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considering D as negligible )Fig .2(a)). Correlation
effects account for approximately 15 to 20% of the total
shift between curves a and b in Fig. 2 for temperatures
up to about 0.85T, (the range of experimental interest),
while for higher temperatures correlation effects account
for as much as 40% of this shift. As in the case of
sublattice magnetization, the pair correlation calcula-
tion probably underestimates the effect of correlation on
the shift by a factor equal to the number of neighbors.
If this expected further shift from curve b is added in,
curve c is obtained.

4. DISCUSSION

We have shown that the combined effects of large
uniaxial anisotropy and exchange correlation can ac-
count for a shift in the thermal dependence of both the
sublattice magnetization and the antiferromagnetic
resonance frequency from that predicted by a Brillouin
function magnetization curve. Such a departure has
been noted experimentally for FeF2." In FeF2 the
situation is more complicated than that described above

because 8=2, there is second-neighbor exchange, and
the anisotropy is given by D—S;,s E—(S; ' S—J„').
However, ' E is only about 10%of D, so that the terms
in E can be neglected to a good approximation. A
calculation of the thermal dependence of the resonance
frequency of the molecular field type discussed above
has been carried out by Cooper and Ohlmann. ' This
accounts for perhaps 50% of the observed shift from

behavior corresponding to Brillouin-function mag-

netization dependence. The previous discussion would

indicate that the remaining shift cari be accounted for by
correlation effects.

ACKNOWLEDGMENTS

The author wishes to thank Professor F. Keffer for his

valuable advice and encouragement. He wishes to thank
Dr. V. Jaccarino and Dr. L. R. Walker for experimental
information about the sublattice magnetization, Dr. R.
Ohlmann for the resonance frequency data, and Pro-
fessor C. Kittel for his interesting comments.

P H YSI CAL REVIEW VOLUM E 120, NUMBER 4 NOVEM B ER 15, 1960

Electxon Levels in a One-Dimensional Random Lattice

H. L. FRISCH AND S. P. LLOYD

Bell Telephone Laboratories, Murray Hill, Eem Jersey
(Received July 7, 1960)

Let the potential of a one-dimensional scalar particle be V(x) =Vs Z „"S(x—x;), —~ &x& ~, where
Vo&0, and where the sequence (x;) is random, with a Poisson distribution. The quantity of interest is a
certain limiting level distribution, equal numerically to the node density of real solutions P(x) of the
Schrodinger equation. The random variables s;=g (x;—0)/it(x;), —~&j&~, constitute an ergodic
stationary Markov process. The stationary density T(s) of the (s;) satisfies a first-order linear differential-
difference equation, and the node density is given (with probability 1) by lim „sT(s) (Rice s formula).
Numerical results are obtained by integrating the second-order linear diGerential equation satisfied by the
courier transform of T(s).

1. INTRODUCTION

E are concerned with the distribution of energy
levels of a one-dimensional electron (scalar

particle) moving in a one-dimensional random array
of atoms. The atoms, all of one kind, have (randomly)
fixed positions, and the electron-atom potentials are
assumed to be 8 functions. The Schrodinger equation
for an electron of mass m and energy E is then

As d'f(x)
+Vs Q 5(x—x;)P(x) =EP(x), (1)

2

where Vo(0 is the strength of each electron-atom
interaction (attractive) and &x i&xs&xi& ~ . are
the positions of the atoms, randomly distributed on
the infinite line. We consider in detail only the case
where the x s have a Poisson distribution, although
our methods are applicable to certain more general

distributions (described in Sec. 6). Boundary conditions
for (1) are discussed presently.

One model which gives rise to (1) (and the one which
led to the present investigation) is the impurity band
model of I.ax and Phillips. ' The "atoms" represent
impurity atoms in a one-dimensional crystal; the
periodic potential of the pure crystal is replaced by a
constant (included in E). Another model to which (1)
might be applied is a one-dimensional liquid metal. We
do not discuss such applications, confining ourselves to
a mathematical study of (1). A detailed discussion of
the impurity band model, with references to the
literature, is given in the Lax and Phillips article.

2. LEVEL DISTRIBUTION

The quantity we seek is the limiting distribution-in-
energy of the eigenvalues of (1), defined as follows. Let

' M. I ax and J. C. Phillips, Phys. Rev. 110, 41 (1958).
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K(E)= lim Xz, (E,co) with probability 1. (2)

As we prove in Appendix 2, the right-hand side in (2)
exists and is independent of cu with probability 1, as
indicated. 4

To obtain K(E) explicitly we will make use of the
fact that K(E) is equal to the density of zeros of any
real solution of (1).' ' For each E and co let g (x; E,a&)

denote the (real) solution of (1) which satisfies boundary
conditions P(0; E,co) =ps, P'(0; E,co) =ps, where $s and
'gp, real and not both zero, are arbitrarily given boundary
values. If iz(E,co) denotes the number of zeros of
P(x; E,co) in the interval 0&x&L, then

lim Kz, (E,to) = lim fi z(E,to)/L) with probability 1, (3)

ce denote a sequence a&=- (,x i,zo, zi, ) of atom
positions. We treat each sequence + as a single point
in an infinite-dimensional space Q. This space 0 of all
possible such sequences is a measure space, carrying a
probability measure which we denote by I'( ); meas-
urable co functions are "random variables. '" Expec-
tations [averages over ~ with weighting dP(to) j will be
denoted by (. . ).

For each sequence o~ let Ei (L,a&) &E& (L,io) &
denote the eigenvalues of (1) for a finite interval
0&@(L. That is, for fixed o~, the E, (L,oi)'s are the
values of E for which there exist solutions of (1) on
0&z&L satisfying, say, P(0) =P(L) =0.' Still with co

fixed, let Kr. (E,o&) be defined as a function of E by

FLr, (E,ce) = (1/L)
XLnumber of E (L,co)'s which satisfy E (L,o~) &Ej,

—oo (Q( oo '

Li.e.„a nondecreasing step function which vanishes to
the left of Ei(L,co) and which jumps by 1/L at each
E„(L,to)]. By the "distribution of levels" we mean
the limit

$(i) =n(i),

q(t)= —P,+2x, P S(t—i,)jP(t),
(4)

where, again, X=2mE/Ii' and xs= —mVs/5'.
We refer to the times 3; as hBs. At each hit, the

particle coordinate is unchanged (continuity of f):
k(i+0) = k(~ —o),

but the particle momentum receives an increment
proportional to the displacement, directed toward the
origin:

q(&,+0)—q(t; —0) = —2«((t, ) (6)

Lobtained by integrating (4) from i,—0 to t;+Oj.
Between hits the particle moves as a harmonic oscillator
with force constant X:

In subsequent sections we work with the dimension-
less quantity

Ã(X) = (1/ii) K (fi9/2m),

where e is the expected density of atoms. There being
n atoms per unit length (on the average), 1V(X) may be
regarded as the number of electron levels per atom
below energy E= (A'/2nr)X. X(X) will depend only on
a dimensionless energy ratio X/Ks' and a dimensionless
density parameter e/xs, where Kp= —BzVe/A'()0) is
the inverse range of an electron of energy —(h'/2m)xs'
bound to an isolated atom. (We follow the Lax and
Phillips notation here. )

3. THE PHASE PROCESS

For expository purposes we discuss (1) with reference
to still another model, namely, a classical harmonic
oscillator disturbed by randomly occurring impulses.
We substitute symbol t for symbol x in (1), and regard
P(t) (real) as the displacement at time t of a unit point
mass from an equilibrium position /=0 on the f axis.
With $=P, ri= P, (1) may be expressed as

independently of (o and res. That both limits exist and
are equal whenever either one exists is a theorem in
diGerential equations; probability is not involved.
Since the common limit in (3) is constant (as an io

function) with probability 1, it is equal to its expected
value with probability 1. Our problem is thus reduced
to finding the (~o,x)-average number of zeros per unit
length of real solutions of (1).

k(i) =n(i), ~(~) = —~((~),

The probability is 0 that two or more hits are ever
simultaneous, and we neglect such events.

' J. I. Doob, Stochastic I'rocesses (John Wiley 8z Sons, Inc. ,
New York, 1953), p. 599 K' The numbers E (I.,ca) depend only on those x s which happen
to satisfy 0&x;&L, of course. The number of such x s is 6nite
with probability 1, implying that the E (L,co) s are dehned with
probability 1 (that is, except for a set of ca's of total probability 0).

4 That is to say, there exists a number K (E) which has the
following property: The set of all or for which KL, (Z,co) fails to
converge to K(E) (as L —& ~, with E and ~ fixed) is a subset of
0 which has probability 0.

'H. M. James and A. S. Ginzbarg, J. Phys. Chem. 57, 840
(1953).

6 H. Schmidt, Phys. Rev. 105, 425 (1957).

I'IG. 1. Phase motion between hits on ellipses XP+g =const
for given ) )0. At hits, motion is instantaneous on vertical
segments.
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Orbits in phase space for X&0 and ) (0 are shown
in Figs. 1 and 2, respectively. It is seen that in the case
)t&0 the tl-axis crossings (zeros of It) occur at a rate at
least X'/vr, the effect of the hits being to speed the
angular motion. When X&0, however, the motion (7)
is retrograde (counterclockwise) in the sectors ~tl/$~

&g—)t, and if there were no hits the phase point.
would stick at the asymptote rt/P=+g —)t.

The phase variables {($(t,tp), r, (t,tp)), —ao &t& ~)
constitute a two-dimensional stochastic process. The
p-axis crossings are determined by the angular part of
the motion, however, and since (4) is homogeneous in

( and tl, we may treat the angular part separately. '
Accordingly, we introduce the variable s=rt/)=it/P,
and we will show now that the random variables
{s(tpp), —po &t& po } constitute a Markov process.
Equations (5) and (6) give

s(t, +0)= s(t,—0)—2K, (g)

at hits, while (7) gives

z= —(s'+)t),

for the motion between hits. Note that at an g-axis
crossing the variable z Qies off to z= —~ and instantly
reappears at s=+ oo (comps, re s= —c tanct at its
singularities). For any given time r, Eqs. (8)—(9)
determine s(t, tp) for all times t& r as a function of s(v, tp)

and the times of the hits occurring after r. It is a
property of the Poisson process, however, that the
times of the hits occurring after r are statistically
independent of the times of the hi. ts occurring before
r.' From this it can be shown that the times of the hits
occurring after w are independent of the random
variables s(t', tp), —~ &t'&r. It follows that for any
t&r the conditional probability distribution of s(t,cp)

given all values {s(t',tp), —~ &t'(r) is the same as
the conditional distribution of s(t, tp) given only s(r, cp),
and this is the Markov property. ' The z process has

FIG. 2. Phase motion between hits on hyperbolas )P+g'= const
for given X&0. Note that this motion is retrograde {counter-
clockwise) in the sectors ~q/g ~ &g—X. At hits, motion is instan-
taneous on vertical segments.

' The full ($,q) process is discussed in Appendix 1.
8 See reference 2, pp. 398 ff.' See reference 2, p. 80.

stationary (independent of time origin) transition
probabilities; the hit process is stationary, whence (4)
admits time shifts.

We wish to find the probability distribution of s(t,cp),

and for this we use the following characterization of the
Poisson process. "The number of hits in any small time
interval (t, t+dt) is statistically independent of the
numbers in any other disjoint measurable t sets disjoint
from (t, t+Ct), and has the probability distribution

P{(t, t+dt) contains no hit) = 1—ridt

+o(rtt),

P{(t, t+dt) contains exactly one hit) =ndt+o(dt),

P{(t, t+dt) contains more than one hit) = o(dt),

where e is the expected number of hits per unit time
and 0(dt) are negligible higher order quantities.

To simplify the derivation, we assume that the
probability distribution of s(t,cp) has a density:

P{s(t,cp) &{) = T(s,t)ds, —po &{& oo,

where, of course,

Abusing the terminology somewhat, we refer to the
s axis also as "phase space" and a point s(t, tp) as a
"phase point. " I.et us regard T(s,t)8s as the fraction
of phase points in an ensemble which lie in an interval
(s, s+8s) at time t. The phase points which lie in

(s, s+Bs) at time t+Ct consist of

(a) those which were in (s', s'+R') at time t and
(with probability about 1—edt) received no hit during

(t, t+dt), where, from (9),
s'= s+ (s'+X)Ct,

8s'= (ds'/ds)bs= (1+2zdt)R;

(b) those which were in (s", s"+R") at time t and
(with probability about mdt) received exactly one hit
during (t, t+dt), where, from (8),

s = s+2Kp,
~s"= (Cs"/Cs)cs=cs;

(c) a negligible proportion which reach (s, s+Bs)
after being hit more than once during (t, t+dt). Con-
servation of phase points requires

T(s, t+Ct) Ss= (1—ddt) T (s', t)Ss'+ndt T(s",t)R",
to within higher order differentials. From this we obtain

BT(s,t) 8
=—L(s'+)t) T (s,t)j

Bt Bz
+nLT(s+2Kp, t) T(s,t)). (11)—

'" W. Feller, Probability Theory and its A p p/icati ores {John
Wiley R Sons, Inc. , New York, 1950), p. 366.
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If an initial distribution" of phase points is given, say with
~

arctanx~ &22r in the first case. We have I (s)/
T(s,0), then (11) determines T(s,t) uniquely for all u(s) =n/(s2+X) in either case, and it is easily verified
t)0. Every solution tends to a limiting density that (12) is equivalent to

T(s) =lim T(s,/),

the limit being independent of the initial distribution.
This stationary density T(s) is the (unique) solution of

d -T(s)-

ds I'(s)

For the case ) =k' we find

T(s+2Kp)
(17)

t

" T(P+2Kp)

L(s2+X)T(s) j+22LT(s+2Ko) —T(s))=0 (12) T(s) =u'( ) e
—i"'"X(k')+)

ds (f)

which satisfies the normalizing condition

T(s)ds=1. (13)

/" T(1+2Kp)
~r (s) ~ z'nrr/2/V (k2) dt

~(t)
—po &s& ~, (18)

Proofs of these statements involve ergodic and other
properties of the s process, and are given in Appendix 2.
We assume in all that follows that the distribution of
phase points is the stationary distribution, i.e., T(s, t)
=T(s), —~ &t& ~.

Differentiation of

Z+2 KP

(s2+X)T(s)+I ~ T(f')df'= const (14)

shows that (14) is an integral-equation version of (12).
Equation (14) is simply the assertion that the flux of
phase points is constant. For the phase points which

pass point s leftward during a small time interval of
duration dt due to the motion (9) is —(1—22dt) T(s) (ddt)
= (s2+X) T(s)dt, and the leftward flux at s due to hits
is (22dt)T(g)df from all elements dl in the interval
s&l &s+2Kp. The leftward flux at s= —~ is the
expected 2/-axis crossing rate n/V(X), so that (14) may
be put into the form

e p
Z+2 KP

T(s) =— 1V(X)—
s2+~

TO.)df.

Since the integral here vanishes as s —+ ~ ~, it follows
that

Ã(X) = (1/22) lim s2T(s) (16)

which we use later.
Another integrated version of (12) is obtained by

integrating with a factor which integrates all terms
except the one T(s+2Kp). We define

I (&)
—/r(n//r) aratan(z//r) jf 7

—k2) 0)

T(t +2Kp)
+e nz/k

~ df,
N(f)

while elimination of T(s) gives

&s&, (19)

00
&
—(n//(;) arctan (t //(;)

X(k2) = T/+2. ,) dl-.

gran~/k

e—n~/I/,
(2o)

In the case X= —K' we avoid integra, ting (17) over
s = K, since u(K) =0. Integrating (17) over (—K, s) for
8& K and over (s, rc) for s) K, we have

j.* TQ'+2Kp)
T (s) = —u'(s) df, —~ &s&K,

~(f)

I" T(g+2Kp)
T(s) =u'(s) /V( —K')+

(21)

K(S(~.
The above relations will be used in Sec. 5 to obtain

approximations and bounds for 1V(X). A probabilistic
interpretation of (19) and (21) is given in Appendix 2.

4. NVMEMCAL METHODS

The methods used to obtain 1V(X) numerically are
based on the system

d'pp(s) = a(s) p(s), s/0,
dS

integrating (17) over the indicated intervals and using
(16). If we eliminate 1V(k2) in (18) we have

u'(s) /." T(t +2Kp)
T(s) =— i — d

] ~ nz //r J — ~ (f.)

K n/(2K)

if I,= —~'(0
S K

"We treat (p and gp (and hence sp.——gp//(0) as random quan-
tities, statistically independent of the t; s. The basic random
element ~ now consists of a specification of pp and qp as well as
all of the t s.

(2(S) =3,+22

p(0) =1,
lim (p(s)=0,

2t KPS

(22)



TABLE II. Level distribution for n/Ks= 1.satisfied by the characteristic function (Fourier trans-
form) rp(s) of the probability density T(s):

A'( —Ks)

0.027
0.043
0.258
0.298
0.335
0.3349
0.345
0.352
0.392
0.451
E(u2)
0.454
0.581
0.629

K/Kp

p 00

5.00
2.50
1.37
1.18
1.02
1.002
1.00
0.98
0.8
0.02

k/Ko

0.2
1.0
1.414

y(s) = ' e'"T(s)ds.

The level distribution E(X) is obtained from

Re q '(0+) = —Req '(0—) = —7m)V()i). (23)

(Proof appears in Appendix 3.)
Three integration schemes used each involve use of

an asymptotic formula for &p'(s)/p(s), and the accuracy
of the numerical results is limited by the accuracy of
the asymptotic formula. The values given for E()t) are
least accurate when ~ is near —zo' and p, is small.
(Unfortunately, this is a region of considerable interest. )

One method involves numerical integration of (22)
from some large s in to s=0, the asymptotic formula
being used to obtain a starting value for y'(s)/y(s);
Eq. (23) then gives X()i). In a closely related method

The integral in (24) can be brought into the form

ds

(25)
8'(s) L8'(s)/8(s) —

v '(s)/v (s)]TwaLE I. Level distribution for n/K0= 10.

and is evaluatecl numerically by integrating Eq. (22)
from s=0 L8(0)= 1, 8'(0) =ij to some large s and using
(57)—(58) to approximate y'(s)/p(s} in the denomi-
nator in (25). The numerical solutions 8(s) were found
to be zero-free.

The numerical results are given in Tables I—III, and
appear as triangles in Figs. 3—5. For comparison, the
open circles and solid circles represent the Monte Carlo
and local density model results, respectively, of Lax
and Phillips. ~

Q( K2)K/Kp

20.00
5.00
4.672
4.472
4.272
0.0
k/Kp

0.2
3.162
4.472

O.OOO346
0.0315
0.0444
0.054
0.063
0.142

x(u2)
0.142
0.1741
0.201

S. APPROXIMATIONS

(a) The Optical and Di8usion Approximations
the Riccati equation associated with (22),

g
—2'b KQS

When the hits are fast and weak (n —+ ~, Ks —+0,
nss-+ finite) the integra, l in (15) may be approximated
as

y'(s)+y'(s) =X+n S~O
zs

p
z+2 KQ

T(i-)di. =2nK, T(s),
(

~(s) =exp( y(")ds' I,j (26)

is integrated numerically from some large s to s=0, the
asymptotic formula now giving the starting value of
y(s)

A third method is based on the fact that if 8(s),
0&s( ~, is an unbounded, zero-free solution of dif-
ferential equation (22) then

TAai.z III. Level distribution for n/Ko ——0.1. Since E(li) is
nondecreasing in ), the value given above for N( —Ks) at K/Kp
= 1.0001 is surely incorrect.

K/Kp

0
0.67
0.98
0.99
0 999
0.9999
1.0001
1.001
1.01
1.02
1.33
2.00

0.86
0.857
0.729
0.701
0.658
0.588
0.2443
0.2887
0.2599
0.233
0.0754
0.00186

ds 4$
y(s) =8(s), —8(0) '

8'(s') "s 8'(s')

satisfies the system (22), so that from (23),1, f
" ds' 8'(0)

1V()i) =—Re 1 8'(0) ~~
— . (24)

nor ~ s 8'(s') 8(0)

E L E C T R 0 N L E V E L S I N 0 N E —D I M E N S I 0 N A L R A N D 0 M L A T T I C E 1179
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0.21 I—

0.18—

0.15—

I I I I I I

2t /I(,'o= 10

The approximate solution (27) is not everywhere
non-negative when X is below the optical band edge
—2ea0. That this singularity is an artifact of the
approximation method is shown by including another
term in (26), viz. ,

0.12—
z+2 ttp

T(t )df'=2expT(z)+2expPT'(z).

0.09—

0.06—

0.03—

We substitute this in (15), solve the resulting differential
equation for T(z), and then impose the normalizing
condition (13). Omitting the details, the result is the
diffusion approximation:

0 I I I I

5 4 3 2 1 0 1 2 3 4
K/'Kp /C/Ko

46
iO-4

5 6 20
E(X)=

22rl/231/662/6 t exp ( tp pt2) dt

FIG. 3. Level distribution versus ( X
)

&/xp for pp/Kp = 10. ~= exact
value from (22), Q =Monte Carlo value (Lax and Phillips)
o= "local density model" (Lax and Phillips). 2.4

and the resulting equation is easily solved for 2.0—
= 0.1

el'(X)
T(z) =

s'+X+2exp
(27) 1.6—

N (K}

Imposing the normalizing condition (13), we have the
optical approximation:

1.2-

0.8-
(X+2exp) lI

EP,) = X& —2e~p,
(28) 0.4—

(=0, X & —2exp).

This is also the result given by the "optical model" of
Lax and Phillips, ' whence the terminology.

0.7,

0 I I I I

O8 O4 0
k
ao

I

0 4 0.8 t.2
/C

Rp

I

1.6 2.0

Fro. 5. Level distribution versus ~X~6/xp for I/Kp=0. 1. ~=exact
value from (23), A=exact value from (24}, 0 =Monte Carlo
value (Lax and Phillips).

0.6 where

0.5

0.4

0.3

0.2

(We explain the appellation presently. ) In Fig. 6 we
show the quantity

00 - —1

A(/2)= )~ exp( —tp —/d2)dt
0

0.1
together with the approximation

0,
1,5 1.0 0.5 0 0.5 1.0 1.5 2.0 2.5 5.0

Ip /Ko 5/Ko

FIG. 4. Level distribution versus )X I &/xp for pp/xp= 1. ~ =exact
value from (22), 0=Monte Carlo value (Lax and Phillips)
="local density model" (I ax and Phillips).

00 —1

B(tp) = ~ exp ( pt2) dt = (4—/2/pr)
'*

0

Lwhich yields (28)j. We note in passing that according
to (29), the number of levels per atom below the
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optical band edge is

N (—2exo) =
2x'is3iisesisP (7/6)

=0.2532/c'",

in agreement with an observation made by Lax and
Phillips' on the basis of their Monte Carlo results. A
comparison of the various computations of X()) is

shown in Fig. 7.
The optical approximation (28) corresponds to re-

placing the random potential in (1) by its (co,x)-average
value ssUs. Our diffusion approximation (29) corre-
sponds to adding a white Gaussian noise correction
term to nVs, making (p(x),lt'(x)) a two-dimensional
diffusion process, as follows. The integral of the po-
tential in (1) is

X 00

Q(x) = Us Q 8(x'—x,)dx'= VsP(x),
00

0.18

0.16

0.14

0 12

0.10

0.08

0.06

0.04

0.02

0
8 0

P

g =10

p = (3/E' ) [?&-(&rhea) ]

Fro. /. Comparison of diffusion approximation (29) with exact
distribution for I/Ko=10. a=exact value from (23), 0=Monte
Carlo value (Lax and Phillips).

&( l &~+By&

0-5 -4 -3 -2 0 1 2 3 4 5

FIG. 6. Ordinates A (p) and B(IJ,), proportional to the diffusion
and optical approximations (29) and (28), respectively. De6nition
of p appears with (29).

obtaining the bounds k/(ez) &X(k') &1+k/(mr). Simi-

larly, from (18),

8
—-''"'"z(k') I'(G)(T (G) &c:"~'"S(k') u'(z)

giving bounds (e" is 1) '&—E(k') &1+(e"~t" 1) '. —
Vsing e*)1+x, we have the bounds (X)0)

k 1—&E(k') (—
ex 1—e—"/"

For a refined version of the above, we rewrite (20) as

where P(x) is a Poisson process" with density parameter
e. If we define a process y(x) = )P(x)—mx]/QN then

p(x) is nearly a Brownian motion (Wiener process)
when e is large, " and the corresponding potential is
riVs+I'Uses'(x), where ys(x) is a Brownian motion

L"ys'(x) "= "white Gaussia. n noise" ]. This approxi-
mation can be used to obtain (29); we omit the details. "

(1) The Case 2=k')0
The integral on the right-hand side in (15) lies

between 0 and 1, whence

e
X(k') =

~-', n~/If e
——,'nor//c

&&nm/Iz &
—{n/lm:) arctan(z/Iz)

T(z+2Kp)
~gn7f. /k g

—', nfl /k

Substituting for T(z+2Ks) the bounds given by (30),
we obtain the bounds (X)0)

&1V(k')(
1—e ~~i "+g 1 e»i "+g—

z'+k'G'+k'

~51V(k') —1] nE(k')
& T(G) & (30)

&
—(n/k) (~s2r+arC&anz)

k & „Lx+(2Kp/k)]'+1
dx. (31)

We integrate this over (—~, ~) and impose (13),
~ That is, P(x) increases by unity at each x;. See reference 2,

pp. 98 and 398.
"See reference 2, pp. 434—435.
'4 See M. C. Wang and G. E. Uhlenbeck, Revs. Modern Phys.

17, 332 (&945).

When k&)e the numerator in the integral for 6 may be
expanded in powers of e/k to give the result

k 1 Ko (I)
1ll'(k') =—+—arctan —+0

~

—
~.
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2.5,

2.0

BOUNDS—- OPT( CAL MODE:L

+so= N

It is not hard to verify that (33) implies

n"+I (s+K) (s+K+2rK p)"
T(s) &

v) 1.5
O
Z
0

1.0
O
Z

Z 0,5

E' = 0.1 =i.p

T"'
0—
0.01 0.02 0.05 0.1 0.2 0.5 1.0 2 5 10 20

k/Kp

FIG. 8. The bounds (31) for the level distribution. &=exact value
from (22), 0=Monte Carlo value (Lax and Phillips).

LThis can also be obtained by iterating (15).$ The
bounds (31) are shown in Fig. 8; the integral 6 was
evaluated numerically.

p 8+2KQ

X( K') &)~ — Tg')dl, K&z&K—
g

(32)

We fit as many disjoint subintervals s(i &s+2Kp as
Possible into the interval (—K, K+2Kp) add integrals
(32) for the subintervals, and impose (13), obtaining
the bound P, &0)

X(—K') & 1/(q+1),
q= integer part of (K/Kp).

(c) The Case 2= —Iq'&0

The denominator on the right-hand side in (15) is
negative when

~
s~ &K, and since T(s) is never negative

we must have

—K+2Kp(s(K —2 (r+1)Kp,

r=0, 1, ~

q
—2.

(34)

PThe case r=0 follows from (33) and (13), a d th
others by induction. ) We now apply (32) to the esti-
mate (34), choosing for r the largest value for which
(34) holds on an interval of length at least 2Kp, viz. ,
r= q

—3. There results the bound (X &0)

52K~(q —1)1' '
1V(—K') &

(q
—1)!

(-')' '

(q-1)!

(35)

valid for q) 2, where, again, e=qs/Kp and q=integer
part of (K/Kp).

The following intuitive argument gives an approxi-
mation even smaller than (35) for large q. Without
hits, the velocity of a phase point is i=I(.'—s', and the
time required to move from s= —«+2Kp to s=K—2Kp

is T= (1/K) log[(K/Kp) —1j, assuming q)1. This time
is small when I(. is large, and a phase point will spend
most of the time in the region w

—2~0&s&a, waiting
for a favorable succession of hits (see Fig. 2). To escape
the interval —~&a&~ the particle must receive about

q (or more) hits within a time interval T. (Fewer than

q will not carry the point past s= —~, and it will slip
back to the vicinity of s=+K.) Now, the probability
that an interval of duration T after any hit contains

q
—1 or more further hits is'

A bound which is much stronger when q is large is
obtained as follows. We rewrite (21) as P + + +

(q
—1) ' - q q(q+1)

T(s) =Nu(s) t" T(f'+2Kp)
df, —po &s(K.

K'—s' ~ u(t)

e nT(qs T) q—I ]—
(q

—1) 1—(uT/q)

Now, u(|) is decreasing on —K(l &K, whence

I rT(s) & T(g+2Kp)dt, —K&s'&K.
K' —S'" „

When g)1 we bave

K z') 4Kp(K Kp) lf —K+—2Kp(z(K —2Kp,

so that

If such bursts of hits are infrequent enough their rate
of occurrence will be about qIP Since each q.l-axis crossing
requires about one burst, we have, finally, the approxi-
mation (X&0)

Q( Ks) P e nT(qIT) q—I/(q 1)—!
rIT= (n/K) log(K/Kp —1)= (e/q) log(q —1),

valid for q) 1, qsT/q«1.

6. GENERALIZATIONS

There seems to be no way of extending our methods
to the corresponding three-dimensional problem; there
is no Markov property when the parameter is three-n = IS/4Kp(» —Kp).

T(s) &n T(i+2Kp)dt, K+2Kp&z(K —2Kp, —
(33)
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dimensional, and (3) does not generalize (to the best
of the authors' knowledge). The one-dimensional case
can be generalized somewhat, however.

First, the strength of each interaction can be random.
That is, instead of the potential —(P/m)Kp P 8(x—x;)
of (1) we may consider the potential

—(5'/m) P ~o,&(X—*,),
where the Ko& s are independent random variables with
common probability distribution, say P(Kp&'+ Q) =F(I),—~ (N(~." The x s are to have the Poisson dis-
tribution with density e, as before. The analysis follows
closely that of the previous sections. In place of (12)
we find

Qo

[(s +X)T(s)]+a [T(s+2go) T(s)]dF(go) =0,
dz

and the only change in (22)—(23) is

2'LKpS

a(s) =X+n. dF(~p).
2$

The optical approximation is just (28) again, except
that

(Kp) = KpdF (o'p)

Let m; denote a hit rate for each state i=1, 2,
The hit process is determined by the following
properties:

(a) Random changes of "state" occur at hits. If the
state is i just before a hit, then the probability is p;;
that the state is j just after the hit, and the state
remains j until the next hit.

(b) If the state is i at time f, the probability that
during (t, t+dt) there is

no hit is 1—e;dt
exactly one hit is e;dt,

more than one hit is 0,

neglecting higher order infinitesimals.
(c) The strengths (Kp) of hits are random variables.

At hits where the state changes from i to j, the strength
of the hit has (given) probability distribution P(~p&u)
=F;;(u).

Let T;(s) denote the stationary joint mixed density
of z andi; that is

P{(s(f)k (state is i)) =)t T;(s)ds

(at any time). Then, corresponding to (12), we have

with

n
t

3 ) 'X+2m(Kp)

(~pp)'* 4 o') (~pp)

(~pP)= it xp'dF(~p).

replaces I(:p. Similarly, the diffusion approximation is
given by (29), except tha, t the parameters are

X T;(s+2~p)dF, i(ap) =0, j= 1, 2, ~, i. (36)

The normalization is"

With the strengths randomized this way, our Eq. (1)
is the Schrodinger equation of the one-dimensional
version of a scalar meson pair theory Hamiltonian
discussed by Montroll and Potts'~ in their study of
interactions of lattice defects.

The distribution of atom positions can also be gen-
eralized. Ke use the temporal description of Sec. 3.
Let 1, 2, , v denote the states of an ergodic Markov
chain'o with transition probabilities P„and stationary
probabilities p, ; that is,

Pv&0, 2 Pv=1,

'6The case treated in previous sections results when F(u)=0
on —~ &N&Kp and F(N)=1 on Kp&N& ~.

'7 E. W. Montroll and R. B. Potts, Phys. Rev. 102, 72 (1956),
Eq. (7.2).

'8 See reference 2, Chap. V.

and the q-axis crossing rate is

K, (E)= lim z' P T, (s).
z—+goo i=1

(38)

Even though the methods of Sec. 4 are applicable,
solution of (36)—(38) appears to be difficult. in any
cases of interest.

"The right-hand side is the fraction of time spent in state i
(sojourns in state i having mean duration 2/e;); p; is the numeri-
cal frequency of i in long random sequences of states,
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APPENDIX 1

It should be clear that the two-dimensional phase
process (($(t /d), rt(t, o/)), —~ (t( eo) is a Markov
process. Let us assume for simplicity that the random
variables $(i,o/) and t)(t,o/) have at time t a joint proba-
bility density R((,rt, t) in the $, t)-plane, one smooth
enough to insure the validity of the following deri-
vation. "We regard R(g, rt, t)5A as the fraction of phase
points in an ensemble which at time t fall in an element
of area 5A around the point ($,r)). As in Sec. 3, we
obtain easily

R($, rt, t+dt) Ri = (1—ytdt)R($', yl', t) 5A'

+ (ytdt) R ($",rt",t) f'/A ",
where, for the motion (7),

rtdt, —

t)' =t)+)t pdt,

~(Y,n')
gA'= W =&A,

~(E,~)

a,nd for the motion (5)—(6),

pl/

rt"=if+ 2Kpp

g ((// //)

SA"= W =&A,
~(Gn)

neglecting higher order diRerentials throughout. There
follows

This is rejected in the behavior of the second
moments of P and yt, as follows. I.et M e(t) denote the
(u,p) moment of (g,i)):

M-e(t)=J" ~~ 5 n'R(k, n, t)d(&n

If the y+1 integrals M e(t) of total weight n+p=y
are absolutely convergent, then they satisfy

M///p = —P)tM//+. t, e t+trM „ t, t/y t

e i(—-2~a) e-~P!
+ng ~ +~-v. v

=o vl(p —7)l

v=0 1 . r) ) )

0 ] o ~ ~

) ) )

obtained by integrating (39) with $ t)~d$di).
For r=1 we have

3fgp
——Mpg,

Mot = —()t+2yt/rI/)Mio,
with solution

Mtp(t) =Mtp(0) cosAt+Mpi(0)A ' sinAt

Mpt(t) = —Mto(0)A sinAt+Msi (0) cosAt,

A = ()t+2yts//) *.

We note that the approximate niV()t) given by the
optical model, (28), is the rt-axis crossing rate of the
average phase point (Q(t o/)), (r)(t,o/))) = (Mtp(t), Met(t)).

For r=2 there obtains
f)R(&,rt, t) ( c) c) )

=~ ) t——~—)R(t,~,t)
r)t ( c)rt t)P)

+n[R($, t)+2/:oP, t) —R(p, t),t)], (39)

subject to the normalization conditions

M2p = 23Egg,

Mt t = —()t+2m/ro) Mso+Mos

M02 4ts/rO M20 2 ()t+2tsKO)Mtl

Solutions proportional to e ' exist if A. satis6es

A'+40t+2/s/re) A —8'/rs' ——0;

(41)

R(g, t), t) &0, R(g, rt, t)dgdr)=1. (40)

In contrast to (10)—(11), the system (39)—(40) has
no stationary solution. " The explanation is that each
random orbit spirals out to inhnity in the $, t)-plane,
exponentially fast in t, with probability 1. (We prove
this assertion in Appendix 2.) In terms of the impurity
band model, the amplitude of each random wave
function (viz. , the quantity

~ Sf' (x; E/o/) ]'+ (5'/
2m)Lit'(x; E,o/)]'~ l) increases exponentially fast in x
with probability 1, for any E and any initial value and
slope."

2' Both here and in Sec. 3, the use of probability measures {set
functions) would give only an essentially trivial gain in generality.

2'If T(s) satisfies (12), then R(t////t)= (1/fs)T(/i/t) satisfies
(39), but is not normalizable.

"This is diA'erent from the case of periodic potentials, where

there is always one positive root, say A&, and roots A2,
A3 either both negative or complex conjugates with
negative real part. A solution of (41) is

Mss(t) =P k(Ai, A„A,)e'i'

M»(t) =P —,'A, k(A„A„A,)e&i/

A.g' 2mp'
Moo(t) =Q + k(Ai, As, A,)e~i'

4 A

(8""~A)V).+&(A ~+2.)').
k(At, As, As) =

2(Ai —As) (Ai —A,)

where Q')o denotes Mso(0), etc. , and where the sum-

wave functions are bounded in the allowed bands [N'(p, ))0j
and unbounded in the forbidden bands [/V'(X) =01.
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mation in each case is over the cyclic permutations of

(1,2,3). We observe that the coeff(cient of e &' is always
nonvanishing in each moment, from which it follows
that no stationary solution of (39) could have finite
second moments. However, as mentioned previously,
we prove a stronger result in Appendix 2.

Rice's formula" for the expected g-axis crossing rate
at time t is

For the motion s= —(s'+X) we have formally

dS
g'(p «) =-

Jr x'+)~

but some care is required at this point.
In the case X=ko) 0 we obtain from (45)

R(0,c),t) ~c) ~dq, (42)
1

0({,s) =—arctan ——arctan —,
k k

and we show now that (16) is but a disguised version
of the Rice formula. We introduce coordinates

p=(e+~')-:, s=~/S,

and the marginal density of s, defined as

(
T(s,t) = Ri

Jo E ((+so)' (I+so)l )

where by arctan we must understand a multiple-valued
version of the inverse tangent function. In the $, c)-

plane, a phase point may wind around the origin
several times without being hit. This corresponds to
traversing the whole s-axis several times without hits,
the time required to go from s=+ co to s= —co being
s/k. If we add the contributions from the various
appropriate branches, there results

—p —ps & pdp
I'(s) 1

. („) .(~, )=-
( (1+s')' (1+s')'*i 1+s' (~) 1- --"

the factor p/(1+ s') is the Jacobian 8 (g,g)/8 (p,s).
From (43) we have, at least formally,

f
lim s'T(s, t) = LR(0,p, t)+R(0, —p, t) jpdp,J 0

and the right-hand side is Rice s integral (42).

if —ce &s({& co

X
e—c' /Ic zif co (f(S(

N(S) —e(n//c) cretan(z/k)
)

where now
~

arctan
~

(-,'s.
When X= —/(2&0 we obtain from (45), formally,

(46)

APPENDIX 2

The continuous parameter process {s(t,(d),
—co &t&~) is of a type which seems not to have
been treated in much detail in the literature. However,
there is associated with it a certain discrete parameter
process of familiar type. ' I.et the indexing of the hits
be such that (to((o)&0(ti((o)(, and consider
the random variables

so ((o) = s (0+0, (d) +2/(o,

s, ((d) =s(t, ((d) —0, (o), j=1, 2,

That is, s, ((o) for j)0 is the value of s(t, a&) at the instant
before the jth hit. The process {s,((o), j=0, 1, ) is a
Markov process, whose transition probabilities we now
ascertain.

We first find the probability p(i', s)ds that a phase
point starting at i and moving according to «= —(s'+) )
receives its next hit when it is in the interval (s, s+ds).
The duration 0 of the time interval to the next hit has
probability density me "' on 0(8& ~,' so that if
8(i',s) denotes the time required to get from i' to s, then

1 f' —/(

8({,s) =—log
2/( i +/(

—log
s+ /(

I'(s)
p({,s) =

I({)
if —~ &s&i (—/(,

or if /(&{ &s(/(, —

or if x&s&f&~,

or if —co (f(—s and

z(s(~)

where

=0 otherwise,

u(s) =
sn/»

but there are complications because the velocity ~' —s'
changes sign at s= ~x, and because a point starting at
i'& —/( may reach s)/( by passing —co. Taking these
into account, we have

HQ. ,«)
' a

p(i, s)ds=me "o(r ') ds= —e "o("') ds. (44) A point starting at i = &s will stay there until the next
hit, but this will occur with probability 0 if i has a

'3 S. 0. Rice, Bell System Tech. J. 23, 282 (1944). probability density.
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p' &z(f, s) const
sup

p'(s) 1&r—zp

Let T, (s) denote the probability density of the lation shows that
random variable s, (o&); we assume tha, t Tp(s) is given.
It should be clear that the T;(s) satisfy

T,+, (s) = T, (t-)p(l- 2«—, s)df, j=o, 1, "
If there is a, stationary density T(s) of the s s then it
satisfies

for K=Kp it seems likely that pi'& (f,s)/&p'(s) is bounded,
but the authors have not attempted to verify this. ]

The implication of all this is that there exists a
unique normalized solution of (47) Pand (12)) given by

T(s) = T(K+2«)p(f, s)df
f

(47) T(s) =lim po&(f,s)

Using the explicit form of p(|',s) given above, it is

readily verified that (47) is just the Eq. (19) or (21)
satisfied by the T(s) of Sec. 3. [To bring (21) to the
form (47) one uses

t.-" T(g+2zp)
E(—&r')= ~' dt,

N(f)
(48)

P"+"8 )=)" P"'(f f')P'"(f', )4', j=1, 2,

For the measure p of Boob" we may use

(p(A) = t (p'(s)ds,

with

&p'(s) = 1/(1+s') if —(n/2)'&X & ~,

obtained by integrating (17) over (—po, —&r).)
The s; process satisfies "Condition (Z)" of Boob,"

and the s axis constitutes one ergodic set."Furthermore,
there exists a finite measure q of s sets relative to which

the higher-order transition probabilities have a uni-

formly bounded density. [The transition probability
densities relative to Lebesgue measure are given by

pi'& (t,s) =p(f 2zp, s)—,

The non-negative limit, independent of f, is non-
vanishing for every s except possibly s=K, and the
convergence of po'(t, s)/&p'( )sto T(s)/rp'(s) is ex-
ponentially fast in j, uniformly in l and s."It is possible
to express the solution T(s, t) of (10)—(11) as a func-
tional of Tp(s) and the p"&(f',s), and to deduce there-
from the limiting behavior of T(s,t). We are not con-
cerned with nonstationary distributions, however, and
we omit the details.

Rigorously, the symbol EP,) appearing in various
expressions in Secs. 3—5 is to be regarded as the quantity
(1/n) lims'T(s). [It is obvious from (14) that the
limit exists. ) We now give a proof that the limiting
t-average g-axis crossing rate exists and is constant
with probability 1, the constant being lims T(s). Let
y;(o&) denote the number of times that s(t,o&) reaches
+ po during t;(o&) &t«,+i(o&). [We redefine tp(o&) as
tp(o&) =—0.) When X= —z' we have y;(o&) =y(s, (o&),

sj+i(~))~ With

y(f, s) =»f i & —z+2zp and s&a
=0 otherwise.

When X=k', the random variables yp(o&), y, (o&),

are conditionally independent given all of the s&(o&),

k=0, 1, , and the conditional distribution of each

p, (o&) is of geometric type with ratio e " t" [see (44)—
(46)). The conditional expectation of y;(o&) given

sp(o&), si(o&), . is

bJ(~) I sp(~),si(~), ")=~(s (~),s+i(~)),

V'(s) =
z

I

i—,'(n/g& [(ss+1)$)1+'in/ c&

For ) &0 it is trivial that

if K&-,'e,

(X= —«')

where now

if s& f
—2«

if s) t —2«.
~
—nx/Ifp

and for X= —K'(0, KWKp, an extremely tedious calcu-

'4 See reference 2, p. 195.
'~ That is, there exists an integer v such that for every p and

every set Z of positive Lebesgue measure, P(z„(cu)zZ
~
z p(co) =t') )0.

For X&0 one may take v=1; for X= —K' any v& (K/Kp)+1 will
do [see Sec. S(c)].

'6 See reference 2, pp. 215-217.

The random variable

1i—&

5R(j,o&) =—Q p, (o&)

j k=0

is the average number of q-axis crossings per hit after

j hits, and a slightly modified version of a well-known
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ergodic theorem" gives

lim OR(j,&u) = (y(s&(&v), si,+i(cv))) with probability I,
$~00

where the expectation on the right-hand side is to be
taken with respect to the stationary distribution of the
s, s. Since the stationary joint density of sk and sI+& is

T(sq) p(sq —2iio, sq+i), we have

using a (ti 0—)= o(ti,. i+0) Th. e ergodic theorem gives

1 e (t;+0)
P=—lirn —log

& "j o(0+0)

I
~+(s—2.,)~f

T(z) log ds with probability 1

Go ~oo

OR(j, )= I T(f)p(l —2, )v(f, )did
i~ao J

with probability 1. (49)

Let now E(L,cv) denote the number of hits in a time
interval 0&t&L, and let vt. (cu) denote the number of
q-axis crossings during 0&/(I. . Since

[T(s+2iio) —T(s)j log
f
X+s'

f
dz

2
zLT(s) —T(—s))dz

S

)We have used (12) and (14) to obtain the last ex-
pression. ) It follows that for each e)0 and each ~ in a
set of probability 1 there exists an integer J(e,&u) such

E(L,&u)OR(E(L, (u), (0)& vi, (co) that

I )+ j (E( & )+ I )I o(t;((u)+O, or)&o.(0+0, &v)e'&e ' for every j&J(e,id)

v~(~)
lim = lim

L

E(L,cu)

I-
OR(E (L,id), (o)

=e lim OR(j,&u) with probability 1,

we have for the number of crossings per unit time, As we prove in Appendix 3, the number p is always
positive; we choose some e&P, and our result follows.

APPENDIX 3

We define the function pz(s) as

using limE(L, &u)/L= I and IimE(L, id) = ~ with proba-
bility 1 as I.—+ ~. Using the explicit forms given for

p(f, s) and y(f, s), it is easily verified that the integral
on the right-hand side in (49) is just the integral on
the right-hand side in (20) or (48). We have thus proved

vt. (c0)
lim = lim s'T(s) with probability 1.
L;+oo I z-+goo

pz(s) =
)

e'"T(s)ds,
' —Z

noting that pz(s) converges uniformly in s to y(s) as
Z —+ ~, and that zpz(s) is an entire function of s for
any fixed finite Z. (Here and throughout, s is real. ) We
multiply (12) by e'"ds and integrate over (—Z, Z);
integration by parts and rearrangement gives

e" (Z'+Ii)T(Z) —e " (Z'+X)T(—Z)
Similar methods show that the (j,iI) process diverges

radially with probability 1. Consider the random
Variable e (t,~f) = IIip(t, ~)+cput, &u) I. F«giVen cv, e'(t, ~)
is constant between hits, from (7), while at hits we have
(suppressing co for a moment) = is e'-(s'+X) T(z)ds

+2

e
—2izzo — I IeizzT(s)ds

o. (t;—0)

e(t;+ 0) I XP (t')+[a(tz—O) —2«p(t, )j
I
xp(t;) y~'(I —o) I =is X— q z(s)

I
X+ (z,—2iio)'

I

IX+s,z I

in terms of the random variables s, previously defined.
Assuming that o(0+0)QO holds with probability 1,
we have

~(t,+0) I t fr+ (s,—2.,)2I
—log =—P logj 0 (0+0)

"Reference 2, pp. 218—232, 464-469.

and rearrange to obtain

d'yz(s)

ds

sinsZ
=a(s) p&(s) —eI(s)—2eE(Ii), (50)

For the boundary terms we substitute values given by
(14), viz. ,

+2+2 KO

(Z'+zi) T(+Z) =n E(X)—~I
+2
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where

2+2' fe is(z—2ap) ~isz

I(s) = T(z)dz
Jz ZS

aiid this is —,'nP of Appendix 2. The following proof of
(53) is a slightly modified version of one due to
Mengert. "%e have

—(expression with Z —+ —Z),

and where a(s) is given in (22). We have

t.z+'"o 2 sinizs(z —2KP —Z)
II(s) I

& T(z)dz
JZ S

Imp (s) =
~I [T(z)—T(—z)] sinszdz,

0

whence, formally,

Imzto'(s) = JI z[T(z) T(——z)] cosszdz.
0

(54)

(55)

rz
Z+2zo —Z+2zo )

+ ~t IT(.)
E&z J z

whence I(s) vanishes uniformly in s as Z —+ oo. We
now integrate (50) twice from some fixed sp.

q z(s) = O'z(so)+ (s so) Ooz (so)

+ expression with Z —+ —Z
However, it is not hard to show from (15) that
z4[T(z) —T(—z)] is bounded as z ~ ~. It follows that
the integral on the right-hand side in (55) is uniformly
absolutely convergent, and hence that (55) is valid
for every s; for s=0 we have (53).

To prove that Imago'(0) is positive, we multiply (22)
by p(s) and subtract the complex conjugate equation,
obtaining

s. s'

+ I J" [a(s")o(osz") iiI(s")]ds"ds'
s0 s0

—Im[oo'(s) io(s)]=-
ds

iz (1—cos2Kps)

I oo(s) I'.

~s sins"Z—2nX(X) i

ds"ds'. (51)s"

As Z ~ ~, the first and third terms on the right. -hand
side of (51) converge to obvious limits, from the uniform
convergence properties noted previously. It is easy to
show that the fourth term has a limit as Z —+ ~,
expressible in terms of the Dirichlet integral. Since
pz(s) itself converges to oo(s), it follows that the second
term on the right-hand side of (51) also converges to a
limit as Z —z ~, of the form (s—so) X (function of sp).
(We do not need the fact that the limit is actually
(s—sp) [oo'(so+0)+ oo'(sp —0)]/2. }Thus, passing to the
limit in (51),

Oo(s) = rp(sp)+ (S—Sp) &( (funCtiOn Of Sp)

Integrating over (0, ~), we have

1—cos2Kps
Imoo'(0) ——iz

I oo(s) I'ds,
~p s

using oo(0)=1 and the fact that oo(s)y'(s) ~0 as
s~ ~ (proved in the next paragraph). Since y(s) is
continuous and y(0) = 1, it is clear that 1m op'(0) )0.

As the Fourier transform of an integrable function,
oo(s) vanishes as s —+ ~, by the Riemann-I. ebesgue
theorem. However, the formal derivative of the Fourier
integral for oo(s) is not convergent, so we proceed as
follows. We have, for any fixed Z)0, Z'+X) 0,

—z QO)

oo(s) = ' e'"T(z)dz+I ' + ' Ie'"T(z)dz

s ps
+ '

' a(s")oo(s")ds"ds'J„s„
—orizlV (X)s[sgns —sgnsp], (52)

where sgnx=x/IxI if x/0, =0 if x=0.
One differentiation shows that oo'(s) is continuous

except at $=0, where we have

Re p'(0+0) = —Redo'(0 —0) = —orizlV (X)

and Imago'(0-+0) = Imp'(0 —0). A second differentiation
gives (22).

The quantity Imoo'(0) is of some interest, since

.- T(z)dz+~N(Z) I
—z ) z'+y

—Z ~zz
~

ezzz
~

z+2zp

+J I J
T(*)d*dz,

z ) z'+X

using (15). The first and third terms can now be dif-
ferentiated under the integral sign, the integrals
remaining absolutely convergent after differentiation.
According to the Riemann-Lebesgue theorem, these
contributions to oo'(s) vanish as s —& ~. The second
term can be evaluated explicitly in terms of the ex-
ponential integral j'(e"/g)dx, and it is not hard toI, (0)=,L-T(.)—T(—.)]d., (53) "Peter Mengert (private communication).
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verify that the derivative of the second term also
vanishesass —s ~, whence, finally, pp'(s) ~pass-p pp.

To investigate the asymptotic behavior of p(s), we
bring (22) to the Riccati form

2'b KP8

will be chosen so that not only is (56) satisfied but also

y (~)=o, i&0.
For X=kp&0 (c=k, a=p) there results

yp(s) = —k

y'(s)+y'(s) =X+22—
2$

with the substitution

SAO,
yi(s) =— 1 g

—2sKp8

g
—2k(8'—8) dS

zs

op(s) =exp~, y(s')ds' ~;

the boundary condition p(~) =0 becomes

lim Rey(s') ds'= —~ .
8-+Oo

0

Assuming that y(s) can be expanded according to
powers of e,

y(s) =yp(s)+22yi(s)+I'y2(s)+ ' ' '

yo+yo =l(,

while for X= —K'(0, KW((p (c=ii4, b=0) we have

yp(s) =i(4,

2isps

y (S)— I 2esf( —s si

s

ds
zs

+(function integrable at infinity),
2tcs

In the exceptional case K=K0 the boundary conditions
require 2b=a, giving

yi +2ypyi=

These have as solutions

12'(s)
yo(s) =

h(s)

2$

2'C Kp8
2gsK08 —g t K08

yp(s) = ii(p
2eisps+e ssps

1 tsss e 4ssss +3e 2ssss 4e2ssos

yi(s) = ds
(2eisps+e isps)2 s-j 2$

+ (function integrable at inlnity),
2Kps

yi(s) =
h'(s) &

t, 8

h'(s') ds',
zs

(58)

where h(s)=ae"+be " c'=X, and a and b are arbi-
trary constants. The constants and limits of integration

In the numerical calculation described in Sec. 4,
yp(s)+22yi(s) was used as an aPProximation to y(s).
The proof that the expansion y(s) =yo(s)+22yi(s)+
is asymptotic in s in the usual sense appears to be
difFicult.


