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Effect of Point Imperfections on Lattice Thermal Conductivity
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The consequences of a simple, phenomenological, theory of lattice thermal conductivity with respect to
the effect of point imperfections are summarized. The experimental results of Herman et al. on the effect of
varying the concentration of Li' on the conductivity of lithium fluoride are analyzed in detail.

Tp ' S(T)to'. ——— (2)

We shall suppose that S(T) is proportional to tempera-
ture at high temperatures. At low temperatures, we
assume that Herring's fifth-power law is obeyed':
Thus, S(T) ~ T'. We may, however, expect a further
temperature variation of S(T) associated with Umklapp
processes. Thus, for low temperatures, we shall put'

S(T)=B(T)T'. (3)

' J. Callaway, Phys, Rev. 113, 1046 (1959).
2 V. Ambegaokar, Phys. Rev. 114, 488 (1959).' J. Blair, Bull. Am. Phys. Soc. 5, 164 (1960). See also P. G.

Klemens, Phys. Rev, 119, 507 (1960).
4 P. G. Klemens, Proc. Phys. Soc. (London) A68, 1113 (1955).' C. Herring, Phys. Rev. 95, 954 (1954). At low temperatures,

considering normal three-phonon scattering processes, the re-
laxation times must obey r '~co&T' &.

The ordinary theory of Umklapp processes would give
BT'e "~~, where 8 is the Debye temperature and a is a constant
characteristic of the vibrational spectrum. P. G. Klemens, in
Encyclopedia of Physics, edited by S. Flugge (Springer-Verlag,
Berlin, 1956), Vol. 14, p. 198.

INTRODUCTION

~ 'HE principal object of this note is to show that a
simple, phenomenological theory of lattice ther-

mal conductivity' is capable of giving a reasonably
good account of the experimental results concerning
the effect of varying the concentration of the isotope
I.i' on the conductivity of lithium Quoride. It first
seems desirable, however, . to summarize the assump-
tions of this theory and to present its conclusions with
respect to the effect of point imperfections on lattice
thermal conductivity at both low and high tempera-
tures. Some of the results given here have also been
obtained by Ambegaokar' and by Blair. '

The theory incorporates the following rather sweeping
assumptions: (1) A Debye spectrum is assumed for
the phonons. Thus, effects due to anisotropy and
dispersion are neglected. (2) It is assumed that all
phonon scattering processes can be represented by
frequency-dependent relaxation times. For scattering
by point defects, we put

7 & =Aco

where A is independent of temperature. ' For phonon-
phonon scattering processes we put

Finally, at low temperatures, we must take account of
boundary scattering. This will be represented by a
constant relaxation time

TB '=V,/L, (4)

We introduce the dimensionless variable x=fuu/KT
Then

K (ET)e X4e*

Tc(x) tlx.
2'v, &a) ~, (ee 1)2

(6)

In these equations, E is the Boltzmann's constant and

7 Strictly, it is necessary to take account of the fact that
boundary scattering occurs at the boundaries of the specimen and
not in the bulk. C. Herring, Phys. Rev. 96, 1163 (1954).

9

where v, is the velocity of sound and I is a characteristic
length. "

(3) We shall assume the additivity of the reciprocal
relaxation times. In the body of this paper, we do not
distinguish between normal three-phonon scattering and
Umklapp processes, and thus neglect a correction result-
ing from the fact that normal processes conserve the
total momentum of the phonon system. ' The effect of
this correction is considered brieQy in an appendix for
the case in which normal processes dominate the
scattering.

The resulting theory is, of course, greatly over-
simplified. It does have some advantages over previous
approaches in that the additivity of thermal resistiviIties
due to specific scattering mechanisms is not assumed.
It is not necessary to impose arbitrary cutoff procedures
on divergent integrals. It will be shown in particular
that a specific thermal resistivity due to defect scat-
tering can be defined only when this scattering is small
in comparison to that produced by other processes.

From the combined relaxation time,

TC TD +TP +TB

the thermal conductivity, ~, is computed in the fol-
lowing way Preference 1, Eqs. (19) and (20)]:

E t xeta t' trtco ) ' exp(Itco/ET)
«(co) )

co dc'.
2sr2v, " (KT) /exp(i'tee/ET) —1$'
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II. DEFECTS AT LOW TEMPERATURES

At very low temperatures, boundary scattering is
dominant, although significant departures from the
predicted T' dependence of the thermal conductivity
will be observed if point defect or dislocation scattering
is appreciable. ' Our interest here will primarily concern
temperatures high enough and samples large enough
for the boundary scattering to be considered as a
correction. This will be the case for temperatures
greater than that for which the maximum of the thermal
conductivity occurs. We insert (7) and (3) into (6) and
define the quantities

O' B(T)T
E'

fs 'v8

s' = v,/I.E=
E' JET'

The thermal conductivity may then be found from the

i.0

8 is the Debye temperature. We now have

ro '(x) =Dx4+Exs+v, /I.
where

D=~ (KT/h)4' E=5(T) (KT//A)'

It will be observed that the thermal conductivity,
like the vibrational specific heat, is determined by an
integral over the entire vibrational spectrum. If ro(x)
were a constant, the thermal conductivity would be
proportional to the specific heat. However, the strong
inverse frequency dependence of v. z indicates that
relatively long-wavelength phonons are of principal
importance for the heat current. Consequently, use of a
Debye spectrum in the theory of thermal conductivity
may be justified even for temperatures for which the
specific heat is not given correctly. Of course, details
of the vibrational spectrum are of much greater im-
portance in the determination of the relaxation times
themselves.

integral

(KT)s r~ xs
dx.

2rr's, E~ 5 l "s y 'x'+x'+s'(e* —1)'

f(y) =y'„ dS)
x2+y2 (ex ] )2

dx ( x8
g(y)=y' ~

J xs(xs+ys)s g (e&—1)s)

Terms of order s' and higher have been neglected. The
function g(y) appears to be adequately represented by
the following analytic approximation

g(y) = ( y/4g) 51+y/~3+y'/30j/P+y/(12) ')'
0&y&12, (9)

g(y) =l,
In many circumstances, it is permissible to make the
further approximation

, f(y)—.
2m'n, BT' 2

(10)

The function f(y) is a monotonically increasing
function of y. It has been computed numerically. For
small y,

f(y) =y —0.477y .
2

(11a)

An alternative, asymptotic, expansion can be made for
large y:

In general this integral requires numerical computation.
Since it is a function of the two variables y, and s, we
have found it desirable to express the result in the
following approximate way, treating the size effect
(terms involving s) as small:

E' f'

f(y) —1——
I

1+—
I +"g(y), (g)

2~'t IfBT' 2 ( y )
in which

0.5 4+2 16vr4

f(y)=—1— + -+." .
3 5y' 7y4

(11b)
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FIG. 1. The ratio of the thermal conductivities of material
containing defects (») to that of pure material (»„l is plotted as
a function of the variable y '=E'/O'A/&T.

8 R. L. Sproull, M. Moss, and H. Weinstock, J. Appl. Phys. BO,
334 (1959).

To study the effects of point defects in detail, con-
sider samples sufFiciently large or temperatures suK-
ciently high so that the size effect is negligible. Provided
Umklapp processes dominate the phonon-phonon scat-
tering, the thermal conductivity of pure material
(D=O) is

»~ =K'/6cABT'. (12)

The ratio of the thermal conductivity of material con-
taining defects to that of pure material is

»/»„= W„/W= (3/m )f(y). (13)

This function is exhibited in Fig. 1. 5' is the thermal
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resistance (W=)( '). When the defect scattering is
large, the expansion (11a) for small y may be employed.
Then

W/Wv =2x/3y+0. 636+ .. (14)

Equation (14) implies that for large defect scattering,
the thermal resistance is proportional to A&. For a
two-component inixture, A is proportional to c(1—c)
where c is the relative concentration of one of the
components. The thermal resistivity will be approxi-
mately proportional to the square root of the concen-
tration when c is reasonably small. This result appears
to be in qualitative agreement with the observations
of Toxen. ' Under these circumstances, the conductivity
varies with temperature as $8(T)T'$ *.

When the defect scattering is small (large y), we
use the expansion (11b). Including only the first term
containing y, we have

4m' 4m'E' A
=1+ =1+

5y' 5 O' BT

W„may now be found from (12). The additional
thermal resistivity due to defects is

The defects then contribute an additional term to the
thermal resistance which is proportional to temperature
and independent of the phonon-phonon scattering
(except for the numerical constant). This is in quali-
tative agreement with the results of Klemens4 and of
Ziman"; however, the coefficient of AT is different. It
must be stressed that the large coefficient of the y

'
term in (11b) shows that the approximation (16) will

be useful only when the defect scattering is very small.
Further, Umklapp processes must dominate the phonon-
phonon scattering.

Klemens gives an expression for A which may be
written as4

The numerical coeScient in (18) is approximately twice
that given by Klemens (who has 11.0 instead of 23.7)."

The dependence of the thermal resistivity in the case
of large defect scattering on A& is intimately connected
with the assumption that ~~ ' is proportional to &'. If
we put, instead of (2),

'=S'(T) o)', (19)

where q(3 (in order that the integral will converge),
we find after a short calculation that

W o- S (T)U (4 Q)g (3——q) l (4—I) (20)

Measurement of the dependence of thermal resis-
tivity on A may yield information concerning the
frequency dependence of the effective relaxation time
for phonon-phonon scattering.

III. DEFECTS AT HIGH TEMPERATURES

At high temperatures (T)8), size effects may be
ignored completely. The inverse relaxation time for
phonon-phonon scattering should be proportional to
temperature:

S(T)=CT.

We obtain from (6) instead of (g)

(21)

tan '
2v-'v (ACT)'

Karl q&.

h, ),CT)
(23)

rKT)' I" x' e*
(22)

27r'v, ( 5 ) 4o Dx'+E' (e* 1)2—
in which E'=CT(KT/A) . Since the upper limit is less
than unity, we may set x'e*/(e* —1)'=1. The integral
is then elementary, and we have

K rKTi' 0 rD i —:

I
—

f
tan-' —

]

—
/

2m'v, (DE')*' E Ii ) T (E'I

Qp
r ; r=g;f] 1—

harv, ' (17) In the limit of small defect scattering (2 -+0), we
have for pure material

The defect thermal resistivity may now be given as

23.7p
rT (a=h/2~).

6mQp

Wg) —— rT=
5ke,' hv, '

' A. M. Toxen, Phys. Rev. 110, 585 (1958)."R.Serman, E. L. Foster, and J. M. Ziman, Proc. Roy. Soc.
(London) A237, 344 (1956).

In these expressions, Qp is the volume of the unit cell,
~, is the velocity of sound, M; is the mass of a unit cell,

f; is the fraction of unit cells with mass 3II;, and M is
the average mass of all cells. For a material containing
one kind of impurity, present with relative concen-
tration c,

Qo rhM~'—c(1—c)
(

4xv. '

Ky=
2x'v, ACT

We then have, for the ratio of the conductivities of
material containing defects to that of pure material,

)(/)(v=W„/W= (1/u) tan 'u (24)

in which u=(KH/A)(A/CT)( As before, two special
cases may be distinguished: (1) Small defect scattering
(small u). In this case, we expand and find

2m e,OA
W= W„(1+-'u') =W +

This result agrees with that of Ambegaokar' if we use

"See also G. A. Slack, Phys. Rev. 105, 829 (1957).
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FIG. 2. Thermal conductivity of LiF at 20'K as a function of
the relative concentration of Li'. The circles represent experi-
mental values inferred from the results of Herman et al.

a ht is given in Fig. 2. No fit to the concentration
dependence can be obtained with a point defect re-
sistivity proportional to c(1—c).

It is somewhat more dificult to fit the data over the
entire range of temperatures, principally because of
the behavior of the function 8(T). In germanium, it
was possible to use the very crude approximation
B(T)=constant over the entire range of temperatures
studied. ' Such is not the case here. The data of Berman
et a/. falls into two temperature ranges. The bulk. of
the measurements are at temperatures between 15' and
35'K. This data can be fit using a constant 8, provided
a size effect is included. In addition Berman et a/. report
some measurements between 55' and 80'K. These
require a larger 8, and one that increases with tem-
perature. We have made the following choice of
constants and functions:

the substitution (17) for A. The thermal resistance due
to defects is independent of temperature and has the
value

IFn = IF IF~—= (7r/6h) (Qp/tt, s)81'.

Ambegaokar showed that this result is in reasonable
agreement with the experiments of Geballe and Hull
on germanium. "

The case in which defect scattering is large even at
high temperatures is not very common, but is of
interest in connection with the conductivity of solid
solutions. ' In this case, tan 'e=w/2, and

60
50—

I I I I I I I I I

A/c(1 —c) =8.25X 10 4' sec',

B(T)=1.8.X10 "
XLexp( —115/T)+0.0903$ sec deg

—'.

LiF was considered to be a Debye solid with average
sound velocity 4.95X10' cm/sec, obtained from the

Ir =E/4rrv, (A CT) '*. (27)
30—
25—

The thermal conductivity now falls o6 with temperature
as T—:and depends on the defect concentration as 3—

&.

This result is in agreement with the measurements of
Blair. ' The dependence on A and T given by (27) could
also have been obtained directly from (20).

20
'

II
SO

IV. APPLICATION TO LITHIUM FLUORIDE

This theory has previously been applied to ger-
manium with considerable success. '' It has also been
used in a study of the inhuence of Ii centers on the
thermal conductivity of LiF,"and of the conductivity
of solid solutions of cadmium telluride in mercury
telluride. ' We discuss here the results of Berman et al."
who have measured the thermal conductivity of single
crystals of LiF containing various relative concen-
trations of the isotopes Li' and Li'.

A fit has been made to these results, based on Eq.
(8). We find that it is always possible to choose values
of the constants in (8) so that the dependence of the
conductivity on isotope concentration can be repro-
duced within experimental error. An example of such

~ T. H. Geballe and G. W. Hull, Phys. Rev. 110, 773 (j.958)."R.O. Pohl, Phys. Rev. 11S, 1499 (1960).
'4 R. Herman, P. T. Nettley, F. W. Sheard, A. N. Spencer, R.

W. H. Stevenson, and J. M. Ziman, Proc. Roy. Soc. (London}
A253, 403 (1959).We are indebted to Dr. R. Herman for furnish-
ing us the experimental results in detail.
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I IG. 3. Thermal conductivity of LiF as a function of tempera-
ture. The numbers labelling the curves are the Li concentration.
The boxes, circles, and triangles are the experimental points of
Herman et al.
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Debye temperature 0=734'K found by Briscoe and
Squire. " A size effect correction, corresponding to a
phonon mean free path for boundary scattering of
approximately 1 cm, was included. The curves, repre-
senting this fit to the data, are shown in Figs. 3 and 4.

The fitting is seen to be reasonably satisfactory,
particularly in the lower temperature region. The
approximations on which the calculation is based, in
which the size effect is treated as a correction, do not
permit us to extend the curves much below- 20'. The
ht is not unique: The value of 8 in the low-temperature
region is determined to about &15% by the data; the
exponential part of 8 is rather uncertain in detail. A
strong temperature dependence of 8 in the temperature
region 20'—35'K does not appear compatible with the
observations. The constant 2 is determined within
about &30%.The curves are not particularly sensitive
to the size effect correction. The mean free path men-
tioned above is reasonably consistent with the size of
the specimens employed, but by suitable readjustments
of A and 8 it is possible to make an acceptable fit to
the data with a mean free path for boundary scattering
greater than 10 cm.

"C. V. Briscoe and C. F. Squire, Phys. Rev. 106, 1175 (1957).
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FIG. 4. Thermal conductivity of LiF as a function of tempera-
ture. The numbers labelling the curves are the Li' concentration.
The boxes, circles, and triangles are the experimental points of
Herman et ul.

It finally has to be observed that the value of 2
employed is approximately five times greater than that
predicted from the theory of Klemens. ' This result is
similar to that of Pohl, who also found that a 'large
value of A was required. " The constant term in the
expression for B(T) probably should be interpreted as
representing the effect of normal three-phonon scat-
tering processes. The correction to the expression for
the thermal conductivity used here LEq. (6)j arising
from the conservation of the total wave vector of the
phonon system may then be evaluated according to the
prescription of reference 1. (This correction is also
discussed in the Appendix. ) The correction turns out
to be only of the order of four or five percent of the
conductivity as previously computed, even at 20'K
for the purest material employed in the experiments
discussed here. This result indicated that the fit to the
data presented here is consistent.

Additional evidence will be required in order to
determine whether the disagreement with to the theory
of Klemens in respect to the value of 2 is significant.
The present considerations do not rule out the possi-
bility of obtaining a good fit to the data with a smaller
value of A and a larger value of 8 in which the previ-
ously mentioned normal process correction would be
much larger. Experiments showing the effect of isotope
concentration on the thermal conductivity at tempera-
tures below the maximum of the conductivity where
phonon-phonon scattering can be neglected would
determine 3 in an unambiguous manner.
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where
x e*

I2= — dx;
r~ (e —1)'

t- 1 p r, q x'e*
Is= ~

—
f

1——
/

dx.
r~ E r~) (e'—1)'

(A-1)

In these equations, ~~ is the relaxation time for scat-

APPENDIX

There is one important case in which the expression
(6) for the thermal conductivity is not valid. If normal
three-phonon processes are the dominant scattering
mechanism, Eq. (6) must be corrected by the addition
of a term which takes explicit account of the con-
servation of the total wave vector of the phonon system

, by the normal processes. According to reference 1,
Eqs. (16), (19), and (21). this term is
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tering by the normal processes, which are included in

rr, and r„ is the combined relaxation time of Eq. (5). As

usual, x is the dimensionless variable Aoi/ET.
The evaluation of the correction Kl is in general quite

complicated. In reference 1, the case of large defect
scattering at low temperature (small y in the termi-

nology of the present paper) was considered; the result
obtained was

gi —7BPP/967r4+sn As (A-2)

The dependence of si on 1/A' does not persist when A

becomes small.
%e consider here the case in which the relaxation

time for defect scattering is long compared to 7.~.
However, since the normal processes cannot be them-
selves lead to a nonzero thermal resistance, the con-
ductivity will be primarily determined by the defect
scattering. Equation (A-1) has been evaluated in this
limit (large y), neglecting boundary scattering and

umklapp processes. The result is (retaining only the
two leading terms of an asymptotic expansion in powers

of y
—')

13 E'
Kl—

12(b'v, A T 462 v,ABT'
(A-3)

15 E'
K=K~+Kt= +

120~'v AT 77 v ABT'
(A-4)

Equation (A-4) shows the extent to which the thermal
resistance is overestimated by Ziman's formula, and
indicates an explicit contribution from the normal
processes to the conductivity. In these equations the
constant 8 pertains to the normal processes only;
Umklapp processes are neglected.

The first term in (A-3), when dominant, yields a thermal
resistance 1207rsv, AT/A, twenty five times as great as
that obtained from Eq. (16) as a defect resistance.
This result is in exact agreement with that obtained by
Ziman from a variational principle. ""The second term
in (A-3) is of the same order as «„(Eq. (12)]. Com-
bining the two, we have
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Coloration of Pure and Doped Calcium Fluoride Crystals at 2O'C and —i90'Ca

W. I. SCOULER) AND A. SMAKULA
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Coloration of pure CaF2 crystals with 2 ~ 5-Mev electrons at
room-temperature results in bands at 580, 400, 335, and 225 mp.
In YF3-doped crystals the bands are in the same spectral positions
as in pure crystals. They are, however, enhanced and their in-

tensity ratios are signilcantly changed, the 400-mp, band being
predominant. NaF-doped crystals show an even more drastic
change: Coloration at room temperature produces bands at 605,
385, and 330 mp, and is deeper than in either pure or YF3-doped
crystals. Since the 400-mp band is strongly enhanced by YF3
addition which forms F interstitials, it is correlated to neutral
Quorine atoms in interstitial positions. Similarly, the 605-mp band
in crystals doped with NaF, which creates F vacancies, is cor-
related to electrons trapped in F ion vacancies (F centers). The
enhancement of the 385-mp band by NaF is explained by the re-

duction of the activation energy required for formation of inter-
stitials and vacancies. Of several possible correlations the 330-mp
band is probably connected with a hole trapped in a Ca~+ vacancy
and that at 225 mp, with an electron trapped by a Ca'+ interstitial.
The bands at 440 and 200 mp which appear in NaF-doped crystals
only must be connected with Na ions. Coloration at —190'C
produces strong changes in the absorption spectrum. In pure and
YF3-doped crystals bands appear at 550, 320, and 270 mp, while
in NaF-doped crystals bands are formed at 440, 390, 315, and 200
mp, in addition to the 550-mp, band. The primary process of colora-
tion at low temperature cannot diRer from that at room tempera-
ture but the secondary processes are strongly influenced by
temperature.

1

~OLOR centers in CaF2 can be produced just as in~ alkali halides, i.e., additively by heating in Ca

vapor or by irradiation with p rays, x rays, electrons, or

other ionizing radiation. '
Additive coloration in CaF2 usually produces two

* Sponsored by the Ofhce of Naval Research, the Army Signal
Corps, and the Air Force; based on a thesis submitted in partial
fulfillment of the requirements for the degree of Doctor of Philoso-
phy in Physics at the Massachusetts Institute of Technology.

t Present address: Lincoln Laboratory, Massachusetts Institute
of Technology, Lexington, Massachusetts.

~ See e.g., K. Przibram, Irradiation Colors and Luminescence
(Pergamon Press, New York, 1956).

strong bands at 375 and 525 mp (denoted by Mollwo'
n and p, respectively), while irradiation produces four
bands at 580, 400, 335, and 225 mp. ' In the alkali halides
both methods produce identical Ii bands although
additional bands (U bands) are formed by irradiation
only. By proper control of temperature and quenching
rate, either the two- or four-band system can be pro-
duced by additive coloration. 4 Crystals that have been

'E. Mollwo, Nachr. Ges. Wiss. Gottingen, Math. -physik. Kl.
1, 79 (1934).

3 A. Smakula, Phys. Rev. 77, 408 (1950).
4 F. Luty, Z. Physik 134, 596 (1953).


