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The effect of large anisotropy on the thermal behavior of the sublattice magnetization and antiferromag-
netic resonance frequency is discussed. It is shown that the curves for M(T)/M(0) and co(T)/a&(0) vs T/T,
are shifted upward from those predicted by a Brillouin function magnetization curve. The shifts are due to a
combination of the effect of the large anisotropy energy with that of electron exchange correlation. Correc-
tions to the molecular Geld approximation arising from pair correlations are taken into account by an
extension of the Oguchi method. These corrections are expected to be roughly 1/Z as large as the more
accurate corrections which would arise from correlation with all Z neighbors. This expectation is supported by
a comparison of the values of kT,/J and 8(0) for the Oguchi method with those obtained by the Bethe-
Peierls-Weiss and spin-wave methods, respectively. The results are related to the experiments on FeF~ where
the anisotropy is comparable to the exchange energy.

I. INTRODUCTION

~ ~

~

K consider the eGect of large uniaxial anisotropy
on the temperature dependence of the sublattice

magnetization and antiferromagnetic resonance fre-
quency of an antiferromagnetic compound with nearest-
neighbor exchange interactions. The simplified model
treated gives an explanation for the peculiar behavior of
these properties in FeF2 where the anisotropy is com-
parable with the exchange energy. In I eF2, if the re-
duced sublattice magnetization, M (T)/M (0), is plotted
as a function of reduced temperature (T/T, ), the curve
is shifted noticeably upward from that given by a
Brillouin function. Similarly, the reduced resonance
frequency, co(T)/&o(0), curve is shifted upward from that
expected for the case of Brillouin function sublattice
magnetization dependence and small anisotropy Geld. '

In FeF2, 5=2. Also a small part of the anisotropy
energy is not uniaxial and second-neighbor exchange is
important. We treat a simplified model for S= 1 with
nearest-neighbor exchange and large uniaxial anisotropy.
This model suffices to explain the shifts in magnetization
and resonance frequency. These are shown to be due to
a combination of the effect of the large anisotropy
energy with that of electron exchange correlation.

2. THE SUBLATTICE MAGNETIZATION

The Hamiltonian considered is

3C=2f Jf Q (St"Ss)—DQ 8;,' DQ Ss,'. (1)—
As stated above, 5= i. In the numerical calculations,
Z„, the number of nearest neighbors will be taken as 8.
Body center sites are denoted j and corner sites, k. The
erst summation is over pairs of neighboring cations. The
exchange constant is

f
Jf, and D is the anisotropy

* Supported by the National Science Foundation.
f National Science Foundation Predoctoral Fellow.' V. Jaccarino and L. R. Walker (private communication).
R. Ohlmann, thesis, University of California, Berkeley, 1960

{unpublished).

constant which may be estimated experimentally by
paramagnetic resonance on ions of the type in question
diluted in an identical compound of a nonmagnetic ion'
or by theoretical calculation. 4' The fact that the s
component of the individual spin is squared in the
anisotropy energy means that the anisotropy energy is
unchanged if a single spin changes sign. This would not
be the case if the anisotropy energy were given by—DS&,'—DS&,', the total sublattice spin squared.

The sublattice magnetization is found from the
condition:

8=TrS, , exp( —X/kT). (2)

The crudest approximation yielding a value of 8 is the
molecular field approximation. This neglects all correla-
tion between spins. From (2) we obtain

expf (D+16fJf8)/kT] —expL(D —16f Jf8)/kT]

expL(D+16
f
J f8)/kTj+expL(D —16

f
J

f
S)/kT7+1

(3)

This determines 8. The Curie temperature is the highest
value of T for which the nonzero value of 8 is stable.

The e6ect of correlation will be considered next.
Several methods have been devised to take account of
correlation at the high temperatures which are of
greatest interest in connection with the experiments, ' '
Probably the most accurate such calculation is that of
Brown and Luttinger' giving the Curie temperature for
nearest-neighbor exchange by the Bethe-Peierls-Weiss
method. This method, however, has not been used in the
present case both because of computational complexities
and because of the presence of an anti-Curie tempera-

' M. Tinkham, Proc. Roy. Soc. (London) A236, 535 (1956).
4 K. Niira and T. Oguchi, Progr. Theoret Phys. (Kyoto) 11,425

(1954).
T. Moriya, K. Motizuki, K. Kanamori, and T. Nagamiya, J.

Phys. Soc. Japan 11, 211 (1956).' P. R. Weiss, Phys. Rev. ?4, 1493 (1948).
7 P. W. Kastelaijn and J. van Kranendonk, Physica 22, 317, 367

(1956).
H. A. Brown and J. M. Luttinger, Phys. Rev. 100 685 (1955).
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Fta. 1. (a) Brillouin function for S=1. (b) 3E(T)/M(0) as a
function of T/T, for D= 2,5J including the effect of correlation of
each spin with one neighbor. (c) M(T)/M'(0) as a function of
T/T, for D=2.5J, including the effect of correlation of each spin
with all eight neighbors.

ture, which would make the values of magnetization
unreliable for temperatures much removed from the
Curie temperature. (The constant coupling method of
Kastelaijn and Van Kranendonk' also has an anti-Curie
temperature for the antiferromagnetic case.) Instead,
we use an extension of a simpler method due to Oguchi. '
This method yields values for the sublattice magnetiza-
tion at T=0 and for the Curie temperature which can be
compared to the result of spin-wave theory and the
Brown-Luttinger calculation to test its validity.

The Oguchi method consists of treating the interaction
of an arbitrary pair of neighboring spins exactly while
treating their interaction with their other neighbors by a
molecular field approximation. In the region above the
Curie temperature, the Oguchi method reduces to
solving the Hamiltonian for a pair of spins (or a greater
number of spins in higher approximations) exactly and
neglecting all interactions with the rest of the lattice.
This is the basis of calculations such as that of Smart"
finding the short-range order above the Curie tempera-
ture. The original calculation was for spin--, particles
with nearest neighbor exchange only. We extend this to
the Hamiltonian (1).

The pair Hamiltonian is

extending the Oguchi method to values of spin greater
than 1.

We have solved for the eigenvalues and eigenfunctions
of (4). This together with the use of (2) yields a
transcendental equation for S of the same type as (3),
although more complex. From this equation we have
found the condition determining the Curie temperature.
This has been evaluated for D=0 and D=2.5J (a value
approximately equal that in FeFs). At T=O, 8 does not
attain its saturation value of 1.The values of kT,/J and
8(0) are given in Table I for both the molecular field and
pair correlation calculations. The graph of S(T)/8(0) vs
T/T, has been found by both methods for D=O and
D= 2.5J.Figure 1 compares curves obtained for D= 2.5J
by the pair correlation method

I Fig. 1(b)) and for D=O
by the molecular field method (Brillouin function)
[Fig. 1(a)j. The upward shift due to anisotropy and
spin correlation may be observed. For a given value of
S(T)/S(0), the value of T/T, is shifted to the right. By
calculation this shift has been found equal to the sum
of the shifts for D= 2.5J in the molecular field calcula-
tion and D=O in the pair correlation calculation. Thus
the eGects of anisotropy and spin correlation are
additive. The shift due to correlation is about 15 to 20%
of the total shift between Fig. 1(a) and Fig. 1(b) for
temperatures up to about 0.90T„while for higher
temperatures correlation accounts for as much as 45/o
of this shift.

The values for T, and 8(0) with D=0 can be used to
test the success of the pair correlation calculation in
taking account of correlation. The molecular field
calculation gives values for T, and S(0), which take no
account of correlation, while the Bethe-Peierls-Weiss
type calculation of Brown and Luttinger and the spin-
wave theory of Kubo give values of these quantities
with the effect of correlation adequately included. The
various values are shown in Table I.

We would expect the pair correlation method to
underestimate the effects of correlation. This is borne
out by the data of Table I. It is interesting to compare
the shift in kT./J from the molecular field value for the
Brown-Luttinger calculation with that for the pair
correlation method.

The shift in k T,/J comes about because the molecular
field treatment completely neglects short-range order.
In this picture, the Curie temperature, roughly speak-
ing, corresponds to the thermal energy necessary to
compensate for the energy in the ground state at T=0'.

TABI.E I. Values of kT,/J and 8(0) for the several methods.

It is to be noted that 5,,+St, is a good quantum number
for (4). However, IS;+Sil' is not. a good quantum
number even when D=O. Therein lies the di%culty in

Molecular field Pair correlation
Spin Brown-
wave I.uttinger

0T,/J 1.0.67 11.42 10.48 11.24 9.03

D=O D=2.5J D=O D=2.5J D=O D=O

' T. Oguchi, Progr. Theoret. Phys. (Kyoto) 13, 148 (1955).' J. S. Smart (to be published).
8(o) 0.9954 0.9965 0.925



ANTI FERROMAGNETS KITH LARGE UN I AXIAL ANISOTROPY 1173

When correlation is included there is energy associated
with short-range order still present at the Curie tem-
perature. Therefore, the thermal energy necessary to
destroy the long-range order is less than that given by
the molecular field picture. Hence the value of kT,/J is
lower than in the molecular field treatment. The pair
calculation would include the shift in kT. due to one
neighbor, which our calculation gives as 0.19J. We
expect the shift in kT, caused by correlation effects to be
approximately linear in the total number of neighbors.
Then the shift for the Brown-Luttinger calculation
should be about 8 times that for the pair. The shifts to
be compared are 1.64J vs 1.52J, which are about equal.
8(0) is also shifted from the molecular field value when
correlation is included. The similar comparison for 8(0)
would give a shift of 0.075 for spin waves as opposed to
0.037 for 8 times the pair shift. This difference is not
surprising since the cluster calculation excludes the
long-wavelength spin waves important at low tempera-
tures. This exclusion would lead to a value for sublattice
magnetization greater than the spin-wave value. "Also
Fisher" has calculated the spin deviation in the anti-
ferromagnetic ground state by a variational calculation.
His result for the present case is 0.031. This would
indicate that the spin-wave treatment may over-
estimate the spin deviation. The agreement between
0.037 and Fisher's value of 0.031 is good. In any case we
are justified in considering that the pair method greatly
underestimates the effect of correlation in shifting the
reduced magnetization curve, probably by a factor equal
to the number of interacting neighbors or more. This
would indicate that the actual shift observed should be
more than twice that between curves a and b of Fig. 1.
Multiplying the shift due to the correlation with one
neighbor by eight and adding this to the molecular field
result for 8=2.5J gives the curve of Fig. 1(c).

Ke should point out that the numerical results quoted
in Oguchi's paper' would disagree with our statement
that the correlation effect taking more neighbors into
account is approximately linear. However, Oguchi's
numbers are in error. In particular all the values for the
6rst approximation of kT,/J in Oguchi's Table I (the
ferromagnetic case) are in error. For example, for Z= 8,
the correct result for the first approximation is 3.891,
while that for the second approximation is 3.853. The
zeroth approximation (molecular field) is 4. The correct
values for kT,/J for other values of Z are given in
Table II. The first approximation is for a pair of spins
and takes into account correlation with one neighbor for
each spin. The second approximation is for three spins
in a line. This includes correlation with two neighbors
for the middle spin and with only one neighbor for the
end spins. On the average then, the second approxima-
tion accounts for the correlation with one and a third
neighbors of each spin. From our arguments above, the

"T.Oguchi and Y. Obata, Progr. Theoret. Phys. (Kyoto) 9, 359
(1953)."J.Fisher, J. Phys. Chem. Solids 10, 44 (1959).

TABLE II. Values of kT,/I for the zeroth, first, and second
Oguchi approximations, and for the Brown-t, uttinger calculation
for S=-,' with ferromagnetic nearest-neighbor exchange.

Zeroth
approx.

First'
approx,

Second
approx.

Brown-
Luttinger

0.656

0.518

1.80

1.73

no
root

2.86

2.81

3.891

3.853

2.91

5.92

5.88

a Professor Oguchi has kindly provided us with these corrected values of
the first approximation for Z =2, 4, 6, 12. The values for the second ap-
proxima, tion are those of the original paper for Z =2, 4, 6, 12. We have found
the values of the first and second approximation for Z =8 using Oguchi's
formulas.

difference between the first and second approximations
should be about 3 of that between the zeroth and first.
This is satisfied very well. We have also done the
calculation for four spins located on the corners of the
square, so that the correlation of each spin with two
neighbors is included. The value for kT,/J for Z=8 is
3.777. The difference between this and the first ap-
proximation is 0.114as compared to 0.109, the difference
between the 6rst and zeroth. "'Now then, eight times the
difference between the zeroth and first approximations
should approximately equal the difference between the
zeroth and the Brown-Luttinger result. This compares
0.872 to 1.09. We note that eight times the result for one
neighbor gives somewhat less than the correct total
effect of correlation. This is in agreement with the result
above that the difference between the first and second is
slightly greater than that between the 6rst and zeroth
approximation. Considering the existence of such a small
increase between the differences of successive approxi-
mations, we would expect the Oguchi value to extrapo-
late to a value quite close to the Brown-Luttinger result
when all neighbors are included. There are also errors in
Oguchi's Table II. Thus the results of Oguchi as
corrected, combined with our calculation for the square,
agree with our statements that the corrections to the
molecular field approximation arising from pair corre-
lations are roughly 1/Z as large as the corrections if all
neighbors were taken into account. "'

3. ANTIFERROMAGNETIC RESONANCE
FREQUENCY

The graph of oi(T)/oi(0) vs T/T, will be shifted in a
way similar to that for 8(T)/8(0). The antiferromag-

"a A calculation has been done of 8(T)/8(0) vs T/T, for the
four-spin case with ferromagnetic coupling. The shift from the
Brillouin function is somewhat greater than twice that for the
pair calculation of Oguchi. For the typical value T/T, =0.5, the
values of S(T)/8(0) are: Brillouin, 0.9575; Oguchi pair, 0.9564;
four spin, 0.9551.

~ For four spins located on the corners of a square, 8(0) with
S=~ and antiferromagnetic coupling has been calculated. The
spin deviation (the difference from q) is 0.0100 as compared to
0.0051 for the pair calculation.
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To find H&, it is necessary only to know the eigenvalues
and their derivatives with respect to y at y=1. H~ is
given by

1 2Z„IJID
H~(T) =— exp[(D+2Z

f
JIS)/kTj

gp 2Z„f JIS+D

8f J I'Z„'DS

4I JfsZ sSs—zy

2Z.
f
JfD

+ — exp[(D —2Z„IJ
f
S)/kT]

2Z„IJIS—D

Fio. 2. (a) cd(T)/co(0) as a function of T/T. for D=2.5J calcu-
lated by the molecular Geld method using terms in D as a first-
order perturbation on the energy with D=O (b) co(T)/co(0) . as a
function of T/T, for D=2.5J, where full account has been taken
of large anisotropy. (See text. ) The effect of correlation of each
spin with one neighbor is included. (c) cv(T)/co(0) as a function of
T/T, for D=2.5J, where full account has been taken of large
anisotropy. The effect of correlation of each spin with all eight
neighbors is included.

netic resonance frequency is '~"

{exp[(D+2Z„IJIS)/kT]+1
+exp[(D —2Z„

I
J

I 8)/kT j}. (10)

In deriving this we have assumed that the magnitude
of the sublattice magnetization is constant for small
variations in y. For S=O, Hg=O. The resonance fre-
quency goes to 0 at the Curie temperature in this model.

Equations (5), (6), and (10) can be combined to find
co(T). At T=O,

where
her =gP[Hg (2H g+Hg) ]',

H,, =2I JIZ„S/gP (6)

2Z-I JID f 2Z-IJID
4z IJI+

"
I

. (»)
. 2Z.

f
Jf+D 4 2Z.

I
JI+»

is the exchange field and II~ is the anisotropy field. The
temperature dependence of H~ follows directly from the
information above. The principal problem in finding the
temperature dependence of ~ is in obtaining the thermal
behavior of II&. The method suggested by Vosida'
when the anisotropy is small leads to the following
expression for 5= 1: Hg (T)=2D(S;,')/gP8, (12)

Correlation effects have also been considered. This
may be done for D considered negligible compared to
exchange by regarding the term in D of Eq. (8) as a
perturbation on the pair spin functions for D= 0 found
by the Oguchi method. This leads to an expression for
the anisotropy field:

H~(T)I/H~(0) = (3(5 ')—2)/8
where

(7) 5;.'—=5 '—-', (5~+5;
—+5,-5~+). (13)

In deriving (7), the magnitudes of the plus and minus
magnetization vectors are kept constant, though they
can change their orientations.

We find an expression corresponding to (7) when the
anisotropy energy is not negligible compared to the
exchange energy. I.et cr, p, y be the directional cosines
of the s axis with respect to the axes defined by the
direction of magnetization (X', Y',Z'). In the molecular
Geld approximation, the Hamiltonian for a given spin is

K= —2
I
J

I Z„SS;g —D(rrS, x +PS,y.+yS; s.)'. (8)

The equation determining the eigenvalues can be found

'3 C. Kittel, Phys. Rev. 82, 565 (1951).
'c T.Nagamiya, Progr. Theoret. Phys. (Kyoto) 6, 342 (1951)."F.Keffer and C. Kittel, Phys. Rev. 85, 329 (1952).' K. Yosida, Progr. Theoret. Phys. (Kyoto) 6, 691 (1952).

The result would be the same as (7) if correlation were
neglected.

Equations (5), (6), and (12) can be used to find co(T).
A't T=O, for Z„=8,

Ace(0) = [0.9915D(31.8528
I
J

I
+0.9915D)j'. (14)

We have found cv(T)/co(0) as a function of T/T, for
both the above cases (molecular field considering D not
negligible; pair correlation treating D as negligible) and
compared the results to that obtained from Eq. (7). If
the eGects of anisotropy and correlation are assumed to
be additive as they were found to be for the sublattice
magnetization, we obtain values of co(T)/cv(0) vs T/T,
including both effects [Iig. 2(b)]. [a&(T)/co(0) goes to
zero at the Curie temperature. $ These can be compared
to the values obtained in the molecular Geld picture
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considering D as negligible )Fig .2(a)). Correlation
effects account for approximately 15 to 20% of the total
shift between curves a and b in Fig. 2 for temperatures
up to about 0.85T, (the range of experimental interest),
while for higher temperatures correlation effects account
for as much as 40% of this shift. As in the case of
sublattice magnetization, the pair correlation calcula-
tion probably underestimates the effect of correlation on
the shift by a factor equal to the number of neighbors.
If this expected further shift from curve b is added in,
curve c is obtained.

4. DISCUSSION

We have shown that the combined effects of large
uniaxial anisotropy and exchange correlation can ac-
count for a shift in the thermal dependence of both the
sublattice magnetization and the antiferromagnetic
resonance frequency from that predicted by a Brillouin
function magnetization curve. Such a departure has
been noted experimentally for FeF2." In FeF2 the
situation is more complicated than that described above

because 8=2, there is second-neighbor exchange, and
the anisotropy is given by D—S;,s E—(S; ' S—J„').
However, ' E is only about 10%of D, so that the terms
in E can be neglected to a good approximation. A
calculation of the thermal dependence of the resonance
frequency of the molecular field type discussed above
has been carried out by Cooper and Ohlmann. ' This
accounts for perhaps 50% of the observed shift from

behavior corresponding to Brillouin-function mag-

netization dependence. The previous discussion would

indicate that the remaining shift cari be accounted for by
correlation effects.
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Let the potential of a one-dimensional scalar particle be V(x) =Vs Z „"S(x—x;), —~ &x& ~, where
Vo&0, and where the sequence (x;) is random, with a Poisson distribution. The quantity of interest is a
certain limiting level distribution, equal numerically to the node density of real solutions P(x) of the
Schrodinger equation. The random variables s;=g (x;—0)/it(x;), —~&j&~, constitute an ergodic
stationary Markov process. The stationary density T(s) of the (s;) satisfies a first-order linear differential-
difference equation, and the node density is given (with probability 1) by lim „sT(s) (Rice s formula).
Numerical results are obtained by integrating the second-order linear diGerential equation satisfied by the
courier transform of T(s).

1. INTRODUCTION

E are concerned with the distribution of energy
levels of a one-dimensional electron (scalar

particle) moving in a one-dimensional random array
of atoms. The atoms, all of one kind, have (randomly)
fixed positions, and the electron-atom potentials are
assumed to be 8 functions. The Schrodinger equation
for an electron of mass m and energy E is then

As d'f(x)
+Vs Q 5(x—x;)P(x) =EP(x), (1)

2

where Vo(0 is the strength of each electron-atom
interaction (attractive) and &x i&xs&xi& ~ . are
the positions of the atoms, randomly distributed on
the infinite line. We consider in detail only the case
where the x s have a Poisson distribution, although
our methods are applicable to certain more general

distributions (described in Sec. 6). Boundary conditions
for (1) are discussed presently.

One model which gives rise to (1) (and the one which
led to the present investigation) is the impurity band
model of I.ax and Phillips. ' The "atoms" represent
impurity atoms in a one-dimensional crystal; the
periodic potential of the pure crystal is replaced by a
constant (included in E). Another model to which (1)
might be applied is a one-dimensional liquid metal. We
do not discuss such applications, confining ourselves to
a mathematical study of (1). A detailed discussion of
the impurity band model, with references to the
literature, is given in the Lax and Phillips article.

2. LEVEL DISTRIBUTION

The quantity we seek is the limiting distribution-in-
energy of the eigenvalues of (1), defined as follows. Let

' M. I ax and J. C. Phillips, Phys. Rev. 110, 41 (1958).


