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Deviations from Ohm's law in nonpolar crystals are treated for weak fields by the variational method.
A simple band structure is assumed. Scattering by both acoustical and optical phonons, and ionized
impurities is included. It is shown that the inQuence of optical phonons on the field dependent mobility
(E' term where E is the electrostatic field) is maximum for a temperature which corresponds approximately
to the optical phonon energy. The field dependent mobility is highly sensitive to ionized impurity scattering
as in the case of acoustical phonons alone. Finally, the convergence of the variational method is established
in limiting cases using as a representation a set of polynomials which are orthonormal with respect to the
collision operator. Extensive calculations are given for electrons in germanium and comparison with
experiment is discussed.

l. INTRODUCTION dependence of these deviations and their sensitivity
to ionized impurity scattering. It will be shown that
the relative importance of optical to acoustical phonon
scattering is maximum at a temperature corresponding
approximately to the optical phonon energy. The high-
and low-temperature limits are determined mainly by
acoustical phonons. %e shall touch upon the question
of electron-electron collision and see how Frohlich's'
argument follows from a simple consideration of the
thermalization problem

In Appendix A the correct solution of the differential
equation discussed by Yamashita is given. In Appendix
8 the convergence of the variational method is
established in limiting cases.

' 'N an earlier paper, ' hereafter referred to as I, the
& ~ application of the variational method to the problem
of nonlinear conduction in solids has been discussed.
In this paper we are concerned with an actual cal-
culation of the second order term in the electrical
conductivity of a nonpolar crystal such as germanium.
This problem, the so-called warm electrons problem,
has been discussed experimentally and theoretically by
several authors. ' ' Yamashita' has approximated the
transport equation by a differential equation for which

he gave a particular solution which actually violates
the boundary condition at infinity. The passage to
the differential equation is justified at high temper-
atures for nearly all energies and at all temperatures
for high enough energies. Thus, in determining the
high-temperature solution and the asymptotic trend,
the differential equation is valuable, but only when

the correct boundary condition is incorporated.
Morgan' has emphasized the importance of optical
phonons and published results based on a numerical

solution of the transport equation.
Our treatment here is entirely different from those

of Morgan and Yamashita and is based on the varia-

tional method. The first aim of this, paper is to
demonstrate the usefulness of the variational method

in discussing this class of problems. It will become
evident later that if one can calculate the zero field

mobility (Ohm's law) analytically, then the higher

order terms in the mobility can likewise be given

analytically but in the form of a series. The second

aim is to present an adequate overall picture of
deviations from Ohm's law by studying the temperature

2. TRANSPORT EQUATION

The model we shall discuss is formally covered in
Sec. 3b of I. For brevity we shall use the formulation
and notation of I.Additional notation will be introduced
as needed. The central problem is to solve Eq. (18)
of I for asr and then use„ the result in Eq. (17) to
calculate the mobility. For this purpose we have to
define the relaxation time r and the collision
operator Ao.

Consider a highly dilute classical electron gas in a
nonpolar crystal interacting with the acoustical and
optical branches of the lattice vibrations in the presence
of a weak and uniform electrostatic field E. Let the
electronic effective mass be the scalar ns, and assume
that the scattering probability of an electron by a
single phonon be as given by equations (27) and (45a)
of Seitz. ' It follows then that the relaxation times
7- and 7.~ for acoustical and optical phonon scattering,
respectively, are given by"*The results of this paper were presented at the meetings of

the American Physical Society at Cambridge, 1959 and Detroit,
1960. See L Adawi, Bull. Am. Phys. Soc. 4, 129 (1959); 5, 193
(1960).

g Presently at Battelle Memorial Institute, Columbus, Ohio.
' I. Adawi, Phys. Rev. 115, 1152 (1959).
2 T. N. Morgan, J. Phys. Chem. Solids 8, 245 (1959).
3 J. Yamashita, Phys. Rev. 111,1529 (1958).
4 J.B.Gunn, Progress in Semiconductors, edited by A, . F. Gibson

et al. (Heywood and Company, London, 1957), Vol. II, p. 216.
' J. B. Gunn, J. Phys. Chem. Solids 8, 239 (1959).' K. Seeger, Phys. Rev. 114, 476 (1959).

7 H. Frohlich and B. V. Paranjape, Proc. Phys. Soc. (London)
869, 21 (1956), see also, R. Stratton, Proc. Roy. Soc. (London)
A242, S55 (1957).

F. Seitz, Phys. Rev. 73, 549 (1948).' See also, W. A. Harrison, Phys. Rev. 104, 1281 (1956). The
important fact is that the optical phonon matrix element does not
depend on the phonon wave vector which leads rigorously to a
relaxation time,

'0 In defining r equipartition has been assumed. If we define
the average energy of an electron distribution to be s, E7.'„ then
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where,

1/r. = Wxl,

1/r o
= Wbxpgn (x+xp) 1+(n+ 1)(x—xp) lj,

W =4@2C'(rnKT) '/pcs''

b =9D' c' K"/SCzcooz.

1 d (xe'y
Qx dx &1+Is]

(1)

(2)
(—e x'—P')+ b (xp/x, )e

gx dx

X{n(x+xo)'*LP—lt (x+xo)j
+(-+1)(*-*.)-:~~-~(*-")i),

(10)
(3)

(4)
where,

&=bxpLn(1+xo/x)l+ (n+1) (1—xp/x)lg. (11)
In these equations x and xo are the electron energy
and the optical phonon energy Acro, respectively, scaled
in units of the thermal energy KT. C and D are
coupling constants defin'ed by Seitz, ' p is the mass of
the crystal per unit volume, c is the speed of sound,
E is a reciprocal lattice wave vector, e is the equi-
librium distribution of optical phonons, namely
1/(exp —1), and the square root refers always to the
positive real part.

The acoustical phonon collision operator Ao' is
defined, according to Eq. (7) of I, by

-'d 8o—~o(*+ )j
4x. gx J.

2(xza) ~—xa

~00 . - —. $ 00

P= Fxdx Fx(P P')dx—,J,
F=e—/(1+5).

(13)

3. SOLUTION

a. Matrix Elements

To solve Eq. (10), expand f in terms of a set of
trial functions I„:

The mobility p to second order" in E is expressed in
terms of the zero field mobility po by

I =f o(1+Ay), (12)

where P is given from 17 I by

+ (n+1)s'dsL@,—yo(x —z)j, (5) f=Q cour, (14)

where x,=2mc'/KT, n is the equilibrium number of
acoustical phonons, namely, 1/(e' —1) where z=hco/KT.
The first integral in (5) refers to absorbing phonons.
The upper limit is 2(xx,)'+x„and the lower limit is
x,—2(xx,)l for x(x,/4 and zero otherwise. Equation
(5) can be simplified by assuming equipartition and
expanding ~the integrand in a Taylor series to second
order in s and thus arrive at the Lorentzian gas
equation, "

Wx. d f dgpq
e-*x

gx dx E dx i
(6)

The field dimensionless constant" y is defined by

y=F q/3m c W =3rrfz, F-/16c,

where p = 4q/3nzWzrl is the zero field mobility of
acoustical phonons alone. %ith these definitions the
basic equation we have to solve is

an average electron with this energy and momentum p = (3mKT, )&

will interact on the average with an acoustical phonon of energy
pc. Equipartition is then valid for pc«KT or T,«T(ICT/3rac ).
Since 3mc' is of order 1'K and the distributions we discuss do not
depart significantly from thermal equilibrium T,~T, we see that
the equipartition assumption is good down to a few degrees Kelvin.

' See, e.g., I. Adawi, Phys. Rev. 112, 1567 (1958).

The optical phonon collision operator Ao'I' is given by

&o'ohio= Wbxpe *{ (xn+ p)x'*t p opp(x+xp) j
+ (n+1) (x—xo)'LA —A(x —xp))). (7)

In Eq. (18) I, let
eoiF-'= fy.

and it follows from I that" the c,'s are determined by
solving the N set of linear algebraic equations

b, =P, d„,c„.

b„=
Jo

Fxl„'dx,

e-*x'u„'u, 'dx+bn(xo/x. )

X e—*Lx(x+xo)]'*fu„(x+xo)—u,]
X(u, (x+xp) —u, jdx.

"Rigorously, we should consider the coeKcient a» to obtain p
correctly' to order E. This refinement, however, will not be
attempted here.

"The definitions of .P and the matrix elements b„and d„, here
differ from those of I by multiplicative constants but the structure
is the same.

'4 In performing scalar products in Eq. (10) to obtain b„dan
d„, we have the choice to keep the x & in both sides of the equation
and treat the volume element as x&dx, or lift it from both sides
and consider the volume element as dx.

"The exact contribution to d„, by acoustical phonons follows
from the form (5) for A0'. It is

e/r

s'ds e [u„u, (x z) T—u. u,—(x z)]d—x, —
4x,' Q 0 e' —1 j (x +z)'//4x,

which can be approximated by
(sax) &-xa

e ~dx ' (e*/(e*—1))z'dzLu, —u, (x—z)g
4r, ' Jx„/4 o

XLu, -u. (x-z))
and which in turn leads to the first integral in (15) after obvious
simplifications. 0 is the Debye temperature.
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We shall basically use the representation of I,
namely,

u„=x"—-', -', (2r+1)/2,
then,

b, =r e *x'dx/(1+5),
0

b. Orthonormal Polynomials

In the interest of arriving at a simple set of linear
equations in (15) we shall construct a set of poly-
nomials which are orthonormal with respect to the
collision operator. Multiply both sides of (10) by x'*

(17) and write the result in the abbreviated form:

r—»—t f'r) (Sl
d„=rs(r+s)!+br'(xo/x, ) P P I [I [xo~' "' '

'=o &~ &i) i.g')

The function f in (18) is definedto by

then the polynomials P, can be constructed from the

(18)
u„'s of (16) by the Schmidt process,

Pl ur/~11

f„(xp)= '

e—*x"(x+xp) ldx
P

=m J8xp~ xp™48$ —m/2, m/2+-')

and satisies the recursion system,

fm+r (m xo+ s)fm mxofm 1=xo'&m—o)

n—1

These polynomials satisfy the property

(20) and the normalization condition of I

n—1

P-= fu- Z(u-ft—P.)P.) fd- Z(u.—AP.)') '.
(19)

(25)

(26)

deduced by one partial integration of (19).The function

f; and f,*are evaluated with the aid of Watson's
formula. "The result is If we write

)~ P„-;id.=o.
P

(27)

f;,= (xo/2)e «' E( px/2),

f;= (xo/2) e*' '-L(2 —xo/2)Er(xo/2)

+ (xp/2)Ep(xp/2)g.

(21)
we easily see that

4'=2 rrrPr~ (28)

From (21) and (20) all f 's which occur in (18) can
be generated and consequently all elements d„, of the
collision matnx D can be evaluated analytically.

As for the matrix B, (which could, for obvious
reasons, be called the source or drift matnx), the
elements b„have to be calculated, in general by
numerical methods. We recall that

np= ) xP„Pdx,

t'
P=gn„j —n, + )~" Zp„ax [

(0Ak) =Z ~'

(29)

(30)

(31)

p, p= @&by, (22)

~ c, (b„+t 3 5 2r+1
P=Z —

f

—b —--". b,
I

r=& b& t r +1 2 2 2- (23)

'~The function 8 f,, is the Whittaker function. See E. T.
Whittaker and G. N. Watson, A Colrse of Modern Analysis
(Cambridge University Press, New York, 1940), 4th ed. , p. 340.

~7 G. N. Watson, A Treatise on the Theory of Besse/ Fgnctions
(Cambridge University Press, New York, 1922), p. 172 formula
(4) and p. 79. Derivation of fy is obvious. To derive f» express
2ft+xpfy in terms of Itp(xp/2) by a partial integration.

which means that the zero 6eld mobility has to be
calculated numerically because of the cumbersome
function h. Since the evaluation of any b„ is similar
to the evaluation of bj, we conclude that if Ohm's law
mobility can be calculated in terms of tabulated
functions, the same will be true for the elements b„.

Once the matrices B and D are computed the matrix
equation of (15), B=DC, is solved for the c,'s and the
result is used to calculate P or any other physical
property desired. From (13),

The use of orthonormal polynomials is valuable in
discussing convergence questions. See Appendix B.

c. General Remarks

Several helpful remarks about the nature of the
problem can be made with little analysis.

(i) An energetic electron will lose energy to optical
and acoustical phonons at the rates, "Wbxphropgx and
2mc'5'x&, respectively. Therefore, for sufficiently large
energy (2mc'x) bxpkv p), the asymptotic solution of
(10) is determined by acoustical phonons alone" and

'8 The energy transfer equation leads to the loss rates

Wbxpkcupg(I+1) (x xp)& rp(x+xp)l—p-
and

2paoPW(x& —2x&),

respectively, the former result is obvious, the latter was first
derived by W. Shockley, Bell System Tech. J. 30, 990 (1951)."It is then obvious that (10) cannot have periodic solutions
with periodicity xo as claimed by T. N. Morgan in Bull. Am.
Phys. Soc. 3, 18 (1958).
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lnx. This suggests that an improved asymptotic
solution is obtained by expanding P(x&xo) in a Taylor
series. This solution is discussed at length in Appendix
A in connection with Yamashita's work.

(ii) For eery low temperatures such that b(xo/x, )tt((1,
the optical phonon terms in (10) can be neglected and
the answer" is

if = lnx —4'(-', ),
(32)

P = —0.61.

(iii) For /ow temperatures such that bttxo((1, optical
phonons contribute very little to the mobility and the
function h(x) can be ignored and b„=rr! (as for
acoustical phonons alone). But, optical phonon terms
on the right of (10) must be retained.

(iv) For high temperatures xo&(1, ttxo=1, It 2b,
and the mobility p, p is reduced from its acoustical
phonon value by the factor (1+2b). From (17) and
(15)

b„=rr!/(1+2b),
~00

d„,= (x'+bl(xos/x. )(x(x+xo)]i)e *u,'u, 'dx
Jp

(33)

e x(x+bxo'/-x. )u„'u, 'dx. (34)

1 d ( @o)
~o"Po= —Wbxo' —

(
e—*x

Qxdx 0 dx ~
(35)

and Eq. (10) reduces to

d (xe*) d
fe *x(x+—bx—o'/x—,)f'). (36)

dx (1+2bj dx

The solution of (36) is

Indeed, the optical phonon collision operator can be
reduced (in analogy with the form (6) for acoustical
phonons) to

4. CALCULATIONS

In this section we present calculations of P for
electrons in germanium.

a. Parameters

The parameter b relating the strength of scattering
by optical to acoustical phonons is determined by
fitting the temperature dependence of the mobility p, p

to the experimental law'P T '".Deviations from T "
law are thus ascribed to optical phonons alone, although
it is conceivable that a small change in the effective
mass m with temperature might contribute. "There is
some arbitrariness in determining b 'as can be seen
from Figs. 1 and 2 and the graph of Herring. ' We
find b 0.19 if log(po/tt, ) versus logT has the aeerage
slope —0.1.6 for 80'(T(300'K.. The accepted values
c=5.4X10' cm/sec, and ito ——3800 cm'/volt sec at
300'K are used. The optical phonon energy is assumed
to correspond" to 400'K. A scalar effective mass for
germanium is clearly not dered. We shall take for m
either the density of states effective mass'4 which is
0,22 mp or the conductivity effective mass which is
0.12 wp, where mp is the electron rest mass. This leads
to the two values of 475 and 870 for tattoo/2twc'. With

OP,/P, o

IO

0
6.I

0.2
0.4
0.6
0.8

I

b=2

vanishes exponentially and rapidly like

exp L
—(Atoo/ET) ).

For some moderate temperature, therefore, the optical
phonon operator should have a maximum inAuence on
the solution and ~P~ should assume a minimum value
when the thermal energy is of the order of the optical
phonon energy.

lp= (1+2b) ' 1 (*+b*o'/*)—2

XIn(x+bxo'/x. )d*i . (37)
10 I I 'I l I t I I t t 'I t t t It

O.I 0.2 0.4 0.6 0.8 I 2 4 6 8 IO
%ctto / KT

I ~ t t t t t I

F«m (37), (13), and (32) we obtain that

P(xo= 0)= —0.61/(1+ 2b). (38)

r

FIG. 1.Influence of optical phonon scattering on the temperature
dependence of the reduced zero field mobility yo/p„ for various
values of the optical phonon scattering parameter b.

The high-temperature limit of (38) is the same as the
low-temperature limit of (32) except for the factor
1+2b. In the former case the optical phonon operator
in (36) or (10) approaches zero slowly as 1/T (since
xo'/x = (fuoo) s/2tttc'ET), and in the latter case it

so F. J. Morin, Phys. Rev. 93, 62 (1954l."Intervalley scattering is ruled out by the symmetry argument
of C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).

~ C. Herring, Bell System Tech. J. 34, 237 (1955)."I. Pelah et c/. , Phys. Rev. 108, 1091 (1957).
'4 G. Dresselhauss, A. F. Kip, and C. Kittel, Phys. Rev. 98,

368 (1955).
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c. Ionized Impurities

It is customary to use for the potential of an ionized
impurity center the screened Coulomb 6eld,

IO
V(r) =&q'e '~~/Dr (4o)

IO

-to
2

0% 0.8
-0.

g,2

lo
O. l l

%o,/KT
IO

2

0.4

0.2

0.1

where V, q, D, r, and e are the potential energy, charge,
dielectric constant, distance and screening radius, re-
spectively. The + and —are for repulsive and attrac-
tive potentials, respectively. Conwell and Weisskopf
(CW) omit the screening factor in (40) and introduce
the cutoff by ignoring scattering for impact parameters
greater than —,'X~' where Ã~ is the number of ions per
unit volume, while Brooks and Herring take a to be the
Debye length. "The question of a rigorous potential
with a natural cutoff is still open. "

For purposes of estimates a is of order S~ '. The
validity of classical mechanics and the Born approxi-
mation for the calculation of a cross section and a re-
laxation time from (40) is excellently discussed by
Bohr."To summarize Bohr's results, the collision diam-
eter b, =2q'/ Dmv' and the de Broglie wavelength/2n. ,
X=A/nn~ are introduced where n is the velocity of the

FIG. 2. Temperature dependence of deviations of the zero field
mobility from the T & law, for various values of b. The ordinate
scale shows the deviation 5 where p0~T &&+~). 6 is obtained by
differentiating the curves of Fig. 1.

lO

these values, the field parameter y can be written as

y= 1.92x03X10 5',
when E is expressed in volt/cm.

(39)
l0—

= 4752mc

b. Temperature Dependence of g

In these calculations the method of orthonormal
polynomials was used as it proved to be more accurate,
from a practical and not a fundamental point of view,
than the power series method of (16). LThis is particu-
larly true if the system of linear equations (15) is
illconditioned. j The convergence of p Land of course
that of QAQ)j is monotonic. The last terms retained
contributed no more than a few percent. In all no

more than 10 terms were used. The variation of the
E' term in the mobility with temperature is shown in

Figs. (3) and (4) where —P is plotted against
kuo/ICT=xp. The first term in the series of Eq. (30)
(which corresponds to a Maxwellian distribution) is

also shown for comparison. It is seen that
~ p ~

assumes

a minimum for fuvo/ET 0 8 For the Maxw. e.llian this
value is about 4/3. No simple power law can describe
the variation of P with temperature over a wide

temperature range. For T &80 K, p, o p, and h can be
ignored. Below 40'K, optical phonons can be ignored
altogether and we essentially have acoustical phonons
alone.

IO
WELLlAN

to
O. I 0.2 OA 0.60$ I 2 4 6 8 lO

S~.i K T

"Both methods are discussed by P. P. Debye and K. M.
Conwell, Phys. Rev. 93, 693 (1954) and N. Sclar, Phys. Rev. 104,
1548 (1956).See S. Chapman and T. G. Cowling, The 3fathematical
Theory of Nongniform Gases, (Cambridge Univers&ty Press, New
York, 1953), 2nd ed, , Sec. 10—33.

2 The question of a natural cutoff is discussed for a similar
problem by O. Theimer and R. Gentry, Phys. Rev. 116, 787
(1959) when the Debye Huckel theory is valid.

"N. Bohr, Kgl, Danske Videnskab. Selskab Mat. -fys. Medd.
18, 8 (1948),

FIG. 3. Temperature dependence of —p for Aco0/2mc~=475.—P as given by a Maxwellian solution is shown for comparison.
The straight line portions (dotted for the Maxwellian) are the
high- and low-temperature limits.
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incident electron. Bohr defines the ratios,

t =b./a = 2q'/Dmv'a,

lt =b,/X= 2q'/Dke,
(41)

and the validity of various theories is defined in terms
of regions in the f~ plane. For minor screening t'&&1,

classical physics is valid for ~) 1 and the Born approxi-
mation holds for lr(1. For excessive screening, f)1, the
Born approximation applies when ~(t'**and classical
physics holds for ~&&( but only for angles greater than
X/a. Exact quantum methods must be used to fill in
the gaps.

For our problem the constants D, m, and a are given
while e is variable, and hence the locus of (f,~) is the
parabola,

O.I

to

lt'= (2q'ma/DA') 1

From the above discussion it follows that if

(42)

MAXWELLIAN

a (Dfi'/2q'm (43)

a) DA'/2q'm. (44)

In this case, classical physics has partial validity (for
angles &~ t/a) in the energy range,

the Born approximation will hold for all velocities.
Unfortunately, the quantity on the right of (43) is half
the Bohr radius in a semiconductor and the inequality
is satisfied only for high impurity densities leading to
impurity conduction which does not concern us here.
The case of interest corresponds to

O. I 0.2 0.4 0.6 0.8 t 2 4 6 8 IO

$0l /KT

Fro. 4. Temperature dependence of —p for Acop/2mcs=870.
—P as given by a Maxwellian solution is shown for comparison.
The straight line portions (dotted for the Maxwellian) are the
high- and low-temperature limits.

scattering is given by""
1/rr = (2~q41Vr/Dsmsvs) I,

I.= ln (1+D'a'nz'v'/q4) (Rutherford)

=lnL1+(2a/t)'] —4a'/(4a'+X'). (Born)

5'/2ma'( e (q'/Da

and full validity for

qs/Da«e(2q m/DsjP =4ee,

(45)

(46)

For simplicity I. is treated as a constant which is in-
signi6cant except for low energies, but then the whole
theory is open to question and the form (48) has to be
revised. In the manner of an earlier paper" the param-
eter o. is introduced and defined by

where e is the energy ~me', and c& is the binding energy
of a hydrogen like impurity. The Born approximation
applies for

6)46~. (47)

"C~. H, Lane and E. Kverhart„Phys. Rev. 1,17, 920 (1960).

It can also be used for small angles to supplement the
classical solution for energies given by (45), but the
matching of the two solutions (classical and Born) still
presents difficulties, as Lane and Everhart" have re-
cently pointed out. Energies below 5'/2ma' (where
X)a) definitely require rigorous quantum methods.

Here, we shall apply the above criteria to a thermal
electron of energy 3KT/2 and restrict ourselves to the
case of "minor screening" where we can use the classical
or the Born approximation. At 80'K, b, 10 ' cm for
an electron in Ge and the condition for minor screening
is well satisfied for Eq(10' cm ' and T)80 K. The
equality 4ee=3ET/2 (or It=1) holds for T 145'K if
m 0.1mo. The relaxation time rl for ionized impurity

Q = 61Ja/Pry

where p, z is the zero fMld mobility for ionized impurities
alone. Observe that n for the same $1 is proportional
roughly to T '. Calculations of P versus n were carried
out for T=80'K and 300'K as discussed in Sec. 3, with
the only modification,

F(x) = e—/(1+h+n'x —'). (50)

The advantage of treating the logarithmic term in (48)
as a constant is that the matrix elements b„(or n,) can
be evaluated analytically in terms of sine and cosine
integrals for T&~ 80'K when h can be ignored. It is im-
portant to notice that the collision matrix 9 or the
polynomials p„are the same for all n. The convergence
of P for cr ~&1 at 80'K (xs ——5) is not monotonic and some
oscillations do occur. Results based on using 10 poly-

29 Here the Rutherford formula is used for impact parameters
less than c, and not an actual classical cross section for the
potential (40) as Lane and Everhart do. The difference should
not be significant for b,(ge,
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nomials are presented in Figs. 5, 6, and 7. The values
of P here are lower than the values based on acoustical
phonons alone"" by a factor 3 to 10 at 80'K, and a
factor of 50 to 100 at 300'K.

We see that P as calculated here differs considerably
from its value for a Maxwellian distribution, particu-
larly at 80'K where the discrepancy could be a factor
of 15. Deviations from Ohm's law (as measured by P)
are strongly sensitive to ionized impurity scattering.
Ionized impurity densities which alter Ohm s law mo-
bility pp by only a few percent (n 0.1) and are hardly
detectable in p, o measurements can induce relative
changes in the field dependent mobility P of order 30%.
This conclusion, which was reached earlier by Adawi"
for acoustical phonons alone, might be exploited in
checking various theories of ionized impurity scattering
by measuring p, rather than fzo, for various densities Xz.

d. Discussion

In Table I a comparison of theory and experiment is
made assuming Acpp/2mc'=870 (or m 0.12mp). The
measurements on high-purity samples at 300'K and
200'K are taken from Seeger's paper' and agree sur-
prisingly well with theory. The measurements on impure
samples where ionized impurities play a role were carried
out at 78.5'K by Gunn' and are compared to our calcu-
lations for x~——5 or T=80'K, which is close enough. In
computing n we follow CW and take a=-,'E~& and set
rzzv'/2=3ET inside the logarithmic term. "If we recall
that, in a random distribution of noninteracting parti-
cles, the average nearest neighbor distance" is 0.55/g &

we see that the Conwell Weisskopf choice is reasonable.
Theory gives P=O for rr 1.25 while the experimental
value is e= 1.12. For n below unity the theoretical values
are about a factor of 2 higher than the measured values.
For 2 &a, &4 theory and experiment give a broad maxi-

mum value for P. However, the theoretical values on the
right of column 3 in Table I are about a factor of 4
higher than measurements; while the theoretical values
on the left of column 3 which are based on a Maxwellian
distribution agree quite well with experimental values.
This is suggestive, but not conclusive, that electron-
electron collision (which we are ignoring here) for
densities of order 10"cm ' at 80'K might become im-
portant enough to impose a Maxwellian distribution.

Some idea about electron-electron collision can be
obtained from an elementary consideration of the
thermalization problem. Consider an electron gas of
density rz at thermal equilibrium (Maxwellian) in a
crystal. At timet=0introduce into the crystal a group of
electrons whose number is negligible compared to e and
let their initial distribution be f(x,O) which is isotropic.
For future time, the injected group of electrons will tend
to be thermalized through their interactions with the e
host electrons and the lattice vibrations. If we write the
time dependent distribution f(x,f) =e Po(x,f), then Pp
satisfies the equation:

e Bgp/83= —(Ap +Ao +Ap )Pp, (51)

where the acoustical and optical phonon operators have
been defined in (6) and (7). The electron-electron colli-
sion operator h.o', which is linear for our problem, has
been derived by Rosenbluth, MacDonald, and Judd, "
and Kranzer" and is de6ned by"

Ap'Qp =—4s.rzq' in' 1 8 ' Bgo—GL (2x)'*](x)le-*
D'm'*(ET) f Qx Bx Bx &

z (52)
G(s)=—(2/rr) f exp( —y'/2)dy/s —exp( —s'/2),

0

7=3(DEr) f/2 41qs.
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FIG. 5. p as a function of a for Scop/2mc2=475 and xp=5. The
dotted curve is the Maxwellian result multiplied by 10. The
straight line portion refers to the value of p when 0.=0.

3p An arithmetical error has been detected in Table I of reference
11.For o.=2, 8, 10 and 15, p' should read 0.069, 0.042, 0.032, and
0.017, respectively, instead of the values given, thus bringing
p' and p closer for o,)1."S. Chandrasekhar, Revs. Modern Phys. 15, 1 (1943).

O. I 0.2 0.4

"M. N. Rosenbluth, W. M. MacDonald, and D. L. Judd,
Phys. Rev. 107, 350 (1957).

3'H. C. Kranzer, Atomic Energy Commission Report NYO-

Fro. 6. p as a function of a for Scop/2mc'=870 and xo=S. The
dotted curve is the Maxwellian result multiplied by 10. The
straight line portion refers to the value of p when o.=0.
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TABLE I. Comparison of theory and experiment. The last two
rows refer to values at 300' and 200'K and the remainder of the
table applies to ionized impurity scattering at 78.5'K.

0

&I
cnl

6.6 X10"
1.45 X10'4
2.7 x1014
49 X10'4
1.8 X10'~
7.8 xio"
1.25 X10"
2.95X10"

0.25
0.36
0.48
0.63
1.12
2.14
2.6
3.75

0
0

(t —t o)/t o&-"

theory

—1.8X10 4

—1.3X10 4

—9.6X10 5

—6.2Xio 5

~ ~ ~

3.8X10—e +1.9X10 ~

4.8X10 ' 1.9X10 '
4.8Xio ' 1.7X10 5

300'K —3 Xio 7

200'K —1.8X10 '

t/~ cm'
experiment

—1.1X10 4

—8 X10-»
—5.5X10-5
—3 X10 5

0
4 xio-'
5 X10 ~

4 xio-'
—3 Xio '
—2 X10 6

-2

MAXW ELLI AN
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-I2
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FIG. 7. p as a function of a for loop/2xoco= 475 and xp=4/3.
The dotted curve is the Maxwellian result shown for comparison.
The straight line portion refers to the value of g when a=o.

I'rom (6) and (52) we see that the frequencies

V =S'x,
V,= 4rrrtq4 in'/D'm& (ET)'*,

(53)
and 80'K, respectively, we anticipate that electron-
electron collision will become important for densities
of order 10" cm—' at room temperature and 10'4 cm '
at liquid nitrogen, when all the three interactions are
present. This does not mean, however, that for these
densities electron-electron collision will impose a Max-
wellian distribution. The question can only be answered

by a rigorous treatment. In passing we remark that if
we were interested in the inQuence of electron-electron
collision on the zero field mobility we might compare 8"
to V,. IV is of the order of the frequency of momentum
randomization by acoustical phonons. V, is 3.6/t, where
t, is the Spitzer'4 self collision time which is the time
necessary for an average electron to be deflected by pr/2

by collisions with other electrons. This suggests that
electron densities of order (ET/2mc')rtp are necessary
to inQuence the zero 6eld mobility which are about a
factor T higher than eo. Electron-electron collision,
however, has no infiuence on po if v is independent of
energy.

can be looked upon as thermalization coupling constants
to acoustical phonons and electrons, respectively. For x
of order unity (or energies of order ET) we anticipate
that electron-electron collision will be important relative
to acoustical phonons for electron densities given by

rt) rto= Wcc~'m'(ET) I/4trq4 lnv. (54)

The density' rtp as given by (54) is the same as that of
Frohlich' (except for factors of order unity) when we
replace E in Frohlich's Eq. (1.4) by ET. W is of order

/qmy, „adnrtp is about 10"cm ' and 10"cm ' at 300'K
and 80'K, respectively. Since the calculations of this
paper have shown that, due to optical phonons, devia-
tions from Ohm's law are lower than their acoustical
phonon values by a factor of order 100 and 10 at 300'K
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APPENDIX A

In this appendix we shall give the correct solution to
Yamashita's basic equation. We shall therefore use the
notation of Yamashita (Y). In his notation, J, s, 8/A, x,
and p$ correspond to our symbols b, xp, bleeps/cc„cc/xp,
and y!t, respectively. On solving" Eq. Y (16) for 1' in
terms of x, Yamashita has ignored the optical phonon
terms in the coefficient of I' Consequentl. y, the contribu-
tion of optical phonons to the inhomogeneous term of
Eq. Y (22) has been omitted. The correct equation

oo L. Spitzer, Jr., Physics of Fully Ioroised Gases (Interscience
Publishers, Inc. , New York, 1955), p. 76.

35 Reference to an equation in Yamashita's paper is made by
inserting Y before the number of that equation.

2880, Institute of Mathematical Sciences, New York University,
1959 (unpublished)."'Note added irs proof. To obtain a formal solu—tion to Eq. (51)
multiply both sides by gx and expand do in terms of the ortho-
normal Laguerre polynomials t„&(x),where, l„&=l„&/Pn!(I+', )!)&, -
(see Appendix 8). Thus,

@p(x, t) = Z c.(t)t.1(x).

Let C be the column matrix whose elements are c1, c2, c3, and
we have the two equations,

cp(t) =cp(0),
C= —DC,

where D is the total collision matrix of Eq. (51) formed with
respect to the polynomials l„&(x). The first equation simply
reflects the conservation of the number of particles. Since D is
symmetric and positive definite its eigenvalues, )1, 32, ~ ~ ~ are
positive and its eigenvectors, X1, X2, ~ ~ can be orthonormalized.
Form the matrix X whose X;I, element is the ith component of the
kth eigenvector where these vectors are orthonormal. After some
matrix algebra we have

C (t) =Xgexp —tH/XrC (0),
where H;; =);5;;.The solution written in full is

c, (t)= Z X,pX;pc;(0) exp —(t) o)
j, k

It is seen that the eigenvalues ) g, can be identified with reciprocals
of relaxation times, the lowest ) f, leads to the longest relaxation
time.
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should read:
d'$ d$

R(x) +S(x) +T—(x) =0,
dx dx

q(x) =—S(x)/R(x),

t(x) = T(x)/R—(x),

then Eq. (A.1) reads:

P"+q(x) &'= t(x).

(A.2)

(A.3)

The boundary condition is such that as x —+ ~,
e '*$x"—+ 0 for n) 0. This is necessary for the moments
of the distribution, such as (energy), for example, to
be finite. The behavior at the origin must allow the
distribution to be normalized. Now the homogeneous
solutions of (A.3) are $i,which is a constant and $,
which behaves like e'* as x —+ ~, since q(x) —s for
x))1. $& violates the boundary condition at ~ and must
therefore be excluded from the particular solution of
(A.3). This together with the normalization condition
makes the solution unique. For x))1, q(x) —s,
t(x) —s/x, g lnx (which satisfies the boundary con-
dition at ~) and g'=0 for x= ~. This physically means
that the acoustical phonons determine the distribution
for sufFiciently large values of x. This can also be seen
from energy losses consideration. Consequently,

and

g'(x)=)" exp JI q(u)du t(it)dv,

0 r"
$'(0) = ~ de t(v) exp t q(u)du.J„ ' J,

(A.4)

Thus, in general, $'(0) is finite and not zero as
Yamashita seems to have taken it. Equation Y (25)
implies that for x((1, $(x) ~ x**. If we take h(x) =0, as Y
does, we should get in addition to the x: term the term
$'(0)x which is the dominant term [assuming that we
assign $(0) the value zero before we normalize]. If we
take h(x)WO, as we should in general, then near the
origin T(x) ~ Qx and so are both R and S. Consequently
Yamashita's x& term becomes a term in x' and here
again $'(0)x dominates.

The solution of Y can be written as

fQ g rv
$'(x) = dit(v) exp t q(u)du,

J0
(A.6)

and this can be shown to diverge like e'* for

where,

R(x) =x'+-,'(8/A) {[x(x+1)]l+e'e(x)[x(x—1)]l)
S(x)= —sx'+2x

+ (8/2) {[x(x+1)]l—e(x)e'[x(x—1)]l),
T(x)= [xs/(1+&)]—(d/dx) [*/(1+h)],

h= Js(e' —1) '[(1—1/x) ~+ e(x)e'(1—1/x) ~].

Equation Y (22) corresponds to h(x) =0. Define
In conclusion, the solution (A.7) is valid, in general

for x))1 (asymptotic solution), and is expected to be-
come a good solution for all x in the high-temperature
limit, s(&1, where the optical phonon energy is below the
thermal energy. Yamashita's approximation, h(x) =0,
can be justified only for low temperatures corresponding
to, say, s)~5. As for the assumption $'(0) =0, it is not
valid and leads to a divergent solution. We have, in fact,
evaluated &'(0) from (A.5) using the same parameters
as Y (and set h=0) and found that $'(0) is 0.04 and
0.56 for 320'K and 90'K, respectively.

APPENDIX B: CONVERGENCE

The acoustical photon problem can be written in
general as

g=AQ=——(d/dx) (e
—*x'tP'). (8.1)

The polynomials which are orthonormal with respect to
this collision operator are easily identi6ed. Laguerre
polynomials I„(x) are defined by the generating
function" '7

g
—*i/o—i&/(1 —t) + = Q (—1)~t L„(x)/nt (8 2)

n=O

from which follow the properties

a —
( 1)n~zx—a(dn/dxn) (~ zxn+a)—

I a~
n n—I p

(8.3)

r
e *x L L„dx=n!(n+a)!t't„.

0

(8 5)

From these properties we see that

—(d/dx)(e ~x'L ")=ne ~xL ' (8.6)

which shows that I. ' are not only orthogonal with re-
spect to A of (8.1), but are also eigenfunctions with the
positive integers n as eigenvalues. The orthonormal
polynomials are then given by

p„=L„'/[nn! (n+ 1)!]', (8.7)

'and the variational method reduces to expanding tp in
terms of the complete set L„'(x). Such an expansion is

3' D. Jackson, Folrier Series and Orthogonal Polynomials
(Mathematical Association of America, Oberlin, Ohio, j.941).

37 G. Sansone, Orthogonal FNectioes (Interscience Publishers,
Inc. , New York, 1959), translated by A. H. Diamond.

x)xi))(B/2A)(e'+1). The proof simply uses the fact
that for it) xi, t(it) —s/it and q(u) —s, and does not
depend on whether h(x) is zero or not. Therefore
Yarnashita's solution for ((x) will also diverge like e".
Only the value $'(0) as given by (5) can lead to a well-
behaved solution at ~ which is the solution to the
problem, namely,

~g z

J((x)=const+ ds ' t(v)dv exp
J q(u)du . (A.7)
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known to converge, not only in the mean, but point by
point, (at points of continuity) from Uspensky's
theorem. ' Ke shall demonstrate this in the simple case
when g= —(d/dx) e *x to which the answer is well known
(Eq. 32). We easily find that from (29)

( 1)n 1 ( 1 3 2tz —1y
!t =Z -I L„'(x)+(—1)"-'-- " I, (B.S)

»=i tz(zz+1)! ( 22 2

where tP is normalized to zero. Let

(—1)"—'1. '(x) ( 1 1 ) I..'s= 2 " = —2 I
——I(—1)-—".

zz(rz+1)! n=i L tz rz+1 3 rz!

Using (8.2), we see t.hat

One can also see that P as computed from (B.S) and
Eq. (13) (with Iz=0) is given by

(1 1
p= —P I

—— I+a
zz+1)

=2 (ln2 —1),

(8.15)

which is exact. However, if we consider only the first ten
polynomials, then we obtain P= —0.53 which is about.
13+0 higher than the limit value of (8.15).

It is of interest to observe that if we attempted to
solve the acoustical phonon problem by the power series
representation of Eq. (16) we would have been led to
the system of equations

1 ( e ztt(1—ti ) (1

(1—t)"-3 Et

N

rr!=P rs(r+s)!c,.
s=l

(8.16)

substitute s= t/(1 —t) and

I+ " 'II
) Es(s+1)' s I

which reduces to

(Nq
c,= (—1)"+'I

I r(r+1)!.
Er

(8.17)

The solution of this system follows from comparing the
coeflicients of x" in Pc„x" with those of the first N
terms of (B.S). We find after some algebra that

ds (" dt
5= (1—e ")——1+ e '—.

s
(8.9)

The first integral in (8.9) is expressed as a power series,
and the second integral (which is the exponential inte-
gral) is simply lnx+C —the same power series. C is
Euler's constant 0.577. The result is

The problem of acoustical phonons and ionized im-
purities which we solved" earlier, using numerical inte-
gration, can now be solved, by these methods, analyt-
ically, and P is evaluated from a series involving the
sine and cosine integrals.

Now we mention briefly the high-temperature limit
for acoustical and optical phonons. As in Sec. 3, with
tp= pet„p, and g=AQ, we see that

5=C+lnx —1. (8.10)

The constant term in (B.S) which has not, been con-
sidered is given by

4'= Z.~.p.'= Z.(p.,g)p.'

Now in (8.1S) we substitute AtP for g and

(8.1S)

$I 1 $ ~ 2f—1
III

n=i &rz n,j1] ~t 2r

4'= Z(p.~4)p',
which, from (34), can be written as

8.11
(8 19)

By the binomial theorem 4'=Z. p.' pp„'tp'dx,

L(1—x)-:—13~x/x — E(1-x)—:—1]~x
40

=2 ln2 —1.

Therefore, from (8.10), (8.12), and (B.S)

(8 12)

tt = lnx+C+2 (ln2 —1)= lnx —P(-.,'-), (8.13)

a,nd the pointwise convergence of tP is established. The
convergence, however, is very slow in this case. If we
take only the first N terms in (B.S) and denote that
sum by tP& we see that

(tPzt.AtP~) =N/(N+1),
which approaches the limit 1 rather slowly.

where,
p=e—{x'+biz(xo'/x. )Lx(x+xo) ji). (8.20)

The orthonormality of the polynomials p„with respect
to A. implies the orthonormality of their derivatives
p„with respect to the weight function p given in (8.20)
Thus, in essence, the variational method reduces to
expanding tP' in terms of a set of polynomials (p„') which
are orthonormal with respect to p. One anticipates that
the convergence for these polynomials is similar to the
convergence for Laguerre polynomials.

Finally, the eigenfunctions of the reduced optical
phonon operator given in Eq. (35) (after lifting gx
and Wbxoz) are the Laguerre polynomials I.„' with zz

as eigenvalues.


