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Cartesian Tensor Scalar Product and Spherical Harmonic Expansions
in Boltzmann's Equation
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The electron or ion distribution function, expanded in a sum of spherical harmonics, is shown to be
equivalent to a tensor scalar product expansion. As such, it can be readily substituted into the Bolt@mann
equation to give transport equations integrated over angle and also the necessary equations for determination
of the expansion coeKcients. This has been done for terms up to order three, the order of the pressure
transport tensor.

I. TENSOR SCALAR PRODUCT EXPANSION OF
THE DISTRIBUTION FUNCTION

Introduction

where i, j, k, etc. , may each refer to the x, y, or s axes.
Later other letters will be used in the same way.

The fl tensors are, of course, completely symmetric,
but the components also have additional restrictions,
because while ()*„()&,v' are independent, the cos8"s (the
velocity direction cosines) are not, since the sum of
their squares is one. Because of the orthogonality of the
spherical harmonics, they form the unique angle
expansion for the distribution function, and in order to
justify and discuss the tensor scalar (or dot) product
expansion, it must be determined whether the tensor
dot product expression can be converted to the spherical
harmonic expansion, or vice versa.

The reverse proves somewhat easier. Consider the
expansion

!
'HE statement has been made that the expansion

of the distribution function in Legendre poly-
nomials is equivalent to an expansion in a vector form as

f) v
f=+ f(P)(cos8) =fp+ (1)

z

+

This equation is limited to one dimension by the use of
Legendre polynomials only on the left hand side. The
more general and true statement is that the expansion
of the distribution function in spherical harmonics I'z,
is equivalent to a Cartesian tensor scalar product
expansion f= 2 f( .I'( '

(f)} ((v'}
f= Z f..(, ,1)I'...(8A)=Z

~)z

z, ts, 8

term by term, i.e., that

(f(}:((v}2 f( .I'(-.=
m, s

Here

If we convert each I"z, into a sum or products of l
direction cosines, then we can take these product
terms and write them as a result of a tensor dot product.

If we denote by f„,„ the value (all the same) of the

(3) elements in the f( tensor with p x-subscripts, (l y-
subscripts, r s-subscripts, (l=P+q+r) then, if

I'(~, (8,$)= sin8P) (cos8) (8p, cos~+ 8), sinmP),

with the orthogonality relationship

I"),——p n~, „' ' cos)'8 cos'8p cos"8',
yqr

we can write

I'(,F'( .d'0= F'(,F'(, sin8d8dg
al ~0 &0

2m (l+m)!
(1+8p.).

2l+1 (l—m)!

Also If&} is a symmetric lth order Cartesian tensor, and

(v') = v'v& v', (l terms)

the /th order Cartesian tensor formed by the Cartesian
components v' of v along the 3 or s (polar), 1 or x(p),
and 2 or y axes, and

'V 'V~ 'V

(«} ((v'}=&fin" »' ———

with (f)}a fully symmetric tensor whose elements are

plglpl
f(()(jk" ~ fp pr P ()(y, p, r ' ' f(mr (&a)

(p+q+g)! m, s

The expansion of I'z, in /th order products of
direction cosines Li.e. (4)j is a very easy matter.

Expansion of Spherical Harmonics in
Direction Cosine Products

The direction cosines themselves are given by:
=Pf(n. ..&( COS8' cos8r cos8*=sin8 cos$, cos8p= sin8 sing, cos8*=cos8, (6)
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so that

(2l) i (l—m) (l—m —1)
cos'

2'l! (/ —m)! 2 (2/ —1)
cos' " '8+ ~ sin"8(80, cos~+b~, sin~)

(2l)! m/2; (m—1)/2

[cos' ™8— . j sin 8[80, P (—1)" C2„cos~ '"P sin'"P
2'/ (/ —m) n~0

(m/2) —1; (m—1) /2

+$ P ( 1)n &AC cosna —2n—1$ sm2n+1gj
n=o

where Moivre's theorem has been used to expand the ~ terms. In direction. cosines this is

(2/)!
Vi, ——

2'l! (l—m)!

(l—m) (l—m —1)
cos' 8'——

2 (2/ —1)
cos' " 'g*(cos'g*+cos'g~+cos'8')+

m/2; (m—1)/2 (m/2) —1;(m-1) /2

)&[8o, P (—1)"~C,„cos '"8' cos'"8&+b, P (—1)"~C „cos~ '" '8' cos'"+'8&j (8)
n=o n=o

where the terms in cos' '00, etc. , have been, so to
speak, 61led out by multiplying by (cos'8'+cos'8"
+cos'8')'= 1, to give l terms in each product.

Our expansion of (4) has been carried. out, and so we
can write the fg tensors in terms of fg, coeKcients.
(It can be readily seen that for all F'&„, of given /, we
will use all lth-order cosine products. ) As a result of
the Glling-out operation, the lth-order tensor contains
f~„, terms of order l only, which makes for considerable
simplicity. (It is evident that there is a certain degree
of arbitrariness in how the tensors are constructed from
the fg, terms since one can go on multiplying by
(cos'8~+cos'8~+cos'8')=1. The choice here seems to
be the simplest and leads to quite elegant results. )

With this choice of the Y~, expressions in cosg' s the
reverse process of converting the direction cosine

products to spherical harmonic sums is very easy if
approached in the right fashion.

Expansion of Direction Cosine Products
in Spherical Harmonics

Initially the outlook seems unpromising, for it seems

that there is a gap between the number of different
cose' products of order / and the number of spherical

harmonics of order l. The number of products is the

same as the number of independent elements in the

completely symmetric l tensor in three-dimensional

space, namely (l+1)(/+2)/2, ((l+I 1)!//! (e—1)!in-
n-dimensional space) while the number of lth-order

spherical harmonics is only 2l+1. The difhculty
vanishes when it is realized that one needs to use all

the lower order spherical harmonics of the same parity
as l (i.e., even or odd as l is even or odd), as well as the
3th-order harmonics. It is readily verified that the
addition of these harmonics supplies the number of
terms one needs, since

for /=2k,

X~gl X() +1)
Q (2/+1) =+4X+1=(X+1)1+4

0

for /= 2K+1;

(l+1)(l+2)= (X+1)(2K+1)=
2

X=+l—1 X (X+1)
(2/+1) =Q4X+3= P.+1)3+4

'A 0

(X+1)(2K+3) (/+1) (l+2)

2 2

The introduction of these lower order harmonics is
carried out by Ailing out the lower order spherical har-
monics (expressed in direction cosines) by repeated
multiplications with the sum of the squares of the
cosines, to reach order l.

When this has been done there are (l+1)(l+2)/2
linear equations expressing all F&,'s of the same parity
as l and of order l or lower, in terms of the (l+ 1)(l+ 2)/2
independent direction cosines products, all products
of order I. To find the inverse set of equations we
invert the matrix of the set of equations and thus
express all cos8' products of order / in terms of spherical
harmonics of the same parity in l and of order / or less.

An example to make this process clear is the following
for l=2. We write:

I"ooo= 1=cos'8'+ cos'8~+ cos'8'

(Note the "Glling out" of Vooo ——1.)

F2oo =
~ (3 cos'8—1)= cos'8*—

2 cos'8*—x2 cos'8&,

F'220= 3 sin'8 cos2$ = 3(cos'8*—cos'8"),

F2~~ ——3 sing cosg cosP= 3 cosg' cosg',
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V2I1=3 sin8 cos8 sin@=3 cos8' cos8&,

Y'221 ——3 sin'8 sin2$ = 6 cos8* cos8y.

A set of equations with six even I"s of order 2 and 0
and six distinct cos8' products (three squares, three
cross products). If we solve this set of equations for
the cos8' products or invert the matrix, we obtain:

cos 8 =cos 8*=3 Yppp+ 3 Y200&

cos'8'= cos'8 = 13 Yppo —
3 Y200+ 10 Y220,

COS 0 —COS 0 —3 I 000 3 I 200 6 I 220'

cose cos8 = cosO cosO = 3 F2].Q&

cose cosg = cose" cosa'= 3+211,

cose cos9 = cose coso"= $ I 22].p

i.e., cosy8* cos'8y cos"8*=+3,p„„'"zYy, where l'
=I—233 (I integral) and p+q+r=t. This operation
has been carried out for /=0, 1, 2, 3, 4, and the matrices
have been determined. ' The /=0 matrices are 1 and
the /=1 matrices are three by three unit diagonal
matrices. The /=2 matrices can be written down by
inspection from the examples, and the /=3 and /=4
matrices are available in reference 1 or from the
American Documentation Institute. ' The considerable
simplicity of the zero and 6rst order equations as
developed by various authors is really a result of the
simplicity of the matrices for /=0, 1.

Velocity Averages Expressed in Tensors

The next step is to ask how average quantities may
be represented in this system. The results are very
simple and can be readily seen to be:

For a scalar,

where

8)=— efpv'dv,
e ~

23=43r t fpv'dv.

(10a)

For a vector,

For a dyad,

{QQ)=P(){

(Q) =Q (v) v/

4x
Q =— f,gvsdv.3e! (10b)

43r
I

2
({QQ))=—,fo{I )Q'v'dv+4 — — t{f}Q'v'dv. (10c)

3n~ 3XS~

fz'z= sfspp+3f3201 fy'z= 2 f300 Sfsspy fyz'=2fstl&

*,.=3fs21
(9d)

For a triad,Tensor Elements Expressed in Spherical
Harmonic CoeRcients

4n- 2X3
+— — {& &Q' 'd,

e 3XSX7~(9a)0 0 000'

It= f1=frrpsz+ f1ttsy+ f1004, where L js means permute ijk for each element in all
ways (l! ways), add the result and divide by t! (to
produce a completely symmetric 1th-order tensor), and
{Is) is the unit diagonal lth-order tensor, ( ) denotes
velocity average.

These averages can be derived either by expressing
the direction cosines of the polyadic tensors in spherical
harmonics and using the orthogonality relation, or by
using the tensor expression and the integration formula

(9b)

{Is)= 2* 2 f200+3f220
1y 3f221

3 x
&z - g $210

2 f210
3
2 211

200'

3f221

sf200 3f220

2 f211
(9c)

f fs) Here the independent elements will be listed only,
because of the difhculty of representing the array on
the Rat page.

{QQQ) = Qs(v) {vvv)/vs,

Having shown the equivalence of the expressions, 4x
the next step is to unite them. Since it is not proposed ({QQQ))= l L(f, .I,).f,{12)jsgsvsdv
to carry any fourth order terms in the actual expansion, Sm~

only the tensors up to rank three are given from the e
matrices and (5a).

fzzz= —
2 fs10+15fssp, fyyy= 2fstt 15fsst&—fzzz= f—sppy

f",= —2fs11+15fss1, f» = —2fstp —13fssp, f»z=2fstp,

1T. W. Johnston, Research Report (7—801,6) RCA Victor
Research Laboratory, Montreal, Canada (unpublished).

2 The matrices have also been deposited as Document No. 6415
with the ADI Auxiliary Publications project, Photoduplication
Service, Library of Congress, Washington 25, D. C. A copy
may be secured by citing the Document number and by remitting
$1.25 for photoprints or $1.25 for 35-mm microfilm. Advance
payment is required. Make checks payable to: Chief, Photo-
duplication Service, Library of Congress,

cos~8 cos~8~ cos"0'd20

t 1+(—1)yjL1+ (—1)pjL1+ (—1)"3

r(sp+2)r(sq+2)r(sr+2)
r (-',P+-', q+-,'r+-', )
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i.e. , a nonzero result only for p, q, r all even, which is

,

t coso8* coso8o cos 8*d'0=
4sr1X1X3XS (P—1)1X1X3XS . (q

—1)1X1X3XS. . (r 1)—
1X3X5" (p+q+.+1)

(11b)

Both, of course, give the same answer. In this case the
spherical harmonic expansion is slightly easier to apply.

Because of the identity of cc and t3 for 1=0, 1, the
first two averages (10a) and (10b) are the same as
those given by Allis, ' while (10c) has been given by
Delcroix. 4 The application of these averages to pressure
tensors, pressure transport tensors, etc., is obvious.

Ayylying the Tensor Form to
Boltzmann's Equation

This polyadic dot product formulation allows a
sidestep around the problem of solving Boltzmann's
equation by expressing the distribution function in
spherical harmonics. One substituted the expansion
into Boltzmann's equation, attempted to juggle the
result until the only angle terms (including the collision
term) were all linear combinations of spherical har-
monics, and then, using the orthogonality relationship
one was to obtain a set of (1+1)' independent equations
to solve for the (3+1)' unknown ft, 's in terms of
collision coefficients and the like. The difhculty that
hindered this program beyond the first order (i.e., fi)
has always been the presence of terms such as
cos8LBPt~(cos8)/88$, for which no simple recursion
relations exist. We can sidestep this difficulty by using
the Cartesian polyadic tensor distribution function.

Previous consideration of more or less limited cases
of spherical harmonic expansion for first order have
been treated by Allis' and various investigators at
Yale' under Margenau. The author has previously
treated' the general case of Boltzmann's equation up
to the first order. It is believed that the present paper
is the first explicit treatment of second and third order
terms in the Boltzmann equation using spherical
harmonics. Delcroix' implicitly introduced (fs} in the
distribution function only, without putting it into the
equation.

The treatment given here is not to be confused with
the particular expansion which uses Sonine or Laguerre
polynomials'~" and spherical harmonics, and which

' W. P. Allis, HarIdbuch der Physik, edited by S. Flugge
(Springer-Verlag, Berlin, 1956), p. 404, Vol. 21.

J.-L. Delcroix, Introductiorf a la Theoric des Gas lonises
(Monographic Dunod, Paris, 1959), p. 69.

5 H. Margenau, Phys. Rev. 69, 508 (1946).
6 P. Rosen, Phys. Rev. 103, 390 (1956),' T. E. Van Zandt, Ph.D. thesis, Yale University, 1954 (unpub-

lished).
8 D. C. Kelly, H. Margenau and S. C. Brown, Phys. Rev. 108,

1367 (1957).
9M. P. Bachynski, I. P. Shkarofsky, and T. W. Johnston,

Plasmas and the FlectromagrMtec Ftetd [McGraw-Hill Book
Company, Inc. , New York (to be published)].

D. Burnett, Proc. London Math. Soc. 39, 385 (1934)."D.Burnett, Proc. London Math. Soc. 40, 382 (1934).
~ S. Chapman and T. G. Cowling, The M'athematical Theory

is employed for like-particle interactions. ' That
expansion can be put directly into the Boltzmann
equation, and with recursion relations given by Bur-
nett, " the spherical harmonic terms can be collected
quite neatly as Kelly" has done. The drawback is that
if the distribution function is far from Maxwellian the
expansion converges rather slowly. The spherical har-
monics of order / are associated with an exponential
with v' and Sonine polynomials (in v') of order (+—',

rather than arbitrary function of velocity magnitude.
For the markedly non-Maxwellian case one would like
to be free to choose the velocity magnitude terms in
other ways than those dictated by the Sonine expansion
to obtain more rapid convergence.

The point of the treatment given here is that one
can choose the velocity-magnitude expansion one
wishes, and that the nature and interpretation of the
separation of f into velocity magnitude and angle
terms is shown in the construction and use of the ft
tensors. The Sonine expansion is a particular case,
other expansions may well be more suited to other
circumstances; the significance of the ft, terms is the
same no matter how they are expanded.

An interesting resemblance is shown between the
averages in (10), the fi tensors and the terms in Grad's
m-dimensional Hermite expansion, " which is, by the
nature of Hermite polynomials, linked specifically with
a Maxwellian weighting function. This presumably
indicates some degree of kinship, but the resemblance
will not be discussed further here.

II. USE OF TENSOR FORM IN THE
BOLTZMANN EQUATION

Substitution of Tensor Form into
Boltzmann's Equation

Assume that the right hand side of the Boltzmann
equation can be expanded in spherical harmonics. In
the same manner as for the distribution function we
can 'express this as a Cartesian tensor scalar product
expression from (Sa) using Ct, for ft~, and hence
deriving {Ct}.:tf v'}/s' tensor forms.

Let us substitute the tensor form into the Boltzmann
equation, which is written here as

Bf—+v &,f+ (a+ v X tos) V „f=C
Bt

of Nortttrtiform Gases (Cambridge University Press, Cambridge,
1958), 2nd ed. , 3rd reprint, p. 123.

'3 R. Landshoff, Phys. Rev. 76, 907 (1949);and 82, 442 (1951).
~4 D. C. Kelly, Phys. Rev. 119, 27 (1960)."H. Grad, Communs. Pure and Applied Math. 2, '325, 331

(1949).
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B (f(l)w" ~ t)
+v

B (f&t—1)v" 4 )
(f«—1)'"4)+n' 'a"

Bx Bv&
Bf Bf . , Bf—+v, + (a'+e;, bv'&obb) —C=0,
Bt Bvi 88'

(12a)

with a= (q/ttt) E, o)b= (q/m)B, or in Cartesian form with the sign unchanged
the summation of repeated indices,

where e„~ is the unit alternating tensor in the Cartesian
system (=0 unless iW jWk, = +1 for even/odd permu-
tation of ijk from the normal 1, 2, 3 order). Substitute

f=Qt f(t)w "wtn v ' ' 'v /v )

~=Et ~(t)w "vtntn ' ' 'n /vt,

(l+I)a'f(t~t), w 4".
+le b ~bbf(l)

C(l) t&) ~ ~ ~ t
'V

=0. (13)

where f(t)„...t(xt, n'vt', t) is a function of time, position
and velocity magnitude only. There results

(f(l)w "tn ' 'n ) B (f(l)w" ~ tn

I+n'
Bl& v' ] Bx ~ n'

B (f&l)w tn' .v. ."
~+ (a'+ e,;bv'~bb)

Bv' &

~ ptO

=0
l

)

f(l) w".t —(fl}
C(l)w "t {Cl)
B/»" (f(~1)'"4)=~.{«-t}

a f(t+1)iw "t a' {fl+1)

e b,4ob'f(t), 4=oobX f«}

for the f tensor,
for the C tensor,
for the space gradient of
a symmetric tensor,
for the scalar product of
a vector with a tensor,
for the vector product of
a vector with a tensor
(unambiguous with a com-
pletely symmetric tensor),

we write

If we write as a compact form of notation

~ ~ ~ tt)+

(f(l)w "4) + (f(l)w" 4)

'V

(f(l)w "t) a'f(t)iv" t v ' ' 'v'
+ nw+l

Bn) v' ) ~l—1

where the velocity derivatives can be split up to yield ( B{fl) B ((fl 1}q
+v~ (ft-1)+" 'a—

I

E Bt Bv( v'—')
a. («+) . (v')i

+loob(ft) (Cl)+—(l+1) t i
=0. (14)

e' )

The erst few terms in this set are

''8 8~

+le'; ~ 'bf( b) (4..
cPdv ~ ~ PW

C(l) t&)" ~ t
l

Bfo a'ft

Bt

(Bf1 Bfo—&o+
~

+n')'t'. fo+a +oobXft
CIV

where for the velocity derivative of a;(Bv'. v"/Bv')
=P a'n v +v'a'v". .v"+ , the symmetry of
f&t)„...t, has been used to add the terms up. The velocity
gradient of the magnitude-of-velocity functions is in the
direction of v and so gives zero when scalar-multiplied
with vXmg.

Now let us group the terms by v' v"/v', to obtain

Bf(l)w "t Bf(t 1)v"~ t — B (f(l—1)v"~ t))
+v +v'-'a"—

i

Bt Bx" Bv E n'-'

~ J(7+1)it&)" t

+(l+1) +le; bo)bbf(t)""t

v (B{fo) B(fl/'n)
+2a (6)—C1

~
-+~ +v&,f1+»

i n ) Bl Bv

f vv) ( B{fo}
+26)b(fo)+3a (ft}—(Co) ~: + ~

+v(7,(f,}) v& & Bl

B({f2}/v') (vvv)
+n'a +3&obX {f1}+4a(f4) —{Co)

CI'V p3

(B(f4) B ({fo)/v')
+~ +vV'„{fo)+v'a +4s)bX ff4)

Bt CI8

~
canto

C(l) tt)"
l

(vvvv)
+5 (f}—(«) I::—

4

changing the e symbol by two transpositions to leave =0, (15)
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Vector Equation (Momentum, Energy Flow)where the terms to be retained in a third order expansion
have been kept (f4, fq will be omitted). Note that one
must consider the fourth order equation to include all ~ ~ ' ~ 0 I'{I2}:{3)

the third order terms.

Derivation of Angle-Integrated
Transport Equations

1 8(v'a {f2})+ V..{f)+——
83 Bv

+3~»«3}:{I2)-{3}:{I2}I
=o (»a)

2 8
+-,'v~„{f2)+ — —(v'a {f2})=0. (17b)

583 88

The terms on the erst line have already been indi-
cated by Allis, while the second line shows the non-
isotropic pressure effect (7'„fo is the isotropic pressure
term) and the momentum efrect of the electric Geld
and anisotropic pressure. If, from a priori considerations
one knows that the pressure is isotropic then the {f~}
tensor can be immediately put equal to zero.

Scalar Equation —Density and Energy

The resultant equations, integrated over angle, are
as follows:

(&f0 a fi q
4v'

t 8{fan) 8 (fi/v)
4

(
——+ —C, )+—

(
+vV„f +va

(Bi v ) 3 ( 8$ Bv Momentum Transport or Pressure
Tensor Equation

The step of interest is to multiply this equation
through successively by {v'}/v'= {(cos8')'} of various
orders and to integrate over angle to obtain partially
integrated transport equation. This can be done by
expressing (15) and {v')/v' as I'i, terms from (9)
using the spherical harmonic orthogonality condition
and collecting terms, with simplifications rom the
interdependence of the fi elements from (5a). The
other method is to use (11) for integrating the direction (3fi ufo
cosine products and using the tensor element expressions +v& f0+a +~~Xfi—Ci
in fi„, terms to eliminate some of the resulting terms.
As a matter of hindsight, it develops that g, f;, and

P; f,ii P; fi,——i P, fii; ——are zero for {f2) and {f3)."
One can obtain the tensor expressions without using
the spherical expansion beyond the establishing of the
symmetry conditions.

+2CDbX {f2)+3 —{C2) I:{I,) =0. (16a)

As a result of symmetry, etc., this is

The final form is, after substituting from (16),

8~-a{f2)
+v(V'„fi —-', V, fi{I2})

15 Bt

Bfp afi v 8 (afi) v

+ +——
~

~+-V. fi—Co=o,
. Bt v 3av& v) 3

+v
~

{I2) ~+2~bX {f2} {C2)
a E vv3 v i

or, using

»v"f Pf ~f

3 p 1 B(v4a {f3))y
+-~ vV„{f,)y—

(
=0. (1S)

70 v Ov

1 a(v'a fi) —Cp=o
&f0 v

+-&, fi+
2Bt 3 3V CIV

This equation is just Allis' zero-order equation; it is
noteworthy that the higher order (l)1) terms do not
appear in the final result.

' It seems most probable that this set of relationships applies
for all f&, since they can easily be reduced using powers of the
sum of the squares of the direction cosines (which is one), and
since both relations produce just 2l+1 independent tensor
elements.

t Note the use of the t ji symbol deGned after (10).j
Pressure Transport or Heat Tensor Equation

8 t'a{f,} 2a {f,)+"—
i

Bv E v' 5 v'

+3~i,X{f3)—{C3) =0. (19)
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The scalar and vector equations are exactly equiva-
lent to equations for the terms with oooo, &110 (&

component) I"111 (y component) and Y'100 (z compo-
nent), but the tensor equations are in a sense degenerate
because the tensor elements are not independent,
reQecting the interdependence of the cosset"s. To obtain
the equations needed to determine f, we need

Q(2l+1) = ()+I)+2l()+1)/2= (3+I)s
L 0

equations, in this case sixteen. These equations are
obtained by going back to (11) or (12) and. expressing
the fl components as fl, terms and the s'/11=cos8'
terms as spherical harmonics, and then using the
orthogonality conditions for each harmonic to obtain
sixteen equations for the sixteen fl„, terms. The first
four equations are exactly equivalent to the fo and fl
component equations.

III. SPHERICAL HARMONIC EQUATIONS FOR
OBTAINING COEFFICIENTS

The complete set is as followers. Notice that the fourth
order cosine product expansion is needed, as can be
seen from (13), and that the spherical harmonic which

is the source of each equation is indicated by the
subscripts of Bf&,/Bt and Cl„,.

&f000 & t'&f110 &f111 &f100)

at 3( ax ay az i

1 B
+ [&'(+'filo—+o"f»1++*f »o)) &000=O)—

382 B'0

&f100 &f000 ~f000
+& ++ . + (&b fill oob filo) +100

Bt Bz BS

2v 8 (0fslo) ~ (0foll) oj (fsoo)+— + +
5 Bx By

2
+ (& (lb s fs10+1s s foll+lb fsoo))

5'v3 B'v

LThese four equations are just (16b) and (17b) because
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IV. DISCUSSION

Thus, by using the tensor expansion, it has been
possible to side-step the difhculties involved in trying
to cast Boltzmann's equation in spherical harmonic
form. It can now be seen that the difIiculty lies in the
complications of the higher order terms; it may be
possible, now that a correct expansion has been given
for terms up to l=3, to deduce what recursion-type
relations are needed to give the same result and then to
prove their truth analytically. The result would be
somewhat academic, since the present equations go as
far as one could reasonably wish, but would provide
an independent check on the tensor derivation.

The next step is to see whether, by a suitable choice
of reference frames, one can simplify the equations.
There are two immediate preferred directions that come
to mind, the direction of the magnetic field and of the
electric Geld. Since the ~~)& . terms are somewhat
more awkward, a sensible choice seems to be to take
u~ along the s or polar axis, making ~~*=co~~=0. If the
magnetic field is zero and if the electric Geld direction
is Axed (as it usually is in the zero magnetic field case),
then the obvious choice is to take a along the polar axis.
If a varies in direction with time (e.g., elliptic polar-
ization) then we cannot choose a to be along a coordi-
nate axis because this introduces a moving frame and
hence virtual accelerations. The ac electric Geld per-
pendicular to the dc magnetic Geld imposed on a plasma
is always elliptically polarized, so it seems that taking
~~ along the polar axis is as far as one can go in simplifi-
cation by choice of axes in the presence of a magnetic
field.

If we now re-examine the statement in Eq. (1) we
can see that it applies only to the one-dimensional case,
but that, suitably generalized to Eq. (2), the expansion
can be applied to Boltzmann's equation in very general
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terms indeed to yield Eqs. (10), (14), (16), (17), (18),
(19), and (20) which probably go as far as one would
like to take the expansion.

This approach has also demonstrated the corre-
spondence between the order of the spherical harmonic
or the tensor expansion and the order of tensor transport
quantities. Usually these quantities are in terms of the
particular or peculiar velocity, the velocity referred to
an average velocity frame of reference (v—(v) rather
than v). Since this frame of reference changes with
time and place it is not suited to the spherical harmonic
expansion unless the average velocity has at least a
large constant part. Usually the peculiar velocity terms
will have to be calculated from the rest frame velocity
expansion, clumsy though it may seem.

The assumption of a scalar pressure requires only
the zero and erst order spherical harmonic terms, while

an anisotropic pressure will necessitate second order
terms and a pressure transport tensor must imply third
order terms.

Even if this clarification of the spherical harmonic
expansion does not produce a rewarding attack on
plasma problems it should lead to a clearer under-

standing of basic expansions of the distribution function
and the relation of this approach to others.
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Nuclear Spin Relaxation in Liquid Helium 3f
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The longitudinal relaxation time of liquid He' has been measured as a function of temperature above 1'K
and of magnetic Geld below 13 kgauss in a number of sample containers. At a temperature of 2.0'K and in a
magnetic Geld of 10 kgauss the longitudinal relaxation time, T1, varied with the sample container from 60
seconds to 400 seconds. The transverse relaxation time, T2, was measured by a new method and was approxi-
mately 30 seconds at a Geld of 10 kgauss in all sample containers. T1 was determined as a function of
magnetic Geld at 2.0'K in a single sample container; the values increased from less than 50 seconds in
approximately zero Geld to 400 seconds at 13 kgauss. An impurity relaxation model is proposed to explain
the T& results. By assuming both wall relaxation and a bulk relaxation given by the Bloembergen, Purcell,
and Pound theory, the dependence of T& on pressure and temperature can be quantitatively understood.
The low values of T2 are inconsistent with the Bloembergen, Purcell, and Pound theory and may be due
to the presence of paramagnetic impurities in suspension in the bulk liquid.

INTRODUCTION
' ' 'SING adiabatic fast passage techniques, we have

measured the longitudinal and transverse nuclear
magnetic relaxation times, T1 and T2, in liquid He
contained in sample chambers of different sizes and
materials. The Ti measurements supplement recently
reported values obtained at three different labora-
tories. ' ' Our values of T1 versus magnetic field do
not agree with some recent measurements of Romer'
which gave a Ti independent of held. The T2 measure-
ments, the first reported for liquid He', were obtained
by a new method which makes possible the measure-
ment of long transverse relaxation times. The measured
values of T2 are an order of magnitude less than Ti.

Nuclear relaxation in liquid He' has been analyzed

f Supported by a grant from the Robert A. Welch Foundation.
* Now at Texas Instruments Inc. , Dallas, Texas.
' G. Careri, I. Modena, and M. Santini, Nuovo cimento 13,

207 (1959), and private communication.
2 R. H. Romer, Phys. Rev. 115, 1415 (1959); Phys. Rev. 117,

1183 (1960).' R. L. Garwin and H. A. Reich, Phys. Rev. 115, 1478 (1959).

by various workers' 4 in terms of the Bloembergen,
Purcell, and Pound theory for classical liquids. ' It
would be surprising if the intrinsic relaxation in liquid
He' were completely described by this theory since it
does not take account of any quantum statistical
effects. Nevertheless, we can show that most of the
data above 1'K are compatible with this theory if
impurity effects are considered. To explain the various
T& and T2 results we propose an impurity relaxation
model based on a wall relaxation in parallel with the
bulk relaxation. A reason for the inequality of Ti and
T2 will be suggested.

The experimental technique will be described in

detail and the method of measuring T2 will be discussed.

During the course of these measurements nuclear maser

effects were observed.

4 W. M. Fairbank and G. K. Walters, SymposiNnz oe Liquid,
arId Solid Helimm 3 (Ohio State University Press, Columbus,
Ohio, 1957}.' N. Bloembergen, E. M. Purcell, and R. V. Pound. Phys. Rev.
73, 679 (1948).


