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A calculation of the crystalline field strength, Dg, is reported for the case of chrome alum, using the same
model and crystal field potential employed by Kleiner and recently determined Hartree-Fock wave functions
for the Cr*3 ion. On this basis, earlier theoretical attempts at determining, within the framework of crystal
field theory, accurate Dg values are reviewed and analyzed. Particular emphasis is placed on a consideration
of reported point charge calculations and Phillips’ method of including the effects of orthogonalization of
ligand to metal ion wave functions. Our results indicate that the point charge model estimates for Dq gave
good results mostly because they were based on the use of improper 3d wave functions for the transition metal
cation. Kleiner’s result is significantly improved—his wrong sign for Dy is reversed and a small positive Dg
is obtained—but in such a way as to contradict Phillips conclusions. A discussion is given of the various
evidence for the inadequacy of the electrostatic potential theory and some of the necessary modifications

are indicated.

1. INTRODUCTION

IT is by now well known that the Bethe! and Van
Vleck? crystal field theory has on the whole had a
striking success throughout its long history in inter-
preting a wide range of experimental data.*" Most
recently it has found wide use and acceptance in
analyzing optical absorption and paramagnetic reso-
nance experiments.*” In order to achieve this success,?
however, the strength of the crystalline field, usually
represented by Dg and unevaluated in the theory, is left
as a parameter to be determined empirically.

Despite these successes, crystal field theory has never
been theoretically justified in that, although in principle
Dq can be determined theoretically within the frame-
work of the theory, no accurate a priori determinations
of the crystal field strength have in fact been made.

Attempts at estimating Dg have been made by Van .

Vleck,? Polder,® and others, with apparent success,
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employing a crude point charge or point dipole model
to represent the electrostatic field arising from the ligand
atoms. Based on these estimates, much has since been
made in the literature of their result as seemingly
placing crystal field theory on a firm foundation, even
though Van Vleck himself suggested that the good
agreement was perhaps accidental.  More recently
Kleiner! attempted to check the theory in more detail
by calculating the crystalline field strength on the basis
of a more refined model for the charge distribution of
the ligand atoms. As his particular case he chose that of
the Crt** ion in chrome alum, which had also been
treated earlier by Van Vleck.® Kleiner’s result, which
was obtained after a good deal of elaborate calculation,
gave a value for Dgq of the wrong sign. This he associated
with the large negative contribution of the overlap of
charge between the Cr™* and O~— charge densities.
Kleiner concluded that the interaction between the
Crt+and the ligand ions was so strong that the crystal-
line field approximation was inadequate for giving
detailed agreement between theory and experiment.

The attempt of Tanabe and Sugano® to correct
Kleiner’s calculation by including the effect of the
overlapping charges in a modified molecular type calcu-
lation resulted in a failure of the opposite sort. These
authors found a Dg of the proper sign but of a magnitude
incorrect by a factor of two. Their calculation does not
follow from the electrostatic model as direct interactions
(Coulomb and exchange) are allowed between metal ion
and ligand orbitals. Since the calculations were quite
involved, many approximations and extrapolations were
necessary and it is not clear how these affected the final
results.

1'W. H. Kleiner, J. Chem. Phys. 20, 1784 (1952).
( 2Y. Tanabe and S. Sugano, J. Phys. Soc. (Japan) 11, 864
1956).
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Phillips'® has published an apparent justification for
the suggestion by Slater, Herring,* and others, that
Kleiner’s negative result arose from the neglect of
orthogonalization terms between the Cr™* and O——
functions. He showed that to a first approximation all
the effects due to the extension of the ligand charge
distribution (such as overlap and orthogonalization)
cancel and that apparently the usual estimates based
on the point ions approach, which gave good values for
the crystal field splittings, are indeed well justified.

It is our purpose to further explore these questions in
some detail, basing our calculations on recently com-
puted!® Hartree-Fock solutions for the free Cr**+* ion.
Since the molecular orbital treatment of Tanabe and
Sugano is not conveniently related to conventional
crystal field theory while the approach of Phillips is,
discussion will be most heavily related to the latter in
what follows.

Our work centers on the calculation of the crystalline
field strength for chrome alum using the same model and
crystal field potential employed by Kleiner.!® On this
basis the earlier point charge calculations are discussed
and Phillips’ method is reviewed and analyzed. Our
results indicate that the point charge model estimates
for Dg gave good results because they were based on the
use of hydrogenic 3d wave functions for the transition
metal cation. Further, Kleiner’s result is significantly
improved—his wrong sign is reversed and a small
positive Dg is obtained—but in such a way as to contra-
dict Phillips’ conclusions.

2. CALCULATION OF THE CRYSTALLINE FIELD
STRENGTH: CHROME ALUM

In the crystalline field theory of Bethe! and Van
Vleck,? the 3d electrons of the central ion in a crystalline
environment are considered as being under the influence
of the electrostatic field due to the nuclear charges and
an average electron distribution of ligands. No con-
sideration is included of allowing for any modification
of the electron orbits, from their free-ion values,'? de-
spite the fact that the overlap of metal and ligand
charge densities is not negligible. Kleiner’s calculation

13 J, C. Phillips, J. Phys. Chem. Solids 11, 226 (1959).

14 C. Herring, in Proceedings of the Conference on Photoconduc-
tivity, Atlantic City, November 4-0, 1954), edited by R. G. Brecken-
ridge et al. (John Wiley & Sons, Inc., New York, 1956).

15 R. E. Watson, Solid-State and Molecular Theory Group,
Massachusetts Institute of Technology Technical Report No. 12,
1959 (unpublished).

16 W. H. Kleiner, PhD thesis, Physics Department, Massa-
chusetts Institute of Technology, 1952 (unpublished), contains
extensive information on a wide range of calculations carried out
as part of this author’s investigations. Only a small portion of this
work is given in reference 11. We have retained Kleiner’s notation
except for the substitution of the more common Dg for his Q;
10Dgq is the cubic field energy difference of the triply and doubly
degenerate 3d orbitals.

17 In addition, the constraints associated with the conventional
Hartree-Fock formalism are also assumed. For a discussion of some
effects on free-ion wave functions arising from the relaxation of
these constraints, see R. E. Watson and A. J. Freeman, Phys.
Rev. 120, 1125 (1960).
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F1c. 1. Nuclear con-
figuration  for  the
Kleiner model of Crt++
and a H,O molecule in
chrome alum. The calcu-
lations discussed in the
text are for several
values of R/, R, and a.

is strictly based on what may be called the naive crystal
field approach.

A. Outline of the Calculations

In what follows we employ essentially the same
model, crystal field potential, and methods used by
Kleiner in his discussions.'® The quantity we wish to
calculate is Dq which is given as

Dg= (14rh) f PV, )

where 771P34(r) is a normalized 3d radial wave function
for Crt+* and V() is the radial component of the /=4
term of the crystal field potential expanded in the usual
form as a series of products of radial functions and
spherical harmonics of order / having cubic symmetry.

The model of Crt++-6H,0 as chosen by Kleiner (and
followed by Tanabe and Sugano as well) is that of 6
water molecules octahedrally coordinated about a
central Crt++ ion; each water molecule is assumed to
consist of a spherically symmetrical O~~ ion with its
center located on a coordinate axis a distance R from
the origin and two hydrogens which are situated as
shown in Fig. 1 but which are represented as a ring of
charge about the Cr++—H,0 axis (this in order to
preserve cubic symmetry). R’—R, the distance of the
plane of the ring from the O—— center, determines the
dipole moment of the H,O molecules; changing « also
affects the dipole moment and this contributes to a
change in Dgq as well.
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Fic. 2. The separate contributions to V,(r), the I=4 term of
the crystal field potential; Vi(r) is the contribution from the
finite dipoles; and V,T(r) is a contribution from a ‘‘correction”
charge or overlap term due to the extension of the O™~ charge
density (as considered by Kleiner!®).

From the model just discussed V4(r) was determined
by Kleiner to consist of essentially two terms which
contribute to Dg: (a) a contribution from finite dipoles,
called by him V,X(r), and (b) a contribution from a
““correction” charge or overlap term due to the extension
of the O~~ charge density and called V,7(r). These
separate contributions to V4(r) are shown in Fig. 2 as
is V(7). (For simplicity a very small overlap contribu-
tion due to the O——1s electrons has been left out of the
figure, and our calculations as well.)

Although he carried out careful calculations for a
whole range of values of the parameters R, R, and «,'
in his paper" Kleiner discussed only that model of the
nuclear configuration which involved those values of
the parameters which gave the best possible value of
Dq. [In this way he was able to emphasize that his
negative result did not depend on a particular (and
perhaps poor) choice of the parameters in question.]
This necessitated using a dipole moment for the H,O
molecule which was ihree times as large as the free
molecule moment of 1.86)X 1078 esu, the increase
presumably arising from the polarization of the waters
by the Crt++ ion.'® While this large a polarization is
perhaps difficult to accept, experimental data which
would confirm or refute this conjecture are lacking at
present. Nevertheless, we emphasize this assumption
here as it plays a large role in any interpretation of the
results.

There next remains the choice of wave function with
which to evaluate the integrals in Eq. (1). Kleiner (and

18 Tn his calculation Van Vleck? estimated the dipole moment
to be 1.92X 10718 esu, in good agreement with the free molecule
value, and assuming a point dipole model he obtained a value for
Dgq close to the experimental one.

FREEMAN AND R. E. WATSON

Tanabe and Sugano) used the Hartree®® SCF solution
without exchange for Cr** since no Hartree-Fock wave
functions were then available. For comparison we show
in Fig. 3 Watson’s!> Hartree-Fock 3d wave function for
Crt*t along with the Hartree Cr** wave function and
the hydrogenic 3¢ wave function used by Van Vleck®
in his early point charge calculation. We see that the
functions are quite different and that this difference is
one of shape rather than scaling. It is clear from this
figure and Fig. 2 that the different wave functions each
emphasize a different region of V,(r) and that quite
different results are to be expected from each of them.
In fact, Van Vleck’s® and Polder’s point charge calcula-
tions give such good agreement with experiment for just
this reason—namely, that their hydrogenic 34 functions
are so greatly expanded (see Fig. 3) with respect to
SCF wave functions as to give a very much larger
contribution to Dg.? Furthermore, Van Vleck didn’t
use a point charge potential of the form shown in Fig. 2
for V& (R) (which shows a change in form at r=R)
but instead defined Dg by

2 @
Dg=—2D f Ps(r)ridr, @)
105 J,

where D is a constant equal to —35eect;/4R% and ees is
an effective charge (set equal to —1.01¢ in Van Vleck’s
calculation). This form of the potential also increases
the calculated value of Dy.

While the question of what the “real” 3d radial func-
tion looks like remains unresolved, crystal field theory
in its formulation calls for the use of the best free atom
wave function. On this basis then, the Hartree-Fock
Crt++ 34 function is required. This latter function is

1.0

Cr'**(WATSON)

Cr ** (MOONEY)

HYDROGENIC (VAN VLECK)

P s
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F1c. 3. Watson’s Hartree-Fock 3d wave function for Crt*+;
Mooney’s Crt* 3d wave function (without exchange) and the
hydrogenic 3d function used by Van Vleck.

-1 R, L. Mooney, Phys. Rev. 55, 557 (1939).
20 We are grateful to W. Marshall for first emphasizing this
point to us and for several discussions.
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used in the present calculations, leaving such effects as
orthogonalization and covalency to be discussed in later
sections.

B. Results

Kleiner used an analytic expression fitted to the Crt+
3d wave function and was therefore able to evaluate
analytically the integrals pertinent to Eq. (1). Since
the potential V,7(r) was available to us in numerical
form our computations were more easily performed
using numerical methods. As a check on any possible
differences between the methods of computation, we
have repeated Kleiner’s calculations only with the Cr*+
wave functions retained in numerical form; the results
agree except for small unimportant differences.

Following Kleiner,' our results are best summarized
by plotting the separate contributions to Dg as a func-
tion of the parameters R’, R, and a. See Fig. 4. K(R',R)
and T'(R) are the contributions to Dg from the point
dipoles and overlap of charge, respectively. The solid
curves are Kleiner’s data and the dashed curves are our
results for the same quantities (as indicated by the
primes). K is the dipolar contribution for a dipole

1500 l
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F1c. 4. K(R',R) and T (R) are the contributions to Dg from the
point dipoles and overlap of charge, respectively. The solid curves
gives Kleiner’s data and the dashed are our results for the same
quantities (as indicated by the primes). K, K, K, are the dipolar
contributions for different values of R’, R, and « (as explained
in the text) and the arrows indicate the R value appropriate for
the aluminum alums.
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moment corresponding to the free water molecule value
(hence R'—R=0.37 atomic units) with the two protons
represented as a point charge 2e¢ on the Crt++—0——
axis (@=0in Fig. 1), whereas K and K are the dipolar
contributions corresponding to two alterations of the
water molecule in the Cr-6H,O**+ complex which
Kleiner considered. K; corresponds to increasing the
dipole moment of the water molecule by moving the
point charge 2e out along the Crt++— O~ axis such that
R’'—R is changed from 0.37 o 1.10, thus increasing the
dipole moment threefold from the free water molecule
value and thereby increasing Dq. K corresponds to the
triangular model for H,O shown in Fig. 1 with the
hydrogens represented by a cylindrically averaged
charge distribution. This procedure diminishes the effect
of the protons and increases both the dipolar contribu-
tion and Dyq. Kleiner’s published results'* were for this
model (with 2¢=105°)—clearly the most favorable
one consistent with an assumed Crt+t—O~— distance,
R, equal to 3.73 a. u. (the H,O—Al++t+ distance ob-
served in aluminum alum). Nevertheless, as pointed out
by Kleiner,! even for this case the calculated Dg (—500
cm™), which is composed of the two contributions
K,(1000 cm™) and 7°(—1500 cm™), is much less than
the observed value? of 1750 cm™. It is in fact of the
wrong sign. Furthermore, these results indicated that
if the overlap effects were not included then the point
dipole model (as found also by Van Vleck) gave agree-
ment with experiment? provided the dipole moment
was taken as three times that of the free water molecule.
These results explain Kleiner’s conclusion that the
crystalline field approximation was unable to give
detailed agreement between theory and experiment.
Our calculated results for these same quantities,
denoted by the prime, are shown in Fig. 4 for some of
the same sets of nuclear configuration parameters (while
Kleiner’s results!® are for four values of R, ours rely on
calculations for R=3.4 and 3.73 only). Comparison
between the two sets of data shows some striking
differences from Kleiner’s results and from these some
conclusions may be immediately drawn. First of all,
both the dipolar and charge overlap terms are greatly
reduced for all values of the parameters R, R and «
once ‘“‘proper” free ion Hartree-Fock wave functions are
used for the Crt** ion. Second, for no choice of the
parameters considered (in the range discussed) will the
dipolar contribution by #tself be large enough to lead to
a Dq in agreement with experiment—not even if a
dipole moment three times that of the free water mole-
cule is used. Finally, a Dq is calculated which differs
fromfthe value calculated by Kleiner''; in fact for the
most favorable choice of parameters the wrong sign
obtained by him is reversed and a positive (but small)
value of Dq is found. (Considering the various assump-

21 H. von Hartmann and H. L. Schlafer, Z. Naturforsch. 6a,
760 (1951).

22 Especially since the best estimate Kleiner had gave the range
1000< Dg<2000 cm™! for the experimental value of Dg.
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tions invoked in order to obtain this result, no signifi-
cance can be attached to this value for Dg.) Our result
is still far from the experimental value and it therefore
seems quite certain that with this model, and the inclu-
sion of only dipolar and charge overlap terms, agreement
with experiment cannot be obtained.

In the next section, we consider the question of
orthogonalization as a possible way out of this dilemma.

3. THE EFFECT OF ORTHOGONALIZATION IN A
’ CALCULATION OF THE CRYSTAL
FIELD STRENGTH

It was suggested by Slater, Herring, and others, that
Kleiner’s poor result was to be explained as arising from
the neglect of the orthogonalization terms between the
Crt* ion and its ligands. (Inclusion of orthogonality
terms raises enormously the complexity of the calcula-
tion and to keep the job tractable Kleiner was forced
to neglect these terms.) Phillips®® has recently attempted
to include orthogonalization in a calculation of the
crystal field strength. This was done using the orthogo-
nalized plane wave method as translated by Phillips!®-2
and Quelle* in which the effect of orthogonalization to
the ligand orbitals is included by grouping these terms
into an effective repulsive potential,V . This is shown
in the following development, which is that of Phillips.

Consider a free-ion one-electron wave function, ¥y,
which is a solution for the free-ion one-electron
Hamiltonian, H,, i.e., ’

Hypy=Ew;. 3)

We would like the energy for the case of this ion
surrounded by a crystalline array of ions constructed
from one-electron wave functions ¢,im» (Where lmn are
the one-electron quantum numbers and j denotes the
particular ligand ion). We could orthogonalize ¢, to
the ¢’s, obtaining

v=vs+ 2 Ajimubiimn, (4)
jlmn
where

Ajimn=— (1, Pjtmn), (5)

the bracket denoting integration over space and spin
coordinates. The energy is then obtained from the
Schrédinger equation for ¢ in terms of the complete
crystal Hamiltonian H,

Hy=Ey, (6)

V. is the potential due to the surrounding ions and may
be written as the sum of a point charge potential ¥, and
a correction for the finite size of the ions, V1. (in analogy
to the radial potentials Vx and Vj, respectively, in
Kleiner’s notation). ¥ can be made to include exchange

where

23 J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).
2 F. Quelle (unpublished).
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effects. Equation (6) can be rewritten in the form
(Ho+ Ve r=Eyy, ®)
Vo=V, +Vi+ Ve, ©)
and with Vg defined as ‘
Ve= 2 [E—Ea]Wriimn)$jimn/¥s.

jlmn

where

(10)

Thus V' is an effective repulsive potential arising from
the orthogonality requirement and FE,; the energy
obtained by applying the total Hamiltonian H to ¢jnim.

This procedure has obvious merits. While departing
from the standard crystalline field model, it introduces
the orthogonality requirement as a one-electron poten-
tial to be added to the dipolar and overlap terms in such
a way as to obtain an effective potential which resembles
and replaces the usual crystal field potential, V. In this
way, another term is formally provided with which to
bring about agreement with experiment.

Having arrived at this result, Phillips then proceeded
to present a general argument, based on orthogonalized
plane wave calculations for silicon,? to show that in a
calculation for Dg, in which the effective potential of
Eq. (9) is used, the contribution of the terms Vg and
V1, which depend on the finite extension of the ligand
charge distribution, should in first approximation cancel
each other leaving only the dipolar term, Vp, to con-
tribute to the field strength. Applying this conclusion
to the results of Kleiner’s calculation, he estimated the
repulsive term to be about ten percent larger than the
overlap contribution, which Kleiner had calculated to
be —1500 cm™ (see discussion of previous section).
Thus, with Vg chosen to be 17004400 cm~! (allowing
for an uncertainty in this estimate) and with a dipolar
contribution of 1000 cm™, Phillips could estimate Dg to
be 12004400 cm™ in agreement both with experiment
and with Van Vleck’s original result.

Our results, as discussed in the preceding section,
show that these conclusions must be seriously modified.
As we have seen, the dipolar contribution cannot by
itself yield a value for the crystalline field strength in
agreement with observation even though based on a
model which augments the dipole moment by a large
factor. This result contradicts Phillips’ conclusion since
if all the terms arising from the finite extension of the
ligand charge density do cancel each other then we are
left with a dipolar contribution (370 cm™) and hence a
Dq which is still far from the measured value* (1750
cm™). Suppose instead that one accepts the assertion
that the crystalline field is adequately described by a
potential such as Ve of Eq. (9). If we consider the
contributions to Dg coming from V, (4370 cm™ and
Vi (—320 cm™) as having been determined correctly
by our calculations, then an orthogonalization contribu-
tion (Vg) of 1700 cm™ is needed in order to obtain a
theoretical Dg in agreement with experiment. This
value is remarkably close to the value assumed by
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Phillips, but since his value was determined (actually
chosen) so as to cancel out Kleiner’s calculated overlap
contribution (— 1500 cm™) we must call the agreement
accidental.

Thus, Phillips’ procedure, while highly attractive,
does not appear completely adequate. Let us examine
it in more detail. Phillips’ conclusions were based on
observations made during an orthogonalized plane wave
calculation for silicon.?® In this method ¢, is a plane
wave and ¢, are core functions and to a very good
approximation are strictly orthogonal. For a transition
metal salt it is not immediately apparent that the
assumption of orthogonality between ¢’s belonging to
different ions is valid. In fact Naiman?® has obtained
overlap integrals, appropriate to MnO, using free-ion
Hartree-Fock functions for O—226 and Mn*2.!'® For an
axis along an Mn-O line he obtained an Mn(3ds)—O
(2po) overlap of 0.075 and for an O-O line an O(2po)
—0O’(2po) (different centers) overlap of 0.110 and an
O(2pm)— 0O’ (2pm) overlap of 0.044. He also observed
that overlap integrals involving Mn*+ 3s functions and
O~ 2s functions tended to be appreciable. These results
suggest that orthogonality between O~2 ions is as serious
a problem as that between near neighbor Mn*? and O
pairs. An orthogonal set of ¢’s could be constructed from
the O2 functions but using them would be very difficult.
The terms which make important contributions in Eq.
(10) are those whose E,;’s are rather close in value to
E (and thus must be accurately evaluated) and are
those whose E,;’s are most appreciably perturbed by
interaction with neighboring ions and by the resolution
of the orthogonality problem. Naiman’s results suggest
that the O~2 ion 2s and 2p E./’s may be as difficult to
obtain as £. This in turn suggests that it would perhaps
be wise to abandon the one-center single-ion-in-an-
external-environment approach of the conventional
crystalline field approximation and go to a molecular,
multicenter approach. These considerations will be fur-
ther discussed in the next section.

4. DISCUSSION

According to the crystalline field approximation, the
effects arising from the rest of the crystal on the cation
of interest may be taken into account by an electrostatic
field. Yet, as we have seen, theoretical attempts at
determining, within the framework of crystal field
theory, accurate @ priori values of the crystalline field
strength have not been successful. The point charge or
point dipole model seemingly gave good agreement with
experiment but, as it turned out, mostly because im-
proper 3d wave functions were used. Attempts at
acknowledging the distribution in space of the electrons,
as in Kleiner’s calculation, resulted in a very poor result
(despite the improvement that was obtained in the

25 C. Naiman, Quarterly Progress Report, Solid-State and
Molecular Theory Group, Massachusetts Institute of Technology,

July 15, 1960 (unpublished).
2% R. E. Watson, Phys. Rev. 111, 1108 (1958).

CRYSTALLINE

FIELD STRENGTH 1259
present work). The further refinement of including
orthogonalization in the calculation led Phillips to a
very attractive procedure, which upon closer examina-
tion has been shown to be inadequate. Each successive
refinement seems to lead to more difficulties.

Although the over-all agreement with the predictions
of crystal field theory is fairly good, there has been
increasing experimental evidence which reveals discrep-
ancies.?” Such quantities as spin-orbit coupling, hyper-
fine interaction, and g values are found to differ from
their free-ion values,?® and this has been interpreted to
indicate that electron transfer must play an appreciable
role.>” Covalent bonding effects have been introduced
by Stevens® and Owen® and experimentally confirmed
by the results of Tinkham?® and Griffith et al.®2 For all
these reasons it is clear that some of the basic assump-
tions of a static crystalline field must be questioned ; the
3d wave functions do overlap—each other and the
ligand wave functions—and so the surrounding ions
cannot be treated as simply point charges. Since the
overlap is in fact fairly large,* one may not treat the 34
wave functions as purely atomic orbitals based on a
naive ionic model. A more appropriate picture is to
consider the 3d functions as belonging to the entire
complex—a computationally difficult task.

Paralleling the long history of crystal field theory
have been several other theories, of which Pauling’s®
valence treatment and the molecular orbital approach
of Van Vleck* have been the most prominent. (The
calculation of Tanabe and Sugano'? appears to have been
the only attempt to use molecular orbital theory in a
quantitative calculation for Dg.) Each has had its share
of successes and failures, They serve to point out that
comparisons of the different methods suggest certain
necessary modifications in crystal field theory itself.
Perhaps the most successful approach to date has re-
sulted from the union of crystal field theory and molec-
ular orbital theory; it is called ligand field theory. This
union is considered artificial. Jarrett® has recently
suggested a generalization of crystal field theory which
includes covalent bonding in such a way as to allow for
a range from purely ionic to strongly covalent bonding,
thereby providing a bridge between the various theories.
Unfortunately, Jarrett’s formalism, while mathemati-
cally powerful, appears to make a practical application

27 Among the first to point out such discrepancies were A,
Abragam and M. H. L. Pryce, Proc. Roy. Soc. (London) A206.
164 and 173 (1951), and J. H. Griffiths and J. Owen, Proc. Roy.
Soc. (London) A213, 459 (1952). See also reference 7.

28 J. Owen, Proc. Roy. Soc. (London) A227, 183 (1955).

2 K. W. H. Stevens, Proc. Roy. Soc. (London) A219, 542 (1953).
( 3"5]. Owen, reference 28, and Discussions Faraday Soc. 19, 127

1955).

3 M. Tinkham, Proc. Roy. Soc. (London) A236, 535 (1956).

% J. H. E. Griffiths, J. Owen, and I. M. Ward, Proc. Roy. Soc.
(London) A219, 526 (1953).

3 L. Pauling, Nature of the Chemical Bond (Cornell University
Press, Ithaca, New York, 1940), 2nd ed.

3¢ J. H. Van Vleck, J. Chem. Phys. 3, 807 (1935), and elaborated
upon by J. Owen, reference 28.

35 H. S. Jarrett, J. Chem. Phys. 31, 1579 (1959).
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computationally formidable and perhaps not at all
tractable.

Aside from the above well-known modifications of
crystal field theory; which appear necessary if agree-
ment is to be achieved, there are a number of other
difficulties which enter even on the simple ionic picture
of the crystalline field approximation. Of these, we shall
briefly mention a few since these are not usually dis-
cussed. The use of the strong-field representation leads
to the use of orbitals designated by cubic quantum
numbers (¢, or ¢, for d electrons in cubic fields) rather
than the spherical quantum numbers, ;. These strong-
field functions are the correct functions to use only if
the Hamiltonian is solved without the spin-orbit and
the electron interaction terms (e?/7.;). Except in rare
circumstances this limit is not approached. Neverthe-
less, use is made of the strong-field orbital description
with the further restriction that the radial wave func-
tions for the fy, and e, electrons be identical not only
with the free-atom values but with eack other as well.
Recent calculations and neutron diffraction experi-
ments?® have suggested that these assumptions are
not correct. There are a number of effects, which arise
out of a potential of the type given in Fig. 2, which
~ perturb the radial wave functions—first from their
usual free-ion values'”* and secondly, so as to cause a
splitting in the ¢, and ¢, functions such that their radial
functions are not identical.#* In addition if one does
calculations for an ion in two different states, the one-
electron wave functions vary appreciably.®!7 Yet, basic
to the interpretation of optical absorption spectra is the
assumption that a single radial wave function suffices
for all the /5, and ¢, electrons in both their ground and
excited states. As has been discussed by Koster,? there
is the assumption of separability of the one-electron
wave functions into products of radial and angular
factors when in fact separation is valid only for a

3 R. E. Watson, Phys. Rev. 117, 742 (1960).

37 A, J. Freeman and R. E. Watson, Phys. Rev. 118, 1168 (1960)
and J. Appl. Phys. 31, 374S (1960).

38 J, M. Hastings, N. E. Elliott, and L. M. Corliss, Phys. Rev.
115, 13 (1959).

3 R. Nathans, S. Pickart, and H. Alperin, Conference on
Neutron Diffraction in Relation to Magnetism and Chemical
Bonding, Gatlinburg, Tennessee, April 20, 1960 (unpublished).

% See reference 37, appendix, for a discussion of the tendency
of the electrostatic crystalline field to expand the 3d functions.
If we estimate the magnitude of this expansion effect according
to the method of reference 37, we would find a 3d wave function
which falls roughly half way between the Cr*® functions of
Watson?!® and the Cr*2 function? illustrated in Fig. 3. While this
pseudo-3d function would change the numerical values of the
calculated contributions to Dg (see Sec. 2), the conclusions
arrived at in this paper would not be materially changed.

41 The calculations of references 36 and 37 led to a prediction
that even a half-closed-shell ion like Mn** would have a non-
spherically charge density and hence a form factor which, when
calculated according to the methods of R. J. Weiss and A. J.
Freeman [J. Phys. Chem. Solids 10, 147 (1959)7, would show
measurable asymmetries. Such asymmetries have been suggested
for Mn*237 and observed for Fe*3in Fe30,.%

42 G. F. Koster, Quarterly Progress Report, Solid-State and
Molecular Theory Group, Massachusetts Institute of Technology,
January 15, 1960 (unpublished), and to be published.
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spherical environment. Thus, unlike the usual assump-
tion underlying the theory, there need not be any
special relationship between the ¢y, and e, electrons
(such as common radial function or separability into
radial and angular parts.)

Finally, the preceding discussion was based on a
many-electron wave function which is either a single
configuration (Hartree-Fock) wave function or a linear
combination of a small number of configurations. In
the case of the free iron series ion multiplet spectra,
there are systematic discrepancies between Hartree-
Fock predictions and experiment. It appears that an
approach to the ‘correlation’ problem, such as configura-
tion interaction, is necessary for an appreciable improve-
ment of theoretical predictions. One might suspect that
a similar (many configuration) configuration interaction
treatment is necessary for the case of an ion in a crystal-
line field as well.

5. CONCLUSION

We have concerned ourselves with discussing various
attempts at determining from first principles accurate
theoretical values of the crystalline field strength. We
have seen that none of these have been successful and
that each successive refinement has introduced new
difficulties. It is not certain that a more “correct” (but
not complete) treatment would yield better results.
Certainly, the crude point charge model is incorrect and
attempts to justify this method appear destined to fail.
Both experimental and theoretical evidence for the
inadequacy of the electrostatic potential theory were
reviewed and discussed and some of the required
modifications indicated. These lead us to conclude that
while crystal field theory, when used as a semiempirical
theory, has on the whole had a high degree of success, it
appears impossible to justify on theoretical grounds
some of its basic premises. It therefore cannot be con-
sidered to be a fundamental theory for the description
of the wide range of phenomena that as a semiempirical
method it has dealt with so well. What is needed is a
theory based on an essentially molecular, many-center,
many-configuration approach. In such a treatment
symmetry will of course play as essential a role as it
does in the simpler theories, but the necessary computa-
tions (including many-center integrals) will be much
more complex than the integral of Eq. (1).
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