elmn0+elmn(2)) = (1— 1/18)60.

The equilibrium shape is found by minimizing the
total energy, de/dw:=0 subject to the volume-con-
serving condition wiws=constant. This amounts to
balancing the energy contribution from the { direction
against those from the { and n directions, and the result
is

(18)

w/wy=27 (IH+m+1)/2. (2n+1)

independent of any factor common to all directions.
The equilibrium shape is thus the same in second order
as in zeroth order though the total energy is altered.

There is no third-order contribution, ¢® =0, because
the third-order perturbation involves products of three
nondiagonal matrix elements of %; two of them con-
taining the ground state and each of them involving a
jump of a quantum number by 2: one cannot arrive
back at zero with three jumps of magnitude 2.

The fourth-order contribution to the energy may be
written

(19)

(| ee | sy Ovaw | s Nl v YN | s N5 YN " || Dam

w-fzrx

(glmn— g)\ny) (é’lmn_ g)\’,u'v) (glmn—' g)\"ﬂ"y”)

1 [ (mn| | Auv) | 2| G| B | Np'v') | 2

2 (8lmn— ng)z(glmn“— 8}\’#’1")

}, (20
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TasirE II. Energies and equilibrium deformation
to fourth order.®

A (w3/w2)0 EO E(z) E“) I E(d)/E(Z) I (wa/w2)4
28 0.65 99.2 5.5 —0.328 0.060 1.0033(ws/ws)o
180 0.77 4049 225 —12.24 0.544  1.0034(ws/ws)o

a Energies are all in the unit of }#wa.

with the sums extending over the sets of Greek indices.
It is desired to express this in terms of the occupied-
state quantum numbers /, m, # and the deformation
factor D=w3/ws. The result is

@ = — (Licg/342) {6 (B+m?) + 10 (B+m2)
+28(14m)+ 24+ 2im (I4+-m—+2)—2(I-+m-+1)
X (m24n-+ 1)+ D[6#3+9n2+25n+11
— (P+m*+1+m+2) (2n+1)
—(—8(B+m®)nD-+8(I+m)n*—4(P-+m*) D
+8(+m)(1—D/2)+8n*+8n(1—2B))/(1—D?)

+8(n+mn+1)/(1+D)1}. (21)
The corresponding equation in zeroth order is
&= oo { (I+m+1)+ (n+3)D}. (22)

When the summation over occupied levels is carried
out for specific nuclei, these equations take the form

"= 710y (b1+02D),

e® =37y (cF oD+ - -). (23)

As examples of moderately light and fairly heavy nuclei
we evaluate these sums for the cases 4=28, in which
the nucleon configuration is (1s)*(1p)2 (14,2s)®?, and
A=180 in which beyond the “no-spin-orbit-coupling
magic number” 70 we have 40 like nucleons (1%,2f,3p)*,
whereas it takes 84 nucleons to fill this ‘“‘shell.” In each
case the last major shell is about half filled, so as to
provide an example of large distortion. For these ex-
amples the coefficients in the last two equations are
given in Table I. After carrying out the minimization
with the condition ws’ws=constant, in zeroth order
[as in Eq. (19)] and in fourth order, we obtain the
results shown in Table II. One finds that the fourth-
order correction to the equilibrium shape parameter
ws/ws is remarkably small, only 0.3%, in each case.
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Thus the Hamiltonian (11.2), which is as far as it
goes the same as used by Nilsson in his interesting
determination of nuclear shapes, has nondiagonal
elements, heretofore neglected in that determination,
which seem to exert practically no influence on the
shape calculated. As we have seen, there are reasons
for doubting the adequacy of this simplified Hamil-
tonian for calculation of such details as the non-
diagonal elements even though its use may be justified
for the diagonal elements encountered in the original
calculation.

In order to illustrate the nature of the inadequacy
with as simple an extention of the calculation as
possible, we here wish to display the roughness of the
approximation of Eq. (8) as it stands, without intro-
ducing exchange, for a few specific states of 4=28.
Explicit evaluations of several forms of v;; for harmonic
oscillator states have been made.® The form

Vi = €XP ( - a'rif) (24)
is perhaps the simplest to use, partly because its
integrals have been listed explicitly for some cases of
interest.* In the notation there used, the wave functions
are

y=H exp{—jelo(a*+y") 402" 1}.

Thus ¢ and ¢’ are the parameters expressing nuclear
size and shape, and the matrix elements are expressed
in terms of 7=¢+2 and 7'=¢'+42. Minimization
without regard to the nondiagonal elements determines
a shape corresponding to ¢’/o=0.65. In Table III are
listed for comparison the values of

L=(a|X; v;;]|0)/{a| Z; vis] @)
R={(a|v:|b)/{a|v:| @)

for this shape. In order to display the relative in-
sensitivity to the shape, values are listed for three
values of ¢//o. The values of L calculated with a non-
exchange interaction v;; are listed in the first of the
two columns for each ¢’/o. In the second of the two
columns are listed in parentheses the values calculated
using a simple form of exchange operator, v:;(0.8P?
—0.2P9), mainly space-exchange P? with a little spin-
exchange P°. For the nonexchange case, we see that

(25)

and
(26)

Tasre ITI. Comparison of nondiagonal elements in the Z; 9;; and V; approximations for 4 =28.

L
TFirst values are calculated without exchange,
State values in parenthesis with exchange. R
I m n U wm o Vowm” W UV wm '/a=0.5 0.65 0.8
o 0 0 0 01 0 O0 O O 0 3 0.266(0.081) 0.263(0.068) 0.260(0.058) 0.419
1t 0 0 0 0 2 1 0 0 0 2 2 0.191(0.093) 0.193(0.101) 0.194(0.109) 0.269
o 1t 1 0 0 2 01 1 O O 4 0.394(0.273) 0.385(0.261) 0.375(0.249) 0.429

31. Talmi, Helv. Phys. Acta 25, 185 (1952).

4D. R. Inglis, Phys. Rev. 51, 531 (1937); W. J. Kroeger, Phys. Rev. 54, 1048 (1938).
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there is some degree of correspondence between the
approximations L and R, at least enough so that the
smallest remains smallest and the largest remains
largest. The same may not be said for the exchange
case. However, in both cases, the values of L are
uniformly smaller than of R; that is, the nondiagonal
elements calculated with pair interactions are relatively
smaller than those calculated with V;. The very small in-
fluence of the nondiagonal elements of V; on the shape,
a third of a percent as indicated in Table II, seems to
come about largely by cancellations of effects of various
nondiagonal elements but is still some rough measure
of the magnitude of the nondiagonal elements. A similar
calculation based on the pair interactions rather than
of V; would apparently involve somewhat smaller
matrix elements, among which there would also be

LEE AND D. R.
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cancellations of some sort. It thus seems plausible to
take the smallness of the influence calculated with V;
as an indication that the result calculated with pair
interactions would likewise be quite small.

The determination of nuclear shape by minimizing
the oscillator energies at constant volume is a schematic
approach which probably owes most of its success to
the fact that it takes kinetic energie$ into account to a
fairly good approximation, at the same time making a
rough estimate of the change in potential energy which
is in reality much too complicated to have been treated
adequately. Our remarks on the effect of nondiagonal
elements of V; display the effective consistency of the
approximate treatment. The remarks on pairwise
interactions give an inadequate hint of how this might
be related to the more fundamental nuclear problem.
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Fine Structure in the Energy Spectra of Photoprotons from He*
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The energy spectra of the photoprotons from He! irradiated with 31 and 32-Mev bremsstrahlung were
studied by means of nuclear photoemulsions in AEy steps of 0.133 Mev. In the region of the giant resonance
several peaks have been distinguished. The more evident of these have widths less than 0.5 Mev and are
located at He! excitation energies of 24.7+:0.2 and 26.1-£0.1 Mev. Previous experiments on the photoproton
spectra from He* could not give evidence of these narrow resonances because the spectra were examined in
energy steps much larger than the width of these resonances.

Other types of experiments which have been performed in order to obtain information on the existence
of excited states in He* are discussed. The fact that narrow resonances are distinguished only in the present
experiment is attributable to the selective nature of the (v,p) process, the most important contribution in

the He!(v,p) reaction coming only from the states of He? having J=1~and T=1.

I. INTRODUCTION

HE experiments on the He!(y,p) reaction
performed up to now give the energy spectra
of the photoprotons from helium in large energy steps:
Gaerttner and Yeater,! with a bremsstrahlung beam
of Eymax=100 Mev, studied the He(y,p) reaction with
a cloud chamber. The photoproton spectrum is given
up to E,=30 Mev in AE, energy steps of several Mev.
Fuller,? with bremsstrahlung spectra having E,max=25,
29, 32, and 40 Mev, studied the same reaction with
nuclear emulsions. The photoproton spectra are given
in steps of AE,=1 Mev. Gorbunov and Spiridonov,?
with a bremsstrahlung beam of 170 Mev, studied the
He(vy,p) reaction with a cloud chamber located in a
magnetic field. The energy spectrum of the photo-
protons is given in AE, steps of several Mev.

The aim of the present experiment is to study the

LE. R. Gaerttner and M. L. Yeater, Phys. Rev. 83, 146 (1951).

2 E. G. Fuller, Phys. Rev. 96, 1306 (1954).

3 A. N. Gorbunov and V. M. Spiridonov, J. Exptl. Theoret.
Phys. (U.S.S.R.) 33, 21 (1957) [translation: Soviet Phys.-JETP
6, 16 (1958)]; Comptes Rendue du Congres Iniernational de
Physique Nucléaire Interactions Nucléaires aux Basses Energies

et Structure des Noyaux, Paris, July, 1958, edited by P.
Guggenberger (Dunod, Paris, 1959), p. 682.

He(y,p) reaction in order to obtain photoproton
spectra with better energy resolution in the giant
resonance region. The peak of the giant resonance is
found by Fuller? at E,~26 Mev. According to Reid
et alt the excitation function appeared to have a
maximum in the region of 26 Mev and to decrease more
rapidly with increasing energy than indicated by
Fuller. According to Gorbunov e al.? the cross section
reaches the maximum value at 27-28 Mev and de-
creases with increasing energy less rapidly than
indicated by Fuller. No evidence for resonances having
widths less than several Mev has been found.

II. EXPERIMENTAL PROCEDURE

A helium gas target has been irradiated with a
collimated bremsstrahlung beam of E,m.x=32 Mev
from the betatron of Turin University. The photo-
protons have been recorded by means of Ilford C2
nuclear emulsions 200 p thick placed inside a chamber
filled with helium gas. Four nuclear emulsions were
placed parallel to the y-ray beam as shown in Fig. 1.

47J. M. Reid, P. Swinbank, and J. R. Atkinson, Physica 22,
1142 (1956).



