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The effect of relaxing the restrictions associated with the Hartree-Fock method are discussed with par-
ticular emphasis on that constraint which requires common radial behavior for wave functions with all
quantum numbers except m, (spin direction) in common. Results of such a “spin polarized”” Hartree-Fock
self-consistent field calculation are reported for the Ni*2 ion and related to earlier calculations of Wood and
Pratt, and Heine. Emphasis is placed on a consideration of the effects on the electron density and on x-ray
and magnetic form factors. As is discussed, spin polarization of the 3d shell and the core results in an interest-
ing effect on the magnetic form factor for this case. The calculation suggests that one would obtain a mag-
netic form factor which is measurably expanded (hence, a contracted charge distribution) in comparison
with that appropriate for any single 3d electron. Also presented are results of calculations of several hyper-
fine parameters which are in rough agreement with experiment.

I. INTRODUCTION

HE Hartree-Fock formalism, as conventionally
applied to multielectron systems, has a number of
restrictions associated with it which play an important
role in the shell description of atoms. The effect of re-
laxing these restrictions has recently been of some
interest. Emphasis has been placed on studying the
constraint requiring common radial behavior for wave
functions with all quantum numbers except #m, (spin
direction) in common.'™® Estimates of some of the
effects of relaxing this restriction for iron series atoms!®!!
have been made, but of necessity these calculations have
had to be crude.

In this paper we are reporting a self-consistent field
“spin polarized” Hartree-Fock calculation for the free
Ni*? ion. We have several purposes in mind with this
calculation. First, it is interesting to observe what is
predicted by this model of an atom and to see how these
predictions compare with those of the conventional
“restricted” Hartree-Fock formalism and with experi-
ment. Secondly, the calculation serves to calibrate a
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forthcoming “spin polarized” Hartree-Fock calculation
for a Ni*? ion in a crude cubic field similar to that used
in an earlier calculation® for Mn+*2. The Ni*? ion was
chosen for the two calculations because of its almost
filled 3d shell which contains both paired electrons and
a net spin. Discussions of results will emphasize effects
on the charge density and on x-ray and magnetic form
factors. As will be seen from the results the “spin
polarized” formalism leads to an interesting effect on
the magnetic form factor for this case. Some results of
calculations of the hyperfine structure parameters are
also presented.

In the next section we briefly review the Hartree-
Fock formalism and then go on to discuss these matters
at some length, for while most readers are aware of the
restrictions, we believe that there is, in practice, a
strong tendency to overlook the implications of either
the retention or the relaxation of these restraints. Sec-
tion IIT contains a brief review of the Wood and Pratt!
and the Heine" calculations which are predecessors to
our calculation. This is followed by a description of the
calculation, Sec. IV, and a discussion of the results,
Sec. V.

II. THE HARTREE-FOCK FORMALISM

As is well known, the Hartree-Fock formalism con-
sists of approximating a true many-electron wave func-
tion by a single (or on occasion a linear combination
of) Slater determinant(s). A Slater determinant for an

2 For Mn*2 in a cubic field see R. E. Watson, Phys. Rev. 117,
742 (1960) (there is an error in this calculation, details are avail-
able from the author); for Ni*? in a cubic field see R. E. Watson
and A. J. Freeman, Phys. Rev. 120, 1134 (1960).
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N electron system takes the form:

Y1(x)Pe(®1) -+ ¥ (xy)
Y1(@a)a () - - -
V= (Nt , )]

Prea(en) - Yaen)

the x;/s denote electron space and spin coordinates and
(V1)~%is the normalization constant if the one-electron
Y;’s are orthonormal. Since such a determinant is un-
affected by replacement of ¢ by y;+Cy;, for any con-
stant C, it is no restriction to assume the ¢.’s orthogonal.

For a Hamiltonian consisting only of kinetic and
electrostatic interaction terms,' the total energy for a
single determinant function is:

E=§: Vi () *Kops (v)dr

=1

N 1
i 1 o — 7\ X2 2dT1de
R [ [t

=1 <4

|| spin

—é z [f wo*wj(xz)*ﬁ

Xi(@)Y;(x1)dridrs,  (2)

where K, 1s the one-electron kinetic+nuclear potential
energy operator. The integrations are over space co-
ordinates (the integration over spin having been carried
out). The final terms, called exchange terms, only
appear for y;, ¥; pairs of parallel spin."¥ Application of
the variational principle to E by varying an individual
¥; leads to a Hartree-Fock equation which in its inte-
grated form would be:

i [ 10:) s = [0 Koptis)ir

= [f “”"("‘)'Q]r;—m;

X |¢i(xo) |*dradr

N 1
+".§1 ff%’(xi) 1€ m

X¥i(@oyi(x)dridre. (3)

Again the second sum is limited to one-electronstates
of parallel spin. ¢; is the one-electron energy and is, in

13 See P.-0. Lowdin, Technical Note No. 27, Quantum Chemis-
try Group, Uppsala University, Uppsala, Sweden, June 1, 1959
(unpublished) for a discussion of the H.-F. scheme in which spin-
orbit terms are explicitly included.

1 For details and a fuller discussion see D. R. Hartree, T/e
Calculations of Atomic Structure (John Wiley & Sons, New York,
1957).
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fact, a Lagrange multiplier present for the purpose of
obtaining a normalized ;. The terms i= 7 areincluded,
for the integral in one sum cancels that in the other,
since there are advantages in including such terms in the
calculations,

In practice, the Hartree-Fock formalism, briefly
sketched above, is further modified by the addition of
restrictions which have the advantage of simplifying
the job of solving the equations but which also have
profound effects on the final form of the wave functions
(and therefore on matrix elements involving them). We
will here discuss the constraints for the case of an
atomic system since this will be of interest to us. The
extension of the restrictions to molecular and crystalline
systems should then be apparent. Three restrictions are
normally incorporated into Hartree-Fock calculations
and a fourth often appears in analysis of experimental
data based on assuming Hartree-Fock descriptions of
electronic systems. We will first consider the three
associated with conventional Hartree-Fock calculations.
(i) The spacial part of a ¥; is assumed to be separable
into a radial and an angular part, i.e.:

Yi(ri01910) =[U:(r)/r]S:(6¢)8: (o), 4)

where 8;(s) is a spin function with a spin quantum
number, #,, of &3. In practice S;(6,¢) is normally
chosen to be a spherical harmonic, Y/*(8,4),'® or in
other words, ¢ is assumed to be an eigenfunction for a
spherical environment (in which a spacial function is
separable). Since only atomic .S states are exactly
spherical, this represents a real restraint on the Hartree-
Fock formalism. The assumption of separability is, how-
ever, often used for cases involving potentials other than
those which are spherical or nearly spherical [in this
case the S;(6,¢)’s become something other than spherical
harmonics]. This assumption is often less justifiable
and an example will be discussed briefly in another
paper.!® This restriction implies that the 5;(6,¢)’s be
assigned before the application of the variation principle
to Eq. (2) and that only the U;(r)’s are to be obtained
variationally. In this way the Hartree-Fock equations
change from three-dimensional to one-dimensional
equations, thus greatly simplifying their solution. Of
greater importance is the fact that this restriction leads
to the use of the one-electron quantum numbers #, I,
and m; for other than exactly spherical atoms. It must
be emphasized that the use of #,!, and m; for non-
spherical atoms (which is necessary for the shell struc-
ture description of an atom) requires the introduction
of a restriction to the Hartree-Fock formalism. (ii) As-
suming (i), U;(r) is constrained to be independent of the
m, value associated with ;. This is not a restriction for

15 See E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, 1953), for
definitions and phase conventions.

18 R. E. Watson and A. J. Freeman, reference 12; also see G. F.
Koster, Quarterly Progress Report, Solid-State and Molecular
Theory Group, Massachusetts Institute of Technology, January
15, 1960 (unpublished), and to bejpublished.
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the case of a spherical atom. (iii) U;(r) is likewise con-
strained to be independent of .. This is not a con-
straint for ions where the total ion spin quantum number
S is a good quantum number and equals zero.

These last two restrictions imply a single U;(r) for
any shell (i.e., #» and / value) and in turn a separate
Hartree-Fock equation per shell rather than a separate
equation per electron. The reduction in the number of
equations is of course important when solving them. In
practice, the “restricted” Hartree-Fock equation for a
shell is an average of the Hartree-Fock equations de-
rived for the separate occupied ¢.’s of that shell.
Further, the introduction of (ii) and (iii) is not always
compatible with the requirement of orthogonal y¢.s.
Keeping orthogonal y¥’s then requires the introduction
of “off-diagonal Lagrange multipliers’”"” which repre-
sent real constraints for certain types of atomic systems.

Of greater importance than the reduction in the mag-
nitude of a computation, is the fact that the relaxation
of any of the above restraints leads to the collapse of
the conventional shell structure formalism. In other
words, the relaxation of constraints leads to the partial
abandonment of a very successful description of atomic
systems. Atomic lithium is a simple example of what
occurs. The Li ground state is a 25, (15)22s configura-
tion single determinant in conventional notation, with
the closed 1s shell making a S contribution to the
atom’s symmetry. Due to the fact that one 1sy; has an
exchange interaction with the 2s and the other does not,
the relaxation of (iii) leads to differing U;’s and to a
single determinant of the form, [1s#1s'{2st], (here
arrows denote spin and the prime differing U;,’s). The
1s shell is no longer “closed,” i.e., it no longer makes a
1S contribution, and the determinant no longer has
total spin (S) as a good quantum number.!® Two addi-
tional determinantal functions can be constructed from
the U;(r)’s, namely [1s{15'42s4] and [1sp1s'42s}].2
One %S and two 25 states can be constructed by linear
combination® of three determinants. The expression
for the total energy and the Hartree-Fock equations for
the multideterminant states are much more complicated
than those for the single determinant restricted Hartree-
Fock case.”

While the Hartree-Fock equations for the three

7 R. E. Watson, Ph.D. thesis, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1959 (unpublished).

18 This statement breaks down if Uy can be expressed as a
linear combination of Uj, and Uy, i.e., if the U,’s are not linearly
independent.

B If Uy, and Uy, are constrained to be the same, the first of
these is identical except for sign, with the earlier determinant and
the last is zero valued (since a determinant with two identical
columns is zero valued). This is an example of the Pauli exclusion
%)rinciple which is built into wave functions of the determinantal
orm.

2 Projection operators are conveniently used for constructing
such properly symmetrized states, see R. Fieschi and P.-O.
Lowdin, Technical Note No. 4, Quantum Chemistry Group,
Uppsala University, Uppsala, Sweden, September, 1957 (un-
published).

2 For a fuller discussion of Li see R. K. Nesbet and R. E. Wat-
son, Ann. Phys. 9, 260 (1960).
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electron unrestricted symmetrized case can be solved,
the number of determinants and the corresponding
complexity of the resultant integro-differential equations
increases rapidly with systems involving increasing
numbers of electrons. Therefore, for systems involving
more than a few electrons, these complications have
been avoided by relaxing constraints on the one-
electron functions of the restricted Hartree-Fock deter-
minantal function and applying the variation principle
to the single determinant alone. For lithium, the
variational principle is applied to the determinant
(1581542517, yielding a many-electron function which
is predominantly 25 but with a small amount of 4§
character mixed in; this “unrestricted” function would
have alower energy® than the original restricted Hartree-
Fock function since a constraint has been removed.
The Wood and Pratt!® calculations for atomic Fe and
Heine’s!! for Mn are examples of this approach where
only restriction (iii) has been relaxed.

Going from the traditional restricted Hartree-Fock
formalism to a less restricted but still unsymmetrized
form leads to a very small change (~0.001%) in the
total energy.”? Despite this small energy change the
accompanying changes in the one-electron functions
are of importance. Examples of areas where the effect is
appreciable are: fine structure, quadrupole polarization
of electronic charge,® the interaction of ions with a
crystalline environment,'? and the prediction of neutron
magnetic form factors.

A fourth restriction is often added when the Hartree-
Fock formalism is used to parameterize experimental
results. It is best described by the use of examples.
(iv) In the case of a many-electron state which is to
be ionized by the removal of an electron associated
with a particular ¢; it is assumed tbat the other y.’s are
unperturbed by the removal of electron j. This assump-
tion leads to Koopman’s theorem?® which states that
the ionization energy is simply the one-electron energy
of the jth electron (¢;) as given by Eq. (3). In the
slightly different case where the jth electron is not
actually removed from the system but ¢; is replaced
by ¢ it is assumed, or rather the restriction is made,
that the other y,’s are unperturbed. Using Koopmans’
theorem we discover that the difference in energy be-
tween the two many-electron states is simply e;—e;.
This type of restriction underlies the normal energy
band description of a solid.?6

A version of restriction (iv) is also used for the set of
states belonging to a single configuration (assignment
of » and [ values to the y;’s). Here it is assumed that the

2 For the example of lithium, see reference 21.

2 As in the work of R. Sternheimer and others. For a review
article see M. H. Cohen and F. Reif, Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press, New York, 1957),
Vol. 5, p. 322.

2 A, J. Freeman and R. E. Watson, Phys. Rev. 118, 1168 (1960).

2 T, Koopman, Physica 1, 104 (1933).

26 For example, see J. Callaway, Solid State Physics, edited by

F. Seitz and D. Turnbull (Academic Press, New York, 1958),
Vol. 7, p. 99.
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U(r) for any shell is the same for all states of the
configuration. This assumes that the other restrictions
(i to iii) are already in force and leads to the Racah
parameterization?” of atomic multiplet spectra in terms
of a limited number of Slater F* and G* integrals of
the form;

Fh(i,j)= f f U [2| U502

7 k

= i, (5)
r>k+l

and

GH(iyj) = f ) f "0

7.

k
= Uiy U,(r)drdr’, (6)
>IH-1

7

where 7« denotes the r of lesser magnitude. For the
case of a 34" iron series ion (with just the 3d shell
unfilled) the multiplet spectrum is parameterized in
terms of a F?(3d,3d) and a F*(3d,3d). This formalism
has been extended to the case of an ion in a crystalline
environment?® where the F¥s are augmented by a
crystalline field splitting parameter Dg. For an iron
series ion Dgq takes the form:

Dy~ f | Usar) |2V o), )

where V,.(r) is the field due to the crystalline environ-
ment. The case of an ion in a crystalline environment
will be discussed at length elsewhere.?®

Restriction (iv) has been frequently applied with
great success due to a remarkable cancellation of the
errors associated with its use in the Hartree-Fock
formalism and not because of some basic validity of
the restriction. The remainder of this section will be
used to present two examples which illustrate this
point.

Restricted Hartree-Fock calculations have been car-
ried out for a number of iron series atoms and ions®;
among these are calculations for the neutral iron 348, 3F
and singly ionized iron 3d7, *F states. The one-electron
nuclear potential{-kinetic energy integrals [the K
integrals of Eq. (2)] differ for the two states, the dif-
ferences being 0.051 ry for the 3d, 0.125 for the 3p, and
0.275 for the 3d. This leads to a 2.77-ry variation in the
K integrals associated with the occupied Us,, Usy, and
Usq which, if we assume (iv), do not vary at all. The
measured ionization energy is 0.2994 ry or one-ninth of
the energy variation associated with the above K in-

27 While a number of the multiplet spectra equations had been
obtained previously (e.g., see Condon and Shortley?) the classic
papers are those of G. Racah, Phys. Rev. 61, 186 (1942); 62, 438
(1942) ; 63, 367 (1943).

28 For example, see W. Moffitt and C. J. Ballhausen, Ann. Rev.
Phys. Chem. 7, 107 (1956); W. Low, Solid State Physics, edited
ls)y F.1 Szeitz and D. Turnbull (Academic Press, New York, 1960),

::?E)\ ] Freeman and R. E. Watson, Phys. Rev. 120, 1254
( 3061(%).. E. Watson, Technical Report No. 12, Solid-State and
Molecular Theory Group, Massachusetts Institute of Technology,

Cambridge, Massachusetts, June 15, 1959 (unpublished), and
Phys. Rev. 118, 1036 (1960).

WATSON AND A.

J. FREEMAN

tegrals, yet the calculated one-electron energy (e,
m;=0) of the electron being removed is 0.3359 ry, in
reasonable agreement with experiment. Further ex-
amples of the good agreement between observed ioniza-
tion energies and one-electron energies will be found
elsewhere.3

The fitting of experimental free ion multiplet spectra
with F¥s treated as parameters, has been fairly suc-
cessful while fits for ions in crystalline environments
have been very successful. The greater success of the
latter may be due to a parametrization scheme which
for this case fits fewer spectral lines with more pa-
rameters. In the case of the free ions of the iron series
there are appreciable and systematic differences be-
tween the F¥s obtained from experiment and those
obtained from Hartree-Fock calculations.® Inspection
of those cases where the Racah equations and experi-
ment disagree as to the order of multiplet states, sug-
gests that the F* discrepancies are due to the experi-
mental F¥s not being strict F* integrals. This suggests
that effects outside of the restricted Hartree-Fock
formalism appreciably affect the multiplet spectra.

III. EARLIER IRON SERIES SPIN POLARIZED
CALCULATIONS

Wood and Pratt® did a self-consistent field Hartree-
Fock calculation for the neutral Fe, 4523d% free atom
where U;(r)’s for electrons of different spin in a shell
were allowed to differ, i.e., restrictions (iii) of the
previous section was relaxed, leading to an “unsym-
metrized” determinantal function. We would describe
their calculation as a “spin polarized’’® calculation and
it should be noted that restrictions (i) and (ii) were still
in force. For computational reasons these authors did
not handle exchange exactly but instead used the
Slater p? (charge density to the one-third power) ex-
change potential.® As they indicated, this introduced
errors in-regions of low charge density, i.e., near the
nucleus and for large radii. Since a conventional re-
stricted Hartree-Fock calculation has recently been
done for the 4s23d°® ground state of neutral Fe3 a brief
comparison of results seems desirable. The one-electron
energies for the two calculations are listed in Table I.
In making comparisons it should be noted that the
restricted Hartree-Fock one-electron energies are estab-
lished to about 0.01 ry. The table indicates that the

3 J. C. Slater, Quantum Theory of Atomic Structure (McGraw-
Hill Book Company, New York, 1960), Vol. 1, and reference 30.

3 See Fig. 2 of reference 30.

3 There is some question of terminology with reference to such
calculations. Originally these have been referred to as “unre-
stricted Hartree-Fock calculations” by Slater and his group. We
are inclined to call such a calculation a spin polarized calculation,
reserving the term wunrestricted Hartree-Fock for the case where
the restrictions (ii), (iii), and perhaps (i) are relaxed. Lowdin and
collaborators refer to a solution properly symmetrized prior to
the variational calculation as an exfended Hartree-Fock scheme.

3 J. C. Slater, Phys. Rev. 81, 385 (1951).

35 R. E. Watson, Quarterly Progress Report, Solid-State and Mo-
lecular Theory Group, Massachusetts Institute of Technology,
April 15, 1960 (unpublished); and Phys. Rev. 119, 1934 (1960).
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inaccuracy of the potential (used by Wood and Pratt)
near the nucleus had a large effect on Us,(r) and its one-
electron energy with resulting repercussions on the other
Ui(r)’s. The Wood and Pratt wave functions are in
fact better than their energies would indicate, e.g.,
they yield x-ray scattering factors which are in fair
agreement with those computed for the restricted
Hartree-Fock function.3¢

Heine! did a calculation for Mn** and Mn in which
he used the results of an existing Cu calculation to
supply a Coulomb potential and added a p* exchange
potential due to the unfilled 3d shell. He solved for
functions of the 2s, 3s, and 4s shells (no 1s) in this
potential, i.e., it was not a self-consistent field calcula-
tion. His purpose was to obtain an estimate of the
Fermi®? contact hyperfine interaction parameter

x= (4m/S)Ek 8(ri)ma)sz=s, ©)

where .S is the ion’s total spin, the index & ranges over
electron coordinates, and the S,=.5 indicates that the
term is to be evaluated for an ion in the state where
Ms=S. The bracket () is the net spin density (wave
function density weighted by m, values) at the nucleus.
For the iron series doubly ionized ion ground states the
experimental x is roughly a constant with a value of
~ —3 in atomic units.?” Heine obtained a value for x
of —3.3 for Mn*? (and a similarly good value for Mn)
and Wood and Pratt obtained —2.4 for Fet2.

IV. DESCRIPTION OF THE CALCULATION

The calculation has been done using self-consistent
field analytic techniques.®® Normalized analytic one-
electron radial functions [U;(r)’s] are obtained as
solutions of the Hartree-Fock radial equations. The
U,(r)’s have the form:

Ui(r)=2; CiiR;(r) 9

36 A J. Freeman and R. E. Watson, Acta. Cryst. (to be pub-
lished).

37 See A. Abragram, J. Horowitz, and M. H. L. Pryce, Proc.
Roy. Soc. (London) A230, 169 (1955).

38 The analytic approach to solving Hartree-Fock equations has
been developed by many workers. C. A. Coulson [Proc. Cambridge
Phil. Soc. 34, 204 (1938)] appears to have been the first to have
used an expansion technique in a molecular problem, while C. C. J.
Roothaan [Revs. Modern Phys. 23, 69 (1951)] presented the
approach in a particularly desirable form for closed-shell mole-
cules. Nesbet, with his symmetry and equivalence restrictions, ex-
tended the method to nonclosed shells and emphasized its use
for atomic cases [see reference 4 and also Quarterly Progress
Reports No. 15, January, 1955, p. 10; No. 16, April, 1955, p. 38
and p. 41; No. 18, October, 1955, p. 4, Solid-State and Molecular
Theory Group, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts (unpublished)]. Nesbet’s approach was
modified in the course of calculations by Allen, R. E. Watson,
and R. K. Nesbet (e.g., the modified restricted Hartree-Fock
calculations of reference 21). Recently C. C. J. Roothaan [Revs.
Modern Phys. 32, 179 (1960) ] has extended his formalism to cover
the nonclosed shell case for the conventional restricted Hartree-
Fock method where nonzero off-diagonal Lagrange multipliers
occur. The iron series ions with just a nonclosed 32 shell do not
require his formalism.
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TaBLE I. Comparison of the one-electron energies (e;’s) of the
Wood and Pratt® spin polarized Hartree-Fock calculations for
neutral [(3d1)5(3d})3(4s)?] Fe with the restricted Hartree-Fock
values of Watson.?

Wood and Pratt

3 Restricted Hartree-
one-electron energies

Fock one-electron

Spint Spin}, energies
1s —584.5 ry —584.2 ry —522.7ry
2s —61.08 —60.40 —63.84
3s —7.463 —6.930 —8.308
4s —0.532 —0.428 —0.510
2p —53.16 —52.65 —54.79
3p —5.061 4,540 —5.455
3d —1.122 —0.664 —1.271
& See reference 10.
b See reference 35.
their normalization condition is:
0
[ 1vopar=1, (10)
0
and the basis functions are of the form,
R;(r)=NypHaditlg=Zir, (11)

The [ is the one-electron angular momentum appro-
priate for the one-electron function of which U,(r) is
the radial part. The NV; is a normalization constant and
is expressible in terms of the other parameters, i.e.;

(2Z;)2++24543 F

e HE

It should be noted that the eigenvectors (C;;’s) are de-
fined in terms of normalized R;’s. A set of R/’s is sup-
plied for each I value for which Hartree-Fock solutions
are to be obtained. U;(r)’s of a common / value are con-
structed from a common set of R;’s.

The strength of the analytic procedure lies in the
fact that the necessary integrals are obtained analyti-
cally and the Hartree-Fock self-consistent procedure
becomes a process of matrix manipulation and diagonal-
ization. This process can be more rapidly and accurately
carried out on a computer than can the conventional
numerical methods of solving Hartree-Fock equations.
The limitation of the analytic approach lies in the fact
that we must use less than complete sets of basis func-
tions. Thus we cannot obtain exact solutions. Associ-
ated with the approach is the problem of choosing sets
of basis functions (R,’s). We have used the set employed
in an earlier restricted Hartree-Fock calculation® for
Nit2, The set of R;’s (or rather their Z;s, N’s ,and 4s)
appear in Table II. The size of this set represents an
uneasy compromise between the choice of a large set
which would allow accurate wave-function construction
and a small one which would retain the advantages of
wave functions of analytic form. Inspection of the
basis set used here suggests that it would not allow for
subtle wave-function behavior either very close to the
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TaBLE II. Parameters (4;, Z;, and N;) which define
the basis set (R/’s).

J 4 Z; N;
R;’s used for the 1 0 29.2991 317.18411
construction of 2 1 25.9035 3943.3516
s functions 3 1 13.3851 756.87370
(¢=0) 4 2 12.4174 2844.7630
5 2 7.4187 468.90632
6 2 4.4208 76.593477
# functions 7 0 18.2297 1638.3933
(I=1) 8 0 11.0602 469.76085
9 1 10.1407 1400.1563
10 1 6.1124 238.05644
11 1 3.7142 41.635831
d functions 12 0 2.3154 7.9639743
(I=2) 13 0 4.5232 82.984888
14 0 8.5025 755.70446
15 0 15.0077 5521.2606

nucleus or in the outer part of the ion, i.e., the “tails”
of the Us,, Usp, and (to a slight extent) Usq. We esti-
mate that a maximum error on the order of 0.01 ry is
produced in the one-electron energies due to the limited
basis set.

The unsymmetrized spin polarized Hartree-Fock equa-
tions were derived by taking the single determinant re-
stricted Hartree-Fock description of Nit?(3d)%, 3F
(M s=+1, M =+3) and applying the variational prin-
ciple as described by Hartree, to functions of one spin in
a shell separately from those of the other. This yielded two
Hartree-Fock equations per electron shell or one per “‘sub-
shell.” Due to our initial M g choice, we filled the 3d sub-
shell of plus spin leaving three electrons (m;=2, 1, and 0)
in the subshell of negative spin. As noted in Sec. 2, the
function ceases to be a pure 3F state as soon as the set
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of Ui(r)’s for a given ! and m, value are different
(strictly speaking linearly independent) from those of
—m;. The wave function to be described in the follow-
ing section is thus predominantly but not identically a
3F state.

V. RESULTS
A. Eigenvectors and Eigenvalues

The eigenvectors (Cy’s) appear in Table III. Table
IV contains the one-electron nuclear potential+-kinetic
energies (K/’s), the one-electron energies (e;’s), the
Slater F*(3d,3d) integrals® and the total energy. The
same quantities obtained for the earlier restricted
Hartree-Fock calculation® for Ni are included for com-
parison. These quantities are accurately evaluated for
the functions defined in Table III (for spin polarized
calculation) and elsewhere? (for the restricted case).
The first fact to observe is the very small total energy
improvement of 0.003 ry, an effect which is one two-
hundredth the size of some of the energy differences
between e;’s and K’s of differing spin. It should alsobe
noted that the averages (weighted, in the 3d case, by
the numbers of electrons of spin up and down) of the
spin polarized e;’s and K/’s are in good agreement with
the restricted Hartree-Fock values. The two Usa(7)’s
and their differing F%(3d,3d)’s cannot be easily related
to the Nit2(3d)® multiplet spectrum for several reasons.
First, one should consider the effect of relaxing restric-
tion (ii) as well as (iii). This should lead to additional
F*(3d,3d) differences. In comparison with what follows,
this is a minor consideration. Secondly, if one does
Hartree-Fock calculations for different multiplet states
of the same configuration, one obtains F*(3d,3d)’s and
other integrals which show differences which are of the

TasLe IIL The eigenvectors (C;;’s) defining the spin polarized Hartree-Fock radial functions (Uy’s) in terms of the basis functions (R;’s).
The arrows denote the spin values (m,=-3) associated with the U.’s, note that M g=+1.

j= 1 2 3 4 5 6
i=1s} 0.91714999 0.10098404 —0.00162370 0.00128502 —0.00023301 —0.00000102
15} 0.91715289 0.10098632 —0.00162971 0.00127521 —0.00023253 —0.00000193
2t —0.28036141 —0.16394354 0.68524057 0.45154710 0.03649725 —0.00117615
2s) —0.28070223 —0.16432674 0.68672005 0.45224966 0.03397806 —0.00125708
3sp 0.10582698 0.05066751 —0.22364005 —0.41109321 0.39772722 0.82649480
3sd 0.10526667 0.05113588 —0.22496994 —0.40579286 0.39306664 0.82902639
j= 7 8 9 10 11
i=2p1 0.14685634 0.84377484 0.02080950 0.02110774 —0.00275806
2} 0.14663382 084676890 0.01871883 0.01919158 —0.00296159
3t —0.04762232 —0.33693859 —0.05352594 0.57699250 0.57721481
3p) —0.04538758 —0.33927573 —0.04406725 0.56238492 0.58690628
j= 12 13 14 15
i=3dp 0.41980857 0.55308983 0.17064442 0.00464008
3d 0.44168992 0.53276300 0.17258038 0.00387780

# Considerations of space make it desirable to omit the other F* and G* integrals; they have been computed and are available to

interested persons.
4 See p. 228 of the technical report, reference 30.
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same order of magnitude as the F*(3d,3d) differences of
Table IV. Lastly, there are systematic discrepancies that
occur between theoretical and “experimental” F*(3d,3d)
values.> We believe that these discrepancies are due
to many-electron (correlation) effects which are outside
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TaBLE IV. The one-electron nuclear potential4-kinetic energies
(Ky’s), the one-electron energies (e;’s), the F*(3d,3d)’s and the
total energies for the spin polarized and restricted Hartree-Fock
calculations for Ni*2.

Spin polarized calculation

of the scope of the Hartree-Fock, F* type of description note that M s=+-1 Restricted
of an atom. spin} spiny calculation
. K, —783.7034 ry —783.7036 ry  —783.7034 ry
B. Charge Densities and Form Factors Ko, —192.2294 —192.2906 —192.2601
. . . . . K, —74.4584 —74.3875 —74.4227
Table IV also gives information concerning the radial K, —190.8927 —190.9840 —190.9385
behavior of the U;(r)’s since K,’s of larger magnitude ?” - gggg% :ggiﬁ? :gg%gg
indicate relatively contracted U;(r)’s. We see that the . ' ‘ '
Ui(r)’s of the majority (plus) spin have converged . —612.6471 —612.6482 —612.6486
[relative to the minority spin U;(r)’s] upon each other. € —77.2961 —77.1474 —77.2227
Th er is not in toward th 1 The U €35 —11.3540 —10.9642 —11.1595
€ convergence no ln‘ wa € nucileus. 1sty €2p —67.3493 —67.2063 —67.2787
Usst, and Uspt are relatively expanded and the Usst, e —8.2001 —7.7245 —7.9627
Uspt, and Usqr are contracted. This is illustrated by €3d —2.8984 —2.7046 —2.8251
Flg 1 Wthh represe.:nts the net radial Spin density of FO(Sd,3d) 1.98160 1.95021 1.96965
the argon-like core, i.e.: F2(3d,3d) 0.91619 0.89725 0.90896
- X F*(3d,3d) 0.56986 0.55716 0.56501
pa(r)= 2. 20m)LU(r)] Total energy —3012.0449 —3012.0422
1 =argon
CO%G
=2 [UnP—-Z [U:nP 13)
spint spin}
.04 40
/'\
I\
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.
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Fic. 2. Spin polarized 3d charge density, £3d(x ray) ; spin density,
p3d(neutron) ; and a hydrogenic 3d charge density, p3d (hydrogenic)
2

for Nit2,

Negative values indicate regions where a negative spin
is associated with the charge distribution. The electron
spin density of the ‘“closed” argon-like core is small;
this is best indicated by the argon core radial charge
density [insert a plus sign in the right-hand side of
Eq. (13)] which also appears in Fig. 1.

Instead of discussing the behavior of the two Usy()’s,
we will discuss the electron densities that yield the
one-electron spherical scattering factors appropriate
for x-ray and neutron diffraction, i.e., the p’s that appear
in

® sinkr
fu®= [ put)——ar, (14)
0 ki’
where % is the familiar 4 sinf/A. The one-electron 3d
charge density “seen” by x rays is the average of the

[Usa(r) s or:
p3acx ran=8{SLUsat (") P+[Tsas () I},  (15)

while that “seen” by neutrons is the ion’s spin density
divided by the number of unpaired spins:

P3d(neutron) = %{SEU&“ (7’) :IZ - SEU&” (1‘) ]2+PA} ) (16&)
or
P3d(neutron) = EU3dT (7) :],2
+3{3(LUsat (1) P—[Usas (r) ) +pa}, (16b)

where pa is the argon core contribution as defined in
Eq. (13). The two densities are identical for a restricted
Hartree-Fock function, i.e., the second term on the
right-hand side of Eq. (16b) equals zero. The spin
polarized p(r)’s appear in Fig. 2 along with that for a
hydrogenic function* yielding almost the same multiplet

41 Hydrogenic functions and their form factors are included in
our discussion since it has been a fairly common practice to com-
Eare measured neutron form factors with hydrogenic form factors

such as those of L. Pauling and J. Sherman, Z. Krist. A81, 1
(1932)].
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spectrum [i.e., it is chosen so that its F2(3d,3d) agrees
with the restricted Hartree-Fock F2(3d,3d)]. We see
that a hydrogenic 3d function is not a good approxima-
tion to the Hartree-Fock function. The difference be-
tween pzd(neutron) a0d p3d(x ray) i primarily a matter of
shape—they cannot be brought into agreement simply
by scaling. This is typical of what we have observed in
the past of 3d function behavior, i.e., when separate
restricted Hartree-Fock calculations have been done
for two states of the same iron series element (e.g., for
two stages of ionization, for two different configurations
and the same stage of ionization, for two multiplet
states of the same configuration, or for an ion with and
without an external environment) variation in Usa(7)
and [Usqe(r)]? has been primarily a matter of shape
and not scaling. The Usq(r)’s have also tended to be
quite different than hydrogenic. Stern® and Wood#
have observed a similar behavior for the set of 34 func-
tions obtained in energy band calculations for metallic
iron. Scaling is unimportant because the dulk of a 3d
function is relatively unperturbed by the various en-
vironments (and/or symmetry requirements). The
variations primarily consist of adding or subtracting
charge to the 3d tail, subject to the requirement of
Usa(r) normalization. While the above observations are
based solely on theoretical calculations, they do suggest
that it is inappropriate either to approximate iron series
Usa(r)’s by hydrogenic functions or to describe Usq(r)
variations by scaling alone.

Since scattering factors rather than charge densities,
enter in diffraction experiments, it is desirable to in-
spect these. A number of scattering factors, (spherical
part only) appear in Table V. Included are one-electron
3dt, 3d|, 3d(x ray), and 3d(neutron) (i.e., magnetic)
form factors. Argon core and total ion (x-ray) scattering
factors are also tabulated. Comparison with the results
for the restricted Hartree-Fock Nit? function shows
agreement between argon core and total ion scattering
factors of better than 0.01 e.u., with the spin polarized
results always lying higher. If one restricts inspection
to values of sinf/A of 1.0 A~! or less, the argon core
agreement is to 0.004 e.u. and the total ion’s to 0.006
e.u. The restricted fsq and the spin polarized f34(x ray)
agree to 0.0003 e.u. with the latter lying higher. These
differences are small, indicating that the restricted and
spin polarized charge densities are almost identical,
with the latter very slightly contracted (indicated by
expanded or higher scattering factors) in comparison
with the former. The difference, however, between
Sf3dxray) and f3d(neutron) is small but measurable, i.e.,
current neutron diffraction techniques can readily dis-
tinguish form factor effects of this size. Equation (16)
suggests that f34meutron) Mmay be interpreted as fsqr plus
contributions from the spin polarized electron dis-

2 F. Stern, Phys. Rev. 116, 1399 (1959).

4 J. H. Wood, Phys. Rev. 117, 714 (1960).

4 Appearing in part in R. E. Watson and A. J. Freeman, Acta
Cryst. (to be published).
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TaBLE V. Form factors for spin polarized Ni** in e.u.
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(sing/N) (A1) f3dy f3dy f3d(x ray) f3d(neutron) fargon core ftotal ion

0 1.0000 1.0000 1.0000 1.0000 18.00 26.00
0.05 0.9797 0.9790 0.9795 0.9809 17.89 25.72
0.10 0.9224 0.9198 0.9214 0.9268 17.56 2493
0.15 0.8368 0.8317 0.8349 0.8456 17.04 23.72
0.20 0.7345 0.7270 0.7316 0.7476 16.36 22.21
0.25 0.6266 0.6173 0.6231 0.6432 15.56 20.54
0.30 0.5219 0.5116 0.5180 0.5404 14.69 18.84
0.35 0.4258 0.4155 0.4219 0.4448 13.80 17.18
0.40 0.3411 0.3314 0.3375 0.3593 1291 15.61
0.45 0.2686 0.2601 0.2654 0.2851 12.07 14.19
0.50 0.2080 0.2008 0.2053 0.2221 11.28 12.92
0.60 0.1177 0.1133 0.1160 0.1267 9.92 10.84
0.70 0.0600 0.0578 0.0591 0.0645 8.85 9.33
0.80 0.0249 0.0242 0.0246 0.0262 8.05 8.24
0.90 0.0048 0.0048 0.0048 0.0039 7.44 7.48
1.00 —0.0060 —0.0056 —0.0058 —0.0079 6.95 6.91
1.10 —0.0111 —0.0105 —0.0108 —0.0133 6.55 6.46
1.20 —0.0127 —0.0122 —0.0125 —0.0149 6.19 6.09
1.30 —0.0124 —0.0119 —0.0122 —0.0144 5.84 5.74
1.40 —0.0112 —0.0108 —0.0111 —0.0129 5.51 5.42
1.50 —0.0099 —0.0096 —0.0098 —0.0113 5.17 5.09

tribution of the “paired” 3d electrons and the argon
core. Inspection of Table V shows that fsg+ lies closer
0 f3d(x ray) than to f3i(neutron). Further study shows that
the contribution from the “paired” 3d electrons is the
principle cause of the f3i(xray)—f3d(meutron) differ-
ences. The observations outlined above suggest that
the interpretation of an experimentally obtained neu-
tron magnetic form factor, in terms of a single, unfilled
shell wave function, must be done with care. This
calculation suggests that for Nit? one would obtain a
magnetic form factor which is measurably expanded
(hence a contracted charge distribution) in comparison
with that appropriate for any of the 3d electrons.

Before leaving this topic we should mention the
widely investigated case of Mn™2. Here all the 3d elec-
trons are of parallel spin, and only the argon core is
available for spin polarization effects. Since the argon
core contribution to the magnetic scattering is small,
and since there is no polarized 3d contribution, one
would expect f34(x ray) and f3d(neutron) to be in substan-
tial agreement and in turn that a measured f3g(neutron)
can be better relied upon for direct information about
3d electron behavior.

C. Hyperfine Parameters

Let us now consider the Fermi contact term x [see
Eq. (8)] which occurs in an S-I (I being the nuclear
spin) hyperfine interaction.*> Only s functions provide
nonzero contributions at »=0 and in the restricted
Hartree-Fock formalism their contribution is zero.
Since the common Ni isotopes have zero nuclear spin,
we must obtain a value of x from other doubly ionized
iron series ions. As has been noted, x has a roughly
constant experimental value of —3 a.u. for these ions.
The spin polarized Nit? 1s, 2s, and 3s shells make con-

45 Tt should be noted that the charge densities making up x are
[U:(r)/r]? and not [U:(r)? [see Eq. (4)].

tributions of —0.27, —9.62, and +5.95, respectively,
for a x of —3.94 a.u. We note a competition of terms
quite consistent with Fig. 1 and the earlier discussion
of wave function behavior. This sort of behavior is in
qualitative agreement with the results of Marshall*6 and
Wood and Pratt.® The latter obtained a relatively
greater 1s contribution ; this may have been due to their
use of a p* exchange potential. The spin polarized x’s
represent substantially better agreement with experi-
ment than do earlier configuration interaction esti-
mates, of Abragam, Horowitz and Pryce.’” In closing
the discussion of x, it should be noted that while the
earlier spin polarized calculations suffered from poor
exchange potentials (and lack of self-consistency in
Heine’s case), the present calculation relies on a basis
set which may supply too little variational freedom close
to the nucleus. This will be investigated in the near
future.

There is another hyperfine parameter involving the
interaction of electron spin and angular momentum
with the nuclear spin which may be discussed. If one
assumes a restricted Hartree-Fock function, this pa-
rameter is proportional to {»—%) where:

® [Usa(r)
<7'_3>Ef [*73—‘*(17’. (17)

Abragam, Horowitz, and Pryce®” report experimental
(r~8) values for free neutral atoms and for doubly ionized
ions in salts. It is our experience®® 62 that theneutral
atom 4s electrons perturb a Uja(r) less than does a
crystalline environment, and therefore we will rely on
the neutral atom {»—3)’s. Interpolating Abragam, Horo-
witz and Pryce’s data (since /=0 for Ni), we obtain
(r3)exp=6.3 eu. The spin polarized Ussr and Usa
yield calculated values of 7.15 and 6.99 e.u., respec-

46 W, Marshall, Phys. Rev. 110, 1280 (1958).
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tively. The analysis leading to the (r~%)cx, was based
on the assumption of a restricted Hartree-Fock func-
tion. Inspection of the spin density in Fig. 1 suggests
that there are additional sources to this hyperfine term
and that we should not expect detailed agreement in
(r~*)’s. We have not investigated this particular aspect
of the problem.

VI. CONCLUSION

We have been investigating the effect of relaxing one
of the restrictions associated with the conventional re-
stricted Hartree-Fock formalism. The particular re-
striction in question, (iii), requires common U;(r)’s for
electrons of differing 7, value. Relaxation of this con-
straint in a calculation for Ni*? has led to measurable
effects in the electron spin distribution of that ion. A
Fermi contact hyperfine parameter was obtained which,
in common with earlier calculations, is in fair agreement
with experiment. Of perhaps greater importance is the
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effect on the magnetic form factor which represents an
electronic spin distribution measurably different from
that of either of the 3d electron types. This suggests
that experimentally determined magnetic form factors
for an ion like Ni*? can perhaps be misleading if in-
terpreted as arising directly from a single 3d charge
distribution. This difficulty is most likely to occur for
an ion with an almost filled shell, where the ‘“paired”
electrons of that shell can be spin polarized so as to
make a contribution to the magnetic scattering.
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The combined effects of spin (or exchange) polarization and an external crystalline field on charge densi-
ties, x-ray and magnetic form factors, and hyperfine parameters are investigated following the analytic
Hartree-Fock self-consistent field approach. The crystalline field was represented by a crude cubic field
arising from an octahedral array of point charges surrounding the central ion—in this case Ni*% In the
strong field approximation the atomic 3d electrons are “split” by the crystalline field and the spinpolariza-
tion effect, resulting in a description of these electrons by a set of three distinct orbitals (each having
different radial distributions and called 3,1, f2,) and e,4). The ion’s spin density leads to a Fermi contact
hyperfine term in better agreement with experiment than the value reported in an earlier spin polarized
calculation for the free Ni*? ion and a magnetic form factor whose Fourier transform resembles none of the

individual 3d charge distributions.

I. INTRODUCTION

N earlier investigations we have considered several
factors affecting charge densities and measured
magnetic form factors'3 of iron series ions. An external

* The research done by this author was supported jointly by
the U. S. Army, Navy, and Air Force under contract with the
Massachusetts Institute of Technology.

T Now at Avco, RAD, Wilmington, Massachusetts.

IR. E. Watson, Phys. Rev. 117, 742 (1960). There is an error
associated with this calculation; an erratum is available from
the author.

2 A. J. Freeman and R. E. Watson, Phys. Rev. 118, 1168 (1960),
and J. Appl. Phys. 31, 374S (1960).

3R. E. Watson and A. J. Freeman, preceding paper [Phys.
Rev. 120, 1125 (1960)7, henceforth denoted as I.

crystalline field was shown to produce two effects on
the 3d charge density for an ion like Mn*™ and hence
on its magnetic form factor as well: (1) an expansion
of the 3d charge density from its free ion value and (2)
a “splitting”” of the doubly degenerate (e,) and triply
degenerate (#5,) cubic functions from their common
free ion value, resulting in two different radial charge
densities. The expansion effect, as suggested by experi-
mental F*(3d,3d) integrals was shown? to be compatible
with neutron diffraction data.? The splitting effect led
to the prediction that a half-closed shell ion, like Mn*+

4]J. M. Hastings, N. Elliot, and L. M. Corliss, Phys. Rev. 115,
13 {1959).



