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The surface states of diamond and two-dimensional graphite are
investigated on the assumption that the delimitation of the crystal
causes no perturbation within the elementary cells of the Gnite
crystal. In both cases a plane perpendicular to the bond between a
selected pair of carbon atoms is taken as the delimiting plane. The
molecular orbitals are assumed in the form of a linear combination
of sp3 or sp' hybrids. In the case of graphite, molecular orbitals
that are linear combinations of 2p, orbitals, whose interaction with
sp' hybrids is neglected, are further considered. It appears that in
the case of diamond there exists a band of energies pertaining to
Shockley surface states in the gap between the valence and con-
ductivity bands. The number of atoms in this band equals the
number of atoms in the surface. From a discussion of the pertinent

wave functions, it follows that these states are an expression of
unsaturated bonds of the surface carbon atoms. The electron
density on the hybrids projecting from the surface is essentially
greater than the density on the other hybrids of the surface atoms.
Further bands of surface states exist in the region of energies
allowed for the volume valence and the conductivity states. In
graphite, a quite analogous behavior is shown by those surface
states whose wave functions are linear combinations of sp' orbitals.
Surface states whose wave functions are linear combinations of p,
orbitals are a manifestation of unsaturated double bonds of surface
atoms having only two neighbors. The analogy between these
Shockley states and the nonbonding states of odd alternant
aromatic hydrocarbons is pointed out.

!
'HE hitherto published papers on surface states set

out, with few exceptions, "from simple models
which could not even in rough approximation define the
properties of any actually existing substance.

In the present paper the surface states of diamond and
graphite are investigated. Since the question of the
existence of these states and their character is of primary
interest, we believe that it is permissible to use relatively
rough models, which might be considered unsuitable for
treating other problems. If the results are to contribute
to a better understanding of the processes on a pure
surface of these substances, it is desirable that they
admit of interpretation in terms of the bonding condi-
tions in the surface. Such an interpretation is con-
siderably facilitated by employing the 3 IO-I.CAO
method, which is widely utilized in theoretical chemistry.

In a recent paper' we have dealt with a model in
which a one-electron wave function is considered to be
a linear combination of s and p, orbitals situated in the
lattice points of a cubic lattice (Goodwin-Artmann
model" ). It was found that the Shockley surface states'
in such a crystal, delimited by a plane perpendicular to
the x axis, correspond to unsaturated valences projecting
from the surface. A generalization of the finding that the
Shockley surface states are, in the framework of the
band theory, an expression of the specific bonding condi-
tions in the surface' leads us to the assumption that
states of this character must exist in graphite and
diamond, too.

Indeed, Baldock' found in his investigation of a very
simple model of two-dimensional graphite that by

G. R. Baldock, Proc. Cambridge Phil. Soc. 48, 457 (1952).
~ H. Statz, Z. Naturforsch. 5a, 534 (1950).
3 J. Koutecky and M. Tomasek, J. Phys. Chem. Solids (to be

published).
4 E. T. Goodwin, Proc. Cambridge Phil. Soc. 35, 232 (1939).' K. Artmann, Z. Physik 131, 244 (1952).' W. Shockley, Phys. Rev. 56, 317 (1939).
~ J. Koutecky, J. Phys. Chem. Solids (to be published).

delimiting a two-dimensional crystal by a straight line
perpendicular to the direction of one type of bonds we
obtain Shockley states. Baldock considered only the
nearest interaction between the p, orbitals situated in
the lattice points of the lattice of two-dimensional
graphite, and set out from a discussion of expressions for
the energy states of finite graphite strips. It is not
without interest to find out whether this conclusion
remains valid even when a somewhat more complicated
model is used, taking into consideration the interaction
between next-nearest p, orbitals. In the framework of a
one-electron approximation, not considering the inter-
action between p, orbitals and sp hybrids in graphite,
it is necessary, of course, to consider also surface states
arising by breaking of xo- bonds. Although the justifica-
tion of this approximation becomes still more doubtful
for the problem of surface states than for volume states,
we think it useful to show the properties of the Shockley
states arising in this way.

SURFACE STATES OF DIAMOND

The one-electron wave function describing the state
of the bonding electron in diamond is considered in the
form of a linear combination of equivalent sp' hybrids
of atomic orbitals of carbon which are situated in the
lattice points of the diamond lattice. We consider as
not negligible in the approximation employed only the
interaction between hybrids pertaining to the same
carbon atom and the interaction between hybrids per-
taining to adjacent carbon atoms and exhibiting their
maximum amplitude in the direction of the line connect-
ing the pair of atoms considered. The resonance integrals
defining the first or second interaction shall be denoted
by p' or p, respectively. The other interactions are
neglected, so that we obtain a model which is a direct
generalization of the Hall diamond model' and at the

' G. G. Hall, Phil. Mag. 43, 338 (1952); Phys. Rev. 90, 317
(1953).
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same time permits description of the conductivity band. '
The model considered is so simple that the calculation
of the energy of the volume states leads to explicit
expressions, a feature which is advantageous in the
application of a method in which we set out from the
characteristics of these states when studying the
properties of surface states. "

Since two atoms are contained in an elementary cell
of diamond, we considered altogether eight kinds of
equivalent orbitals. The wave function describing the
state of an electron in an infinite crystal will have the
form

8

4j;01,$2, $3= Q 2 cj,y(51,4,$8)e t ~t~+s~y
I)1,?n2, m3 'Ij=1

X ty (r jr31&1 2332132 ms as)

where $; are quantum numbers coordinating the wave
function to a certain irreducible representation of a
translation group, j denotes the remaining quantum
number (j= 1 8), 02y(r) are equivalent orbitals
(p= 1 .g), a; are elementary translations of the
diamond lattice, and mi are integers. If we take the
value of the Coulomb integral of the sps hybrid as zero
level of the energy, the secular determinant has the form
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For further calculation, it is advantageous to take into
consideration also another form of this secular equation:

where the elements of the matrix C= (c;;) are connected
with the elements of the matrix D= (d,;) as follows:

z = 1) 2) 3: c"=ttIt
"—d 4

i=4 5.
i =6, 7, 8: c„=dg —d,5.

We introduce a new variable by the relation

x= W+y'.

As energy unit we select the value of the resonance
integral y. The secular equation (2) has two double
roots, independent of the quantum numbers $;:

X1 4—&1~

the zero density of the electrons is in the sp8 hybrids
021(r—2231ai —2232a2), having their maximum amplitude in
the direction of the translation a3 and pertaining to
elementary cells characterized by the condition rj83=0
in a cyclic crystal, which according to the Born-von
Karman conditions represents an infinite crystal. Since
we consider, as already mentioned, only the interaction
between two orbitals pertaining to neighboring atoms,
we thus obtain actually zero probability for the transi-
tion of the electron over the given delimiting plane.

The one-electron wave function in the finite crystal
we assume in the form

N 8

1/i j,'f 2 12+ p dj;pm8 ($1,$2)28y;01, 02 (r rr8383)—, (9)
F3=1 @=1

Ny $1 $2(r—2288188) =—p e'&™1«+m2&»

g mI, m3

Four further roots of Eq. (2) are..-.=2& ~L.1+& (4 ~IAI)]~,
where

X p (r—2231at —rN2182 —jr83183). (10)

(7) For the expansion coefficients, the following equations
may be written down" ":

3

A =1++ e'&j. ~2;~3 Ij~3;10dj,81)

dj;10 0= +10;10dj;81~

(11a)

(11b)
For small values of y' in comparison to unity (i.e., to y),
the root on the right side of Eq. (7) can be expanded,
whereby we obtain the expression derived by Hall. '

Now we delimit the crystal by a plane perpendicular
to the elementary translation a3 and bisecting the line
connecting two neighboring atoms. In order to obtain a
model of a finite crystal, it is sufhcient to assume that

' J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954)."J.Koutecky, Phys. Rev. 108, 13 (1957).

1 f 8 CJ1Cgy
I.~8 to=— p — e™&3db,

22r "0 j=1(x—xj).(12a)

"J.Koutecky and A. Fingerland, Doklady Akad. Nauk S.S.S.R.
125, 841 (1959).

In Eqs. (11) and in the succeeding text we no longer
indicate the dependence on $1 and $2. The magnitude
Lp 8;10 is, for an infinite crystal (X-+ oo), defined as
olio ws10
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or"

L~m~;io=
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Z- db (12b)

The magnitudes si, es must satisfy the relation

S)S2=1,

f
si f'&1.

(22)

(23)

d „~ denotes the determinant which arises by omitting
the pth column and the rth row from the determina, nt D.
From Eq. (11b) immediately follows the relation
defining the energy of the surface states in the form

(13)
i.e.,

(x'—1)I (x' —3y'x —1) (x' —4y'x' —x+y')
—&' x fa I

7=0, (14)
where

a= lale' =41+e '5'Pe '5'

The roots x= &1 are of no significance for our case as
they correspond to volume states. From Eq. (11a) for
P=8, rr58=1 we obtain a relation from which can be
derived, besides the expression for the energy of surface
states, also the condition for their existence:

The condition (22) is obviously equivalent to Eq. (14),
while the second condition is the condition for the
existence of surface states.

If we set

(24)

the necessary and sufficient condition for the existence of
surface states of the energy x reads as follows:

f, (x) &f, (x) &9. (23)

(26)

Of interest for a discussion of the energy spectra of the
surface states are those points for which the equation
fi(x)=f8(x) holds. These are first of all the points
n~(N2(N3, in which both functions equal zero, because
\

x'—4y'x' —x+y' =0

1 I
' Fgs

e"5'db ——1.
I'

(16)
applies. In addition, fi(x) = fs(x) =9 holds for x=+1.
Finally, for

Since from Eq. (13) there follows
x= ei,=2y'a (1+4'")&, (27)

7'
I 18;18 ~18;15)y'+ W

(17)

fi(&4) =f8(&')=1.
Moreover, let us note that the relations fi(y,)=9

N fr(y, ) hold for the roots yi&ys&ys of the equation

the relations x' —7y'x'+ x (12'"—1)+y'= 0. (28)

(I')r„=o=v'(p'+ W) I'18; 48 y I'18;45+ I'18;15
y'+ W

7 f„e I 18; 58+8 I 18; 587

(I 18)I' =Oe 5 I 18,.15+7 118., 58e 5

p'+ W
(18)

also hold, where the symbols I'~„,& denote the deter-
minants which arise from the determinant F by omitting
the pth and rth rows and the sth and tth columns. The
determinants in Eqs. (18) are easily calculated, eliminat-
ing from each of them the factor (x' —1).

If we define

For purposes of illustration, Fig. 1 represents the func-
tions fi(x) and fs(x) and the intervals of the permissible
energies of surface states for y'=0.25. This value seems
to be probable, according both to the evaluation of
respective integrals, ""and to the results of the applica-
tion of the semiempirical method to unsaturated hydro-
carbons. "Figure 2 shows the intervals of the allowed
energies of surface states for a number of values of this

40"

z= g'( q+$3)
) (19)

and carry out the integration indicated in Eq. (16) in
the known way along the unit circle in the complex
plane, this relation passes into the condition

4 ~ ~ ~ ~

"AQ "0.5' '0 0.5'
8

s,o as' 2,0

where

e, = Lx' —3y'x —17,
xfafy'

(2o)

si = L (x—y') (x' —1)—3y'x7. (21)

'~K. Fukui, Ch. Nagata, T. Yonezawa, H. Kato, and K.
Morokuma, J. Chem. Phys. 31, 287 (1959).

Fio. 1. The diagram of functions fi(x) (curve 1) and fr(x)
(curve 2) for y'=0.25. The allowed energy intervals of surface
states of diamond in p units can be obtained from this graph by
means of the inequality (25).

"G. E. Kimball, J. Chem. Phys. 3, 560 (1935)."G.G. Hall, Proc. Roy. Soc. (London) A205, 541 (1951)."G.Sandorfy, Can. I. Chem. 33, 1337 (1955).
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parameter. From the graph it is immediately apparent
that we obtain four bands of allowed energies of surface
states, of which one (Is) lies for not too great y'
(y'(0.331) in the gap between the valence and the
conductivity band in the neighborhood of the energy
8'=0. For y'&0.3311, the upper limit of the band of
the surface states I2 lies above the lower limit of the
conductivity band of the volume states. For y'= 0.5, the
conductivity and valence bands contact each other, and
the interval I2 is completely contained in the conduc-
tivity band. For y') 0, one further band (Ii) lies in the
intervals of the energies allowed for the volume valence
states, and two (Is,I4) in the intervals of the energies
allowed for the volume conductivity states. The number
of states in the band of the surface states I2 equals the
number of surface atoms. It is evident from Fig. 1 that
the intervals of the energies x for which surface states
are allowed are delimited by the following points:

d~;rm3 ——0. (29)

In the interval I2, which lies in the neighborhood of

TV=0, we can easily estimate the ratio of the coefficients

for the hybrids y&(k=5—7) to the coefficients for the

One boundary point of the interval I~ or interval I~
therefore is the point e2 or v &, respectively. By comparing
the relation (27) with Eq. (7) for A =0, we find that the
intervals I~ and I3 have one of their boundaries at the
point where the bands of the surface states contact each
other. The boundary point of the interval I4 is a de-
generated level of the volume states, given by Eq. (6)
with the negative sign on the right side.

By means of the relations (11a) and (12b) we can

calculate the coeflicients d j;rms. From Eq. (13) it
follows that for an arbitrary m&,

hybrid p8, there applies

k=5—7: ~d, , j,r/d;, sr ~'.

From Eqs. (29) and (30) it is evident that the surface
states whose energy lies in the interval I2 can be
interpreted as unsaturated valences of surface atoms.
The wave function describing these states exhibits a
high electron density on the sp' hybrids of the surface
atoms projecting from the surface and a low density on
the remaining three hybrids of these atoms.

SURFACE STATES OF GRAPHITE, CAUSED BY
BREAKING OF THE m BONDS

Within the framework of an approximation in which
the interaction between p, orbitals and sp' hybrids is
neglected, let us first pay attention to the one-electron
wave function produced by a linear combination of the
p, orbitals of the carbon atoms of the graphite lattice.
We make the same assumptions as Wallace" (compare
also other papers" "),whose model of two-dimensional
graphite is interesting, first of all for the reason that it
considers also the interaction between carbon atoms
which are not nearest neighbors.

If we consider only the interaction between the
nearest adjacent p, orbitals, the problem of the surface
states in two-dimensional graphite can be solved in a
quite trivial way. It must be pointed out that a semi-
infinite crystal of two-dimensional graphite (as far as
double bonds are concerned) may be considered formally
as an alternant hydrocarbon. "It is known that on odd
hydrocarbons of this type there exist nonbonding
states with the energy

(31)

if we select the scale of energies so that the zero level
equals the Coulomb integral of the p, orbital of carbon.

Let us consider a straight line determined by the
direction of one of the elementary translations a& of the
graphite lattice. This straight line is perpendicular to
the line connecting two atoms (compare Fig. 3) and
delimits the surface of the crystal in which the carbon
atoms bound to two neighbors alternate with atoms
bound to three nearest neighbors. In Fig. 3 we have
starred the surface atoms of the first kind and this
starring is further performed consistently. The coeffi-
cients in the wave function of orbitals pertaining to non-
starred atoms shall be assumed to equal zero. Then
there must hold

l5;ml, m2 +t j;mr+ ims +1j;m],m +, s1 =0~ (32)

21= 0.5' y=OA. J=D.25

FIG. 2. Intervals of allowed energies of volume and surface states
of diamond in y units. The surface-state intervals are shaded.

'6 P. R. Wallace, Phys. Rev. 71, 622 (1947); 72, 258 (1947)."C. A. Coulson, Nature 159, 265 (1947)."C.A. Conlson and R. Taylor, Proc. Phys. Soc. (London) A65,
815 (1952).

» J. Barriol and J. Metzger, J, chim. phys. 47, 432 (1950).
2o W. M. Lomer, Proc. Roy. Soc. (London) A227, 330 (1955).
2' C. A. Coulson and G. I. Rushbrooke, Proc. Cambridge Phil.

Soc. 36, 193 (1940).
"H. C. Longuet-Higgins, J. Chem. Phys. 18, 265 (1950).
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FIG. 3. Schematic representa-
tion of a planar graphite
crystal. In the picture are
shown the straight line m2=0,
which limits the crystal, and
the elementary translations
uI, ug as well as the translation
p by means of which we pass
from the starred to the non-
starred position.

m2) 1:
Wdm2 +p bdm2+1 +p bdmg —1

+pbdm2+ pdm2 i =0,

Wdm2+pbdm2 +pdm2+1 +p bdm2+1

+p bdmg —&=0,
where we have set

b I b
I
e—'"= 1+e't'

(38b)

(39)

p denotes the resonance integral between the nearest
neighboring P, orbitals, and P' the analogous integral
between next-nearest orbitals.

Now we introduce the following linear combinations:

where l&';m&, m2* is the coefficient in the jth molecular
orbital at the p, orbital of the starred atom lying in the
cell characterized by the translation m&a&+m2a2. In
order to preserve periodicity in the direction of the
elementary translation a&, the coefficients must satisfy

g'bfS2CO

X~m2(r, ;&~) =—-- Lggi(r —m2a2)+e'"upi(r —m2a2 —p)j
(40)

gt 769(0

Xy,m2(r;P~) =—
P ng~(r—m2a2—)+e'"ut&(r m&a2—p)$—

)j;ml+1,mg =lj;ml, m2 8'~ )

so that from. the requirement

(33)
The wave function (36) can be expressed by means of
the orbitals, de6ned by the relations (40), in the form

I
1j;my, m2+1 /lj;my, m2

I
& 1 (34) P D

u, m2((y)X um (2rjpJ), (41)

follows the condition of existence of the surface states
with the energy given by Eq. (31) in the form

I

1+e't'I'&1.
P Du, m2(Eum2;~m2 Wb»bm2m2'j—=0. (42)

@=8q p ts2Since therefore the magnitude $& must satisfy the in-

equality 120'&$&&240', the number of the surface

states equals one third of the number of surface atoms
bound to two neighbors.

Now we are going to show that the principal results
of this elementary analysis of the problem of Shockley
states in the graphite model considered, which are in
accordance with Baldock's conclusions, remain valid
also in the Wallace model.

Ke write the wave function in the form

The magnitudes E~m2;~2' are defined, as obviously
follows from the transformation (40), by the expressions

E8m9;Sm2'= p I
b

I
hmgm2'

(gp+ I
b

I p ) (5m2, m2'ylysmg, m2' —I) y

, =plbl~, ,
+(gp I bl p ) (8m2, m2'yl+Bm9, m9' —1))

E&m2. p782 EPW2'Sm2 2p(5m2' 2m' Sm2, m2 +1))1

(43)

where the coeiKcients Du, m2(fy) satisfy the system of
equations

(35)

A& Z Ldm2 Ngy (r m2a2) +dm2—Nfl(r m2a2 p)j (36)
nag=1

where we have defined

Ngy(r mpa2) = P e™t&q,(r—m~a~ —m~a2) j (37)
g mg

y, (r) denotes the p, orbital and p the translation by
which we obtain, from the starred position, the non-

starred position in the same elementary cell.

By the standard variation procedure we obtain for
the coefficients of the wave functions (36) the following

system of equations:

Wd&*+p'bd2 pbdo= 0, —
Wdg+pbdg*+pd2*+p'hdtv= 0,

p& 2p'I b I. (45)

On the assumption that this condition is satisfied, we
can immediately write the relations for the energy of
the surface electron Shockley states at zero deformation

where 6;,; is Kronecker's delta. If we write

:P+P'Ibl, ~-,=!P-P'lbl, v.,=lP,
(44)

~=~plbl, co=i(v.+v.)=lp,
we see that the relations (43) pa.ss into the erst three
equations (26) of reference 3. In this way it is shown, of
course, that by means of the transformation (40) the
problem of the surface electron Shockley states in
graphite may be converted into the case of the Goodwin-
Artmann model. It is essential for the applicability of
the procedure given in reference 3 that the magnitude
7~ is positive, from which follows the condition
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of the potential within the finite crystal, as well as the
pertinent condition for the existence of these states
I compare Eqs. (38) and (39) of reference 3j:

lf'= eh" —v.)/Co= 2p'I &
I
'=4p'(1+cosh), (46)

(35)

Further there holds Lcompare Eq. (48) in reference. 3$

dm2

10-

g(Xl

-10 -05 0 Q5 /.0 'I,$

dm2

Fto. 5. The diagram of functions g~(g) (curve 1) and gs(x)
(curve 2) for p'=0.25. The allowed energy intervals of surface
states of graphite in p units can be obtained from this graph by
means of the inequality (56).

In Wallace's model, the condition for the existence of
surface states (35) is therefore maintained, so that here
also the number of these states equals one third of the
surface atoms connected by bonds to two neighbors.
The level of the energy TV=0 extends into a band given
by Eq. (46). The charge density of the tr electrons is
essentially higher on the starred atoms than on the non-
starred atoms. It is evident from these results that the
Shockley m-electron surface states correspond to the un-
saturated double bonds of the surface atoms, and that in
this sense the investigated plane delimiting the graphite
crystal behaves as a radical.

It can be easily shown by simple considerations
according to Heilbronner" that no Shockley surface
states exist in a crystal of two-dimensional graphite
delimited by straight lines defined by the equations
(see Fig. 4)

~tst+-', tres ——0, mt+-,'tres ——E.

4t=4t —it t, (49)

where the wave vectors k, k' can be expressed by means
of the components in the direction of the mutually

Now we form the linear combinations of the wave
functions in the infinite crystal:

perpendicular x and y axes, the x axis being perpendicu-
lar to the delimiting plane:

k= (k„k„), k'= (k„—k„). (50)

SURFACE STATES CAUSED BY BREAKING OF THE
cr BONDS IN TWO-DIMENSIONAL GRAPHITE

If we set out from the mentioned assumption that the
interaction between the p, orbitals and the sp'-hybrids
in two-dimensional graphite can be neglected, the wave
function for the cr states in the infinite crystal can be
written in the form of Eq. (1), in which, hbwever, the
index p runs through the values from 1 to 6, and we do
not consider the elementary translation a3 and the
pertinent quantum number gs.

The secular equation for the infinite crystal then has
the form

From the relations derived by Wallace" it follows
that the function @I, has its zero value in the cells
characterized by Eqs. (48). The function Pq therefore
represents the solution for a finite two-dimensional
crystal delimited by the straight lines defined by
Eqs. (48). The number of functions defined by Eq. (49)
is here equal to the number of atoms in the crystal. For
this reason, in such a crystal no wave functions pertain-
ing to surface states can exist.

~is, is= O) (51)

FIG. 4. Schematic representa-
tion of a planar graphite
crystal. In the picture the
limiting straight line is drawn
according to the Eq. (48).

&s-a= v'~L1+v'(3v'~
I
& I)j', (53)

where the magnitude x is defined by the relation (5) and
we have introduced the notation

if the symbols q, p' denote the resonance integrals
between the sp' hybrids. Putting again q = 1, we obtain
the solutions

(52)
and

2

8=1++ e'b. (54)

~' E. Heilbronner, Helv. Chim. Acta 36, 921 I',1954).
Sy a procedure quite analogous to the case of the

diamond model considered in this paper, we obtain the
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equation for the energy of the surface states for the if the function gp(x) is defnied as follows:

crystal delimited by the straight line F2=0:
gs(x) = Lxs —3y'x' —x+y'$'.

7'2
(57)

gp(x) (gi(g) (6, (56)

where the quantity b is defined by Kq. (39).
The condition for the existence of surface states then

reads

Kith regard to the similarity of the results obtained
for the 0. bonds of the two-dimensional graphite model
wit'h the results for diamond, we give here no detailed
discussion of the spectra of the surface states produced
by breaking of the (T bonds in graphite. For orientation
it will be probably sufficient to refer to Fig. 5 for
y'= 0.25.
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Hall Effect and Resistivity of Ni-Pd Alloys*f

JAMES A. DREESEN AND EMERSON M. PUGH
Carnegie Institute of Technology, Pittsburgh, Pennsylvania

(Received June 10, 1960)

The two Hall coefFicients and the resistivity of Ni-Pd alloys have been measured from O'K to room
temperature using fields up to 3.1 webers/m'. The ordinary Hall coefficient is found to decrease in magnitude
for small additions of Pd in Ni, but to increase as more Pd is added. It is also found that the ordinary Hall
coegjcient varies more slowly with composition for these alloys than it does for the Ni-Cu alloys. It is shown
that a simple treatment successfully correlates the ordinary Hall coefFicient, the resistivity, and the satura-
tion magnetization of these alloys. The results indicate that the parallel half of the d band in pure Ni is not
quite full at the absolute zero of temperature, and that the relaxation time is not a function only of the
energy for the thermal scattering in these alloys. The extraordinary Hall coefficient is found to obey none
of the variously proposed theoretical relations.

INTRODUCTION

' "T has been established by a number of experiments
- ~ that the Hall e6ect in ferromagnetics obeys a rela-
tion of the form

Vt/I =Ep(tspH)+RiM,

where V is the Hall potential, t the sample thickness,
I the sample current, H the magnetic field and M the
magnetization. Ro and Rl have been called' the ordinary
and extraordinary Hall coe%cients, respectively. The
ordinary coeKcient Ro was found to correspond to the
Hall coefficient in nonferromagnetic materials.

An analysis of the Ni-Cu' and Ni-Co' data based

upon the free electron relation

of the electronic charge in coulombs, gave for e„ the
number of 4s electrons per atom, values agreeing only
within a factor of two with those deduced from magnetic
data. Nor could this discrepancy be explained on the
basis of a two band model where conduction occurs in
both the 3d and 4s bands.

A four band model, proposed by Pugh, 4 has been more
successful in explaining the data. In this model, both
the 3d and 4s bands are divided into sub-bands where
the spins of the electrons are aligned either parallel or
antiparallel to the magnetic field. Applications of this
model have usually neglected the conduction in the d
band, in which case the expression for the ordinary Hall
coefhcient reduces to

Ep —1/(one), —— (2)
Ep= (—2/Xn~e)L1 —2X/(1+&)'$, (3)

where X is the number of atoms per m', e the number
of conduction electrons per atom, and e the magnitude
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Rp = —1/(IVn*e)
this reduces to

1/n*= (2/n, )$1—2X/(1+X)')

(4)

(5)
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where X is the ratio o /o „;o. is the conductivity and the
subscripts a and p refer to the antiparallel and parallel
electrons, respectively. In terms of the effective number
of conduction electrons per atom, e*, defined by


