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Thermal Conductivity of Pure Indium*
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The thermal conductivity of a pure indium specimen was measured in the normal and superconducting
states in the range of temperatures 1.3—4.2'K. In the normal state the specimen showed sizable magneto-
thermal resistivity effects which were not in agreement with Kohler's rule for thermal conductivity. Near the
transition temperature the ratio of conductivities E,/K„e hxibited the finite slope with temperature charac-
teristic of electronic conduction limited by phonon scattering. The results were compared with a simple model
proposed by Kadanoff and Martin and the agreement was found to be good.

INTRODUCTION

' 'T is well known that the electronic thermal conduc-
tivity, which predominates in moderately pure

metals, is diminished on passage from the normal to
superconducting states. In recent years the ratio of the
conductivities, E,/E„,has been 'the subject of several
investigations. In those specimens for which the elec-
tronic thermal resistance is predominantly caused by
lattice imperfections, ' the experimental results are in
reasonably good agreement with the theoretical calcula-
tions of Bardeen, Rickayzen, and Tewordt' (hereafter
referred to as BRT) based on the Bardeen, Cooper,
and Schrieffer theory of superconductivity' (referred to
as BCS). However, when the electrons are primarily
scattered by phonons, the experimental measurements
of Jt,/E„differ greatly from the behavior predicted by
BRT. This study of a pure indium specimen was under-
taken to give further information on the nature of the
heat conduction process in this limiting case. The results
are compared with the simple model proposed by Kada-
noG and Martin, ' and the agreement was found to be
good.

METHOD

The indium specimen was mounted in a vacuum can
with one end in good thermal contact with the helium
bath and the other end in contact with an electrical heater.
A measurable heat Aux, produced by the heater, was
supplied to the specimen and the resultant temperature
gradient down the length of the specimen measured by
carbon resistance thermometers calibrated in the manner
of Clement and Quinnell. s A mechanical support made
of linen delecto was used to support the weight of the

*This work was supported in part by the Department of
Defense.' Two recent review articles are: P. G. Klemens, Handbuch der
Physik, edited by S. Flugge (Springer-Verlag, Berlin, 1956), Vol.
14, p. 266; K. Mendelssohn, Progress in Low-Temperature Physics
(North Holland Publishing Company, Amsterdam, 1957), Vol. 1.

~ C. B. Satterthwaite, Cambridge Superconductivity Confer-
ence, 1959 (unpublished).' J. Bardeen, G. Rickaysen, and L. Tewordt, Phys. Rev. 113,
982 (1959).

4 J. Bardeen, L. N. Cooper, and J.R. Schrieffer, Phys. Rev, 108,
1175 (1957).' L. P. Kadanoff and P. C. Martin (to be published).

J. R. Clement and E. H. Quinnell, Rev. Sci. Instr. 23, 213
(1952).

thermometer and heater assemblies since the pure in-
dium was extremely soft and easily deformed. The par-
allel heat conductance provided by this support and
the advance wire electrical leads was found to be negli-
gible compared to the conductance of the pure indium
specimen. During the course of the thermal conductivity
measurements and the calibration of the carbon resist-
ances, the helium was maintained at a constant tempera-
ture using a bellows-operated manostat and a thermal
regulating device similar to that described by Sommers. '
The relative accuracy of the experimental points was
probably limited by the accuracy of the temperature
determination and was worst at lower temperatures
where the measured temperature gradients were small-
est. This is consistent with the observed scatter of the
data points which tended to be greatest at low
temperatures.

The specimen was a polycrystalline spectroscopically
pure indium wire which had been extruded to a diameter
of about 0.5 mm. Since indium has a comparatively
low recrystallization point, it is thought that many of
the strains introduced by the extrusion process were
removed in the several months between the time the
wire was extruded and the time the thermal conductivity
measurements were made. Although electrical measure-
ments were not made on the specimen, it was estimated
from the normal state thermal conductivity data that
the residual resistance ratio (proom temperature/p0'K) was
about 11000 indicating that the specimen was ex-
tremely pure and that few strains or impurities were
introduced in the experiment. Using the calculated
residual resistance and the ratio of conductivity to mean
free path measured by Pippard, a mean free path of
about 0.1 mm was computed. Since this figure was of
the order of the grain size of the specimen, it is possible
that grain boundaries represented the bulk of the static
defects present.

RESULTS AND DISCUSSION

The measured thermal conductivities in the normal
and superconducting states corrected to zero held are
shown in Fig. 1. By analyzing the temperature depend-

7 H. S. Sommers, Jr., Rev. Sci. Instr. 25, 793 (1954).
8 A. B. Pippard (private communication).
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FIG. 1. Thermal conductivity of indium in the superconducting
and normal states corrected to zero magnetic Geld.

ence and magnitude of the normal state conductivity,
it is possible to deduce quantitatively the part of the
resistance due to scattering by static defects and the
part due to scattering by phonons at each temperature
in the normal state. For, assuming the additivity of
imperfection and phonon resistances (Matthiessen's
rule), the normal state thermal resistance is given by the
following expression:

W= W,+W~=A/T+BT'. (1)

Consequently, 8'T may be expressed as a sum of a
constant representing imperfection scattering and a
phonon term varying as T'. Figure 2 shows the plot of
WT versus T' for the normal state data. The coefBcient
3 found from this plot was 0.034 cm'K/watt, which is
lower by an order of magnitude than previously measured
values for indium, ' "as would be expected considering
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FIG. 3. Relative change of thermal resistance plotted against
the coordinate H/W(T, O). This plot would give a reduced curve if
Kohler's rule was obeyed.

the high purity of the specimen. However, the coefficient

8, which to a first approximation should be independent
of purity, was 1.11X10 ' cm/'K2-watt, compared to the
values of 1.89&(10 ' ' "and 1.85)& 10 ' cm/'K'-watt re-
ported previously. The exact reason for this discrepancy
is not known, although one possible explanation may
lie in the fact that the previously reported values were
mainly determined from data in a higher temperature
range and that in order to have the data agree with Eq.
(1) at every temperature the parameter B must vary
with temperature.

Knowing the constants 3 and 8, one can calculate the
ratio of phonon to defect resistances at any temperature.
Over the measured range of temperatures, W„/W, goes
from about 0.1 at 1.5'K to over 3 at 4.2'K. The value of
this ratio at the transition temperature (T,=3.407'K),
1.3, will be used in the later discussion of the super-
conducting state.

To measure the normal state conductivity below the
superconducting transition temperature, a longitudinal
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magnetic field was used to switch the sample into the
normal state. It was found, however, that even at Gelds
of a few hundred gauss, the indium specimen showed a
considerable increase in the thermal resistance with
increasing fields. Hence, in order to obtain the normal
conductivity at zero field, it was necessary to establish
the variation of the thermal resistivity with changing
magnetic field and temperature. Previous experimenters
have found that the relative variation of thermal re-
sistance with magnetic Geld was in approximate agree-
ment with Kohler's rule for thermal conductivity, "i.e.,

AW (T)/W(T, O) =G(H/TW(T, O)), (2)
0 I I

I'
I I I I
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FIG. 2. W(T,O) vs T' for the normal state corrected to zero
magnetic Geld.

J. K. Hulm, Proc. Roy. Soc. (London) A204, 98 (1950).' H. M. Rosenberg, Phil. Trans. Roy. Soc. (London) A247, 441
(1955).

where W(T,O) is the thermal resistance in zero magnetic
field and G is a function characteristic of each metal.
However, for our data a plot of the relative change of
resistance versus the coordinate $H/TW(T, O)j failed

"M. Kohler, Ann. Physik 6, 18 (1949); Naturwiss. 36, 186
(1949).
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to give a reduced curve as can be seen in Fig. 3. This
implies a failure of the above form of Kohler's rule in
the region of transition from impurity to phonon scat-
tering. On the other hand, on a plot of the relative
change of thermal resistance versus H/p(T, O), where p
is the electrical resistivity, the experimental points lay
on a single smooth curve (see Fig. 4).

I
In fact both

hW/W(T, O) and p are nearly independent of tempera-
ture over the range 2.21—3.25'K.) The values of p(T,O)

for the specimen were calculated by using Matthiessen's
rule for electrical resistivity:

p(T O) =po+p'(T) (3)

where the residual resistivity, p&, was calculated from
the coeKcient Al =3/~'(e/k)'po] and the temperature
dependent resistivity, p, (T), was calculated from the
data of White and Woods"

Thus, it appears that the relative magnetothermal
resistivity in the region of transition from impurity to
phonon scattering is of the form:

AW(T)/W(T, O) =F(H/p(T, O)). (4)

In the regions of purity and temperature in which
it is possible to define a universal relaxation time, this
formula would reduce to Eq. (2), since in these regions

p is given by the expression:

p= &WLo,

where Lo is the Sommerfeld value of the Wiedemann-
Franz-I. orentz number. For the further discussion of
this expression and Kohler's rules, see the Appendix.

Among the recent theoretical papers on supercon-

"G. K. White and S. B.Woods, Rev. Sci. Instr. 28, 638 (1957).

ductivity, there are two in which an attempt is made to
calculate the ratio E,/E„in the region where phonon
scattering is important. In the first of these, by BRT,'
the results indicated that the ratio should rise as the
temperature fell below the transition temperature in
the limit that all the resistance was due to phonons.
This rise is in contradiction with all the experimental
results. In the second of these papers, Kadanoff and
Martin' have proposed an expression of the following
form:

E, 3 t" PE
d(pe) (pc)' sech'

E~ 2m'2 ~ p 2

where we have rewritten the expression in terms of the
symbols used by BCS; the additional parameter, a, is
defined as the ratio of phonon to impurity resistance in
the normal state at the transition temperature. In the
limiting case of all impurity scattering in the normal
state (a=O) this expression is identical to that calcu-
lated by BRT for this case. In the other limit, a ~~
(all phonon scattering), the equation predicts a mono-
tonic decrease of E,/E„with decreasing reduced temp-
erature. For intermediate values of a, E,/E„ata given
reduced temperature is between the values of E,/E„'
for the two limiting cases; however for these inter-
mediate cases it is not possible to write the general
expression for E,/E„in terms of the two limiting ex-
pressions after the manner of Hulm. ' A direct evalua-
tion of the integral

I Eq. (5)) must be made.
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Pro. 5. IC,/It„versus T/T, for the experimental points and the
theoretical curves of Kadanoff and Martin for the cases a=0, ~,
RIll 1.3.

In Fig. 5 our experimental points are compared with
the theoretical curves for a=O and a= ~ and with the
curve which should be applicable in our case, namely
a=1.3. In each case the energy gap at O'K was taken
to be 2es(0) =3.SENT, . The overall agreement is reason-
ably good, although there appear to be systematic devi-
ations below the theoretical curve near the transition
temperature and deviations above the theoretical curve
at low temperatures.

AQ(T)/p(T 0) =~(H/p(T, o)), (A1)

AW(T)/W (T,O) =G(H/TW(T, O)), (A2)

where Ii and 6 are functions which depend on the details
of the band structure. Similar results were obtained by

3 J. M. oman, Electrons and Phonons (Clarendon Press,
Oxford, 1960), p. 491.

APPENDIX

To understand the disagreement between the present
thermal magnetoresistance measurements and the
Kohler rule for thermal conductivity, it is helpfulto
consider the derivation of Kohler's rules for electrical
and thermal conductivity. It can be shown directly
from the Boltzmann equation (see, for example, Klem-
ens' or Ziman") that, if one assumes a relaxation time
solution, then the relative change in the distribution
function for a state E in the presence of a magnetic
field H is a function of Hr. From this the similarity
relations proposed by Kohler follow:

Sondheimer and Wilson" on the basis of a special model,
the two-band model.

At temperatures below the Debye temperature, the
scattering of electrons by phonons cannot be character-
ized by a relaxation time. For this reason, when the
phonon part of the electrical or thermal resistivity be-
comes appreciable, one cannot really define a relaxation
time. Over the temperature range 2.2—3.7'K, the range
covered by the magnetoresistance measurements, p;(T)
as defined by Eq. (3) comprises 1—14% of the total
resistivity, whereas BT' as defined by Eq. (1) comprises
26—62% of the total thermal resistivity over the same
temperature range. Hence, it seems reasonable that a
relaxation time solution of the Boltzmann equation
would be a better approximation to the electrical mag-
netoresistivity than to the thermal. Hence, Equation
(A1) would be more valid than Eq. (A2).

If we define a quantity L by the relation p=LWT,
then L will in general be a function of H and T. If
upon the application of a magnetic Geld, the relative
change in L is small compared to the relative change
in W, then DW/W(T, O) is approximately equal to
Ap(T)/p(T, O) and the thermal magnetoresistivity is
given by Eq. (A1). If one makes the assumption that
L is a function of H/p(T, O) rather than approximately
independent of field, then AW(T)/W(T, O), although
not equal to Ap (T)/p (T 0), is still a function of H/p(T 0) .
Therefore, under either of these assumptions, the result
follows that

DW(T)//W(T, O) =g(H/p(T, O)), (A3)

where g is a function characteristic of a given metal.
Indeed, this is the relation which the data satisfy, as
can be seen from Fig. 4.

At temperatures low enough (or defect concentrations
high enough) that a universal time of relaxation can
be defined, then Eq. (A3) reduces to Kohler's rule for
therma, l conductivity, Eq. (A2), since now L is equal
to Ls——x'/3(k/e)', and p is equal to LsWT.
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