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The theory of resonance absorption of nuclear y rays is generalized for an arbitrary system of interacting
particles by expressing the relevant transition probability in terms of a space-time self-correlation function;
and thus relating the resonance line shape to the incoherent differential scattering cross section for slow neu-
trons. Two limiting cases: (i) a gas and (ii) a solid have been considered. Discussion regarding the justifica-
tion of the use of a classical self-diffusion function for a liquid is given and expressions for the broadening of
the resonance line due to diffusive motions of the atoms of the interacting system are derived. It is suggested
how Mossbauer-type experiment could be used to give information regarding the diffusive motions of atoms
in a solid and also, under more favorable circumstances, in a liquid.

INTRODUCTION

HE observation by Mossbauer' that nuclear p
rays can be resonantly absorbed or scattered by

nuclei bound in a crystal lattice has recently led to some

very interesting applications' and holds promise for
more applications particularly in the field of solid-state
physics. Mossbauer's observation rests on the fact that
in the case of a nucleus bound in a crystal, a p ray can
be emitted or absorbed without any energy transfer to
and from the lattice. The probability of such a recoilless
transition is, in most cases, small and is governed by the
usual Debye-Wailer factor, familiar in the theory of
x ray and neutron scattering. Mossbauer explained his

experimental results on the basis of a theory due to
Lamb' for the Doppler broadening of neutron absorp-
tion resonance. Both in the theory of neutron and p-
ray resonance absorption the relevant matrix element
corresponding to a transition of the crystal lattice from
one state to the other is the same.

The purpose of this paper is two-fold: one is to gen-
eralize the theory for an arbitrary system of interacting
particles by expressing the transition probability in
terms of a space-time self-correlation function, which as
is well known, determines the incoherent scattering for
slow neutrons; and the second is to show how Moss-
bauer technique can be used to gain information con-

cerning the nature of diffusive motions of atoms in a
solid and also, under more favorable circumstances, in

a liquid. The cross section for p-ray resonance absorp-

tion in the case of a gas (Bethe Placzek formula in the
case of neutrons) and in the case of a solid, in the limit

of both weak and strong binding (two limiting cases

of Lamb's theory in the case of neutrons), follows very

simply from one general formula. Furthermore, the

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

' R. L. Mossbauer, Z. Physik 151, 124 (1958); Naturwissen-
schaften 45, 538 (1958); Z. Naturforsch 14a, 211 (1959).' During the last year and this year a number of communica-
tions concerning the Mossbauer effect and its various applications
have appeared in the Physical Review Letters to which the reader
is referred.' W. E. Lamb, Phys. Rev. SS, 190 (1939).
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generalized formula can be of great help in more
complicated systems as for instance liquids, where it is
dificult to treat the dynamics of atomic motions in
detail.

MATHEMATICAL FORMULATION

We are interested in calculating the probability of
absorption or emission of a p ray of momentum p by a
single nucleus of an interacting system (say solid or
liquid) such that the nucleus makes a transition from a
state A to a state 8 and at the same time the interacting
system makes a transition from a state, say ~iso) to a
state

~
e). Since the interaction within a nucleus is much

stronger than that between two nuclei, the total wave
function can be written as a product of wave functions
one of which depends only on the coordinates of the
centers of masses of different nuclei and the other de-
pends on the coordinates of the nucleons relative to the
centers of masses of their respective nuclei. The transi-
tion matrix element, corresponding to the absorption of
a photon, can be written as (BrsiH'~NOAp), where H'
represents the interaction between the radiation 6eld
and the nucleus and has the following form:

H'=P; cas exp(iy r;/Il, )
= exp(iy R,/5) P; cas exp[iy (r;—R )/fi].

c is a constant depending on p, gp is the annihilation
operator for a photon with momentum p, r; is the co-
ordinate of a nucleon of the nucleus a, and R, is the
coordinate of the center of mass of the nucleus. The
interaction operator H' is thus a product of two terms,
one of which depends only on the coordinates of the
nucleons relative to their center of mass and the other
depends only on the coordinates of the center of mass.
Thus the matrix element of the transition is a product
of two matrix elements, one of which corresponds to the
change in the internal state of the nucleus and the
other is (e

~
exp(iy R,/5) ~

no), corresponding to a
change in the state of the collective motions of the
centers of masses. The first matrix element is just a
constant for our purpose, and it is the second one with
which we shall be mainly concerned here. It then follows
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from the usual dispersion theory' that the absorption
cross Section per nucleus for a y ray of energy E is
given by

o~l' l(nlexp(iy R/h)ln0)l'
~.(E)= 2g-o, (I)

(Ee E—+e~ e~0)'+I"/4

where Eo is the energy difference between the anal and
the initial nuclear states of the absorbing nucleus, ~„.

and e„e are, respectively, the energies of the states ln)

and ln0) of the interacting system, I" is the natural
width of the excited state of the nucleus and g„o is the
statistical weight factor for the state ln0). In Eq. (I)
the nuclear width F has been assumed to be independent
of the state

l n). Also the suSx tt in R has been omitted.
The constant before the summation sign has been so
chosen that o.,(E) goes over to the familiar Breit-
Wigner formula for a fixed nucleus, o-o being the- reso-
nance absorption cross section.

Now Eq. (I) can be written as follows:

0oF t." Sl p —(e„—e„,)/h7
o.(E)= Q g„pl(nl exp(iy R/h) ln0)l', dp

n, no (E—Ee—hp)'+ I'/4

0 of
dt{ g g„pl(nl exp(iy R/h) lno)l' expCit(e e 0)/h7)

4 2~0 n no

exp( —itp)
X dp

& „(E—Ee—hp)'+I"/4

p te

expL —it (E—Eo)/h —(I'/2h) l t
l 7dt

45

XLP g o(nOl exp( —iy R/h+itH/h) l n)(nl exp(iy R/h itH/h) l
n—0)7

~,no

~,r
I
"

expl —it (E—Ep)/h —I'/2h j t l 7(expl —iy R(0)/h7 expLiy. R(t)/h7)ddt,
4kJ

where R(t) is the Heisenberg operator defined by

R(t) =exp(itB/h) R exp( —i'/h).
H being the Hamiltonian of the interacting system, and

( )r means both the quantum mechanical and the
statistical average at temperature T. We shall here
restrict ourselves to a system for which Boltzmann
statistics is applicable. In the above derivation the
Fourier representation of the 6 function and the identity
P„ln)(nl =I have been used. We now define a func-
tion G, (r,t) through the following equation

(expt —iy R(0)/h7 expLiy. R (t)/h7)r

"exp(iy r/h)G, (r, t)dr. (3)

The inversion then gives

G.(r, t) = (2x)-', I exp( iy r/h)— .
J

X(expL —iy R(0)/h7expl iy R(t)/h7)rd(y/h)

' dr'bLr+ R(0)—r'75Lr'- R (t)7
r

4W. Heitler, The Qnontgm Theory of Radiation (Oxford Uni-
versity Press, ¹wYork, 4944), 2nd ed., p. 110.

For t=0, G, (r,0) =8(r). G, (r,t) describes the correlation
between the position of one and the same particle at
different times. It gives, in the classical case, the proba-
bility of 6nding a particle at time t at position r, if the
same particle was at the origin at time t=0. The
interpretation of this function is not quite clear in a
quantum mechanical treatment and is discussed in the
Appendix. Van Hove' has discussed the G, (r,t) func-
tion in detail and we shall refer to his original paper.

From (2) and (3) we have

o.oI' j.
' -pL'( '- t)-(I'/2h) ltl7

4k~
XG, (r,t)drdt, (5)

where Ace=A —Eo, Ax= p.
As shown by Van Hove, ' the incoherent differential

scattering cross section for slow neutrons is propor-
tional to the integral in (5) with I'=0. In Lamb' s
theory, ' the probability of resonance absorption of
neutrons of energy E is also given by Eq. (I) besides a
constant factor and is, therefore, proportional to the
integral in (5). Thus the relevant term in the cross sec-
tion for all the three processes —resonance absorption
of neutron and p rays by nuclei and neutron scattering
(with I'=0) is given by an expression of the type (5).
We shall see in the sequel that the cross section for the

'L. Van Hove, Phys. Rev. 95, 249 (1954). See also R. J.
Glauber, Phys. Rev. 98, 1092 (1955).
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resonance absorption of p rays by nuclei whether in a
gas or bound in a solid or a liquid will follow from (5)
depending on the explicit form of G, (r, t). It is possible
to calculate the function G, (r, t) rigorously in the case
of a Maxwellian gas and in the case of a solid in the
harmonic approximation but it is not possible to do so
in the case of a liquid. Nevertheless, in the latter case
one could use in an approximate way the classical form
of G, (r,t); e.g. , the solution of the usual diffusion equa-
tion or better the solution of Langevin's equation for
Brownian motion. The behavior of G, (r,t) for very
small and very large times is known and for inter-
mediate values of the time one could try different forms
of G, (r, t) so as to fit the experimental data. Thus, a
general formulation of the absorption probability (the
same holds for emission) in terms of the self-correlation
function G, (r,t) as expressed by Eq. (5), has a definite
advantage.

It has been shown by Van Hove' that the self-
correlation function in the case of a gas or a solid (cu
symmetric crystals) has the general form

extended to —~ without any appreciable error,

opl' t ( its I'
o(s)= ~ expl ——-ltl I

lt tt )
K

Xexp ——Ly. (t)+y (t)j dt. (9)
2

And if the emitter and the absorber are identical (9)
becomes

0$=&0 S, (10)

where o, (s) is given by (5) with I' replaced by 21' and
y(t) replaced by 2y(t). Before we proceed to calculate
o (s) for a nucleus bound in a solid, we shall evaluate the
absorption cross section o.,(E) for a nucleus in a perfect
gas.

ABSORPTION OF A y RAY BY AN ATOM
IN A PERFECT GAS

G, (r, t) = L2pry(t) j—
& expL —r'/2y(t)].

At kggTt'
'y(t) = —i +

3f MThere is no obvious reason to believe that in the case
of a liquid G, (r,t) has also the above general form. It
seems, however, reasonable to assume that (6) is a
good approximation for a liquid too. We know that it is
correct for small as well as large times.

The probability w, (E) for the emission of a y ray is
also given by Eq. (1) except that the signs of e„and e 0

are interchanged and the constant is different. 4 Pro-
ceeding as before, it is easy to show that w, (E) is given

by

where M is the mass of the atom and k~ is the Boltz-
mann's constant, and T is the temperature of the gas.
The term linear in t is purely of quantum mechanical
origin and the term quadratic in t survives in the classi-
cal limit. Vineyard has shown that for very small times
for an arbitrary interacting system described by a time-
independent Hamiltonian y(t) is given by

bic It has been shown by Van Hoves that for a perfect
gas the quantum mechanical form of G, (r, t) is the one
given by (6) with

~.(E)= expLi(~ r ~t) (r/2h) ltl]—
2m-A~

XG, (r, t)drdt (7—).
It is normalized such that Jp"ro. (E)dE= 1.

The quantity of experimental interest is the self-
absorption cross section 0. which for a thin absorber is
de6ned by

(12)

where p is the momentum operator of an atom. This
result easily follows from (3) if we expand the operator
R(t) in powers of t and define p(t) by the relation

y(t) =- r'G, (r,t)dr,
3J

m, (E)dE
Jo

o = o, (E)w, (E)dE.
0

and assume that the system is isotropic.
Substituting (11) in (6) and using the resulting G, (r, t)

in (5) and after performing integration over r we have

o, (E)

0'OF p zt I'
exp —-(E—E,-R)—ltl- dt, (13)

2A 4A'

R (the recoil energy) =O'Ir'/2M =Ep'//2Mc'
(14)

6= 2 (RkiiT)'.
p G. H. Uineyard, Phys. Rev. 110, 999 (1958).

In a p-ray resonance absorption experiment if the
emitter is made to move with velocity e relative to the
absorber, the emitted p ray gets an energy Doppler
shift s= (ri//c)E0, c being the velocity of light, and in where we have put
that case the argument of o, (E) should be replaced by
s+E. If we do this and make use of (5), (6), and (7) in

(8), it follows that the self-absorption cross section is
given by, noticing that the integration over E can be
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k' !-"
~ z y ~ ztq zt- f(z)

y(t) =—~'" cothl
I I

1—cos—
I

i sin — — dz,
M~p (2k~T) I Itj It z

00

0,(E)= —cz
2~

Putting y=tF/25 and making use of the convolution atomic cubic crystal y(t) is given by
formula for the Fourier transform of a product, we have

I'/2

00

X —
~ exp (iy'z —

f
y'

f
)dy',

1 t" (E—Ep —R)
X f exp —iys —iy —y2—d'y

(2~)'*~ „ p2

where f(z) is the distribution of energy levels of the
phonons and such that

f(z)dz=1.

which gives

where

f(z) is zero beyond z=z
oo Equation (5) with the help of (6) can be written after

expL igP(z+z)Pj (13) integration over r as

0 (E)

I'/2
(16) (

expL ——,'~'y(~) j (~ exp f
icot —[t[—l—ct

4' ~ „( 2h )
Formula (15) is the same as given by Bethe and Placzek"
in the case of resonance capture of neutrons by atoms
forming a Maxwellian gas.

RESONANCE ABSORPTION OF y RAYS BY
ATOMS IN A CRYSTAL

Ke shall here restrict ourselves to cubic Hravais
lattices. Again Van Hove' has shown that for a mono-

I'
exp[ —icot ——ftf l

25 )
X{expL-',~ (q(~) —q(t))j—1jdt,

where 7(~) is the value of y(t) at t= ~. The exponen-
tial within the square brackets can now be expanded
in a power series, and we have

o.pi" AI' 1 ~ (~'/2)" 1
0,(E)=2pr exp( —2W)— -+2 ——' exp

l
&~t [t I IL&(—)——&—(t)j"«

45 2pr (E—Ep)'+I"/4 ~& n! 2z ~ „0 2h

maoF I' ~ (2W)"
+P g„(E—Ep, T) exp( —2W), (18)

2 -2~ (E—Ep)'+P'/4 ~i ri!

since F can be neglected in the integrand in Eq.
and where

f(IEI)
g&(E,T)= coth

f

—
l
—1

2EJ (T) (2k,T)

~.(E T)= ' gi(E—E', T)r- i(E', T)CE', -

r "f(z)
&(T)= ~l coth

f

—ldz,
"p z & 2k~T)

and

(18), tive to compare formula (18) with that for the inco-
herent diBerential scattering cross section for neutrons
in solids. The first term inside the curly brackets gives
a sharp absorption peak of width I' and represents the
recoilless absorption of p rays, and corresponds to
elastic scattering in the neutron case (where it is a delta
function). The other terms give a broad peak extending
at least over an energy s, and corresponds to phonon
exchange.

In the Debye approximation,

fs K

2W=-,'z'y(po) = F(T).
2M

(22)
f(z) =3z'/(ksO)' for z&ksO

=0 for z) ks O~,

2W is the usual Debye-%aller factor. The above formu-
lation is the same as that used by Sjolander' in con-
nection with neutron scattering by solids. It is instruc-

' H. Bethe and G. Placzek, Phys. Rev. 51, 462 (1937).
A. Sjolander, Arkiv Fysik 14, 315 (1958).

6 1 T, tOq-+~f —l,k04 0 &T)
(24a)

0 being the Debye temperature of the solid, Using

(23) in (21) it is easy to show that
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'I'he first term in (27) gives a sharp resonance peak
having a full width 2F. For s=o, the erst term is

o'(0) =-',ops 4~. (28)

The function P(s) has been tabulated by Zener. ' Now

F(T) = 3/(2kiiO) for T«O
=6T/(ksO") for T))O. .

We also notice that

(24b)

g (E)dE=1.

Experimentally we are interested in the self-absorption
cross section; i.e., in o.(s) given by (9). Here the emitter
and the absorber are assumed to be of the same ma-
terial but at different temperatures, say T, and T„
respectively. Let e be the relative velocity of the emitter
and absorber. s= (v/c)Ep is positive if the two move
towards each other and negative if they move away
from each other. Proceeding as before, it follows from
(9) that

7I 0'pF

(s) — s—(p wg+p wa i

gi(s) =
F(T,)+F(T )

XLF(T.)g (s,T.)+F(T.)g (s,T.)j, (26)

g-(s) = gi(s s') g--i(s')ds'. —

It should be borne in mind that the energy distribution
of the phonons changes with temperature and hence the
Debye temperature also changes. There will be a very
slight shift of the resonance absorption peak due to the
fact that when a p ray is emitted or absorbed the mass
of the emitting or the absorbing nucleus changes. This
second order Doppler effect" has not been considered
here.

If the emitter and the absorber are both identical
and are at the same temperature, Eq. (25) simplifies to

pro pI "I 1 (4W)"
+2 g (s T) (27)

pr ss+I'P p=r g f

' C. Zener, Phys. Rev. 49, 122 (1936).
'P B. D. Josephson, Phys. Rev. Letters 4, 341 (1960).

I' 1 ~ (2W+2W, )"
X — +P g.(s), (25)

pr ss+ I's n=i is f

where

2W. = (k's'/2M)F (T,),

2W, = (O'Ir'/2M)F (T,),

The resonance self-absorption cross section is thus
diminished by a factor e 4~, where 2$'„ in the Debye
approximation, is given by Eqs. (22) and (24). From
the expression for 2t/V, it is clear that to have a large
Mossbauer effect the recoil energy E of the nucleus
must be small; i.e., the p ray should have a low energy
and the Debye temperature 0 of the solid should be
large and the temperature as low as possible. Recently
Lipkin" has derived the expression for 2$' in a simple
manner and has also come to the same conclusions. In
the original Mossbauer experiment in which Ir"' 129-
kev gamma rays were used (8=0.046 ev, k&0=0.025
ev, T=88'K), 2W was nearly equal to 3; and hence the
resonance effect was very small. For a large resonance
effect cr'(0) has to be greater than the non-nuclear
cross section such as the cross section for the photo-
electric effect. Unfortunately for isotopes so far in-
vestigated, the Mossbauer effect is very small except in
the case of Fe'~, where because of the low p-ray energy
(Ep ——14.4 kev), 2W is nearly 0.1 at T=O'K, and this
is the reason why it is possible to observe the Moss-
bauer effect even at very high temperatures. Because
of this comparatively large effect and the extreme sharp-
ness of the resonance line (I' 5X10 P ev), the Moss-
bauer effect in Fe'~ nucleus has found recently so many
interesting applications.

The second term in (27), corresponding to phonon
exchange, gives the shape of the wings of the sharp
resonance absorption line; the wings extending at least
up to an energy of the order k&O. If 2W«1, all terms
except the 6rst in the sum are negligible. In that case
the shape of the wings is related in a very simple way
through Eq. (19) to the energy spectrum f(E) of the
crystal vibrations. It is thus at least in principle possible
to measure the energy distribution function of the
phonons as has been pointed out earlier by Visscher. "
In this connection it is important to realize that if the
nucleus emitting the p rays constitutes a foreign atom
in a host lattice, what one measures is not the vibra-
tional spectrum of the host lattice but a spectrum
which is characteristic of the local surroundings of the
emitting nucleus. In addition to this, the one-phonon
cross section is very small and this limits the possibility
of using the Mossbauer effect to investigate the vibra-
tional spectra of solids. A better way to study the real
vibrational spectra is through the use of slow neutron
scattering.

If 2S"))1, then we have what is called the weak-
binding case. For example in the original Mossbauer
experiment 28'~3 and it falls under this category.

"H. Lipkin, Ann. Phys. 9, 332 (1960).
~ W. M. Visscher, Ann. Phys. 9, 194 (1960).
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From (17) it follows that Doppler width 8, Eq. (33) for s=0 simplifies to

-' '[&.(t)+&.(t)j
t t2

p2R —+2'— + for t&( (29a)
4A' koO

OO
o.(0)=—exp( —2W, —2W,)

2

hp+6 p~
(35)

where

=R[F(T,)+F(T,)] for t», (29b)
kgO Equation (35) is the same as the formula (19) of

Mossbauer. "
A'= (8/3)R(&t, ;„'+&t,;„). (30)

3 I»" ( s
Et,;„s——co—thl If(s)ds.

4~p t 2kgT)

For T)0, Et,;,=-P'ksT.

Now Eq. (9) can be written as

ts I'
Xexp —~———ltl ——[y.(t)+y.(t)j, (31)

2

where r A/k~0
In (31) the exponent. —', ~'[y, (t)+y, (t)j in the first

integral can be replaced by (29a), and in the second and
third integrals by (29b), without introducing appreci
able error. It is then easy to show that

00F p
' it F 2'

o (s) = exp ——(s—2R) ——
I
t

I

— t' dt
45 ~„k 45'

2kr
+ exp( —2W, —2W, ) . (32)s'+I"

The integral in (32) is the same as the one which occurs
in (13) and can be evaluated as before. Hence

o pl" exp —(2W,+2W,)
o. (s) =

2 s'+I'

ds
+o'p exp[——P (@+s)'] (33)

4+s.~ 1+s'

where we have defined

)=21'/A, ZP = (8/3)R(Et, ;„'+Et,;„~)=A,'+A, ',
(34)x= (s—2R)/I', R= Eo'/2Mc'.

If g(&1; i.e., the linewidth I' is much smaller than the

E~;„is the mean kinetic energy per atom and is given by

DIFFUSION BROADENING OF THE
RESONANCE LINE

In this section we shall show how Mossbauer tech-
nique could be used to investigate the nature of dif-
fusive motions in solids and probably under more
favorable circumstances in a liquid too. In a solid the
slow jumping movement of an atom from one lattice
site to another gives rise to a broadening of the reso-
nance line. At ordinary temperatures the broadening
due to such a diffusive motion is small compared to the
natural linewidth but at elevated temperatures the
former can become of the same order of magnitude as
the latter and even greater. In liquids the diffusive
broadening is, however, many orders of magnitude
greater than the linewidth but, unfortunately, the
resonance absorption cross section is in most cases small
compared to non-nuclear absorption cross section. This
makes it difficult to distinguish the resonance line from
the background.

The self-correlation function G, (r, t) as defined by
Eq. (3) is a complex quantity and cannot, therefore,
easily be interpreted as a self-diffusion function except
in the case that its imaginary part is negligible. The
imaginary part, as we know, is quantum mechanical in
origin. It is, however, possible as Schofield" has done to
define a real function which in the classical case goes
over to the classical self-diffusion function and which is
related to the absorption cross section in a similar way
as is Van Hove's G, (r,t) function. The transformation
suggested by Schofield and the question of using the
real part of the Van Hove's G, (r,t) function are dis-
cussed in detail in the Appendix of this paper. Such a
discussion besides being relevant to the context of this
paper is of importance in connection with neutron
scattering by liquids.

Following the suggestion of Schofield, if we replace t

by t+(~ttt/2kiiT), G, (r,t) goes over to E,(r,t), which is
given by (8A) of the Appendix and y(t) goes over to
p(t), where p(t) is given by Eqs. (9A) and (10A) of the
Appendix in the case of a gas and a solid, respectively.
In the Appendix we have derived the expression for the
resonance absorption cross section o.,(L&') and for the
emission probability w, (E), which are, respectively,
given by Eqs. (11A) and (12A). We shall rewrite them

"R.L. Mossbauer, Z. Physik 151, 124 (1958)."P. Scho6eld, Phys. Rev. Letters 4, 239 (i960).
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here
rpI A,o) jPg2

o.(E)= exp
45 2k' T SMk~T

analogous to the Debye-%aller factor in the case of a
solid.

From (39) it is evident that the broadening Ae of the
resonance line due to diffusion is given by

00 r
exp i ( r t—) —I t—

~

2k

6&= 2A~'D

= 2Ea2D/Ac'
(40)

5 K

io, (E)= exp-
2xfi 2k' T MfkgT

XIl, '(r, t)drdt, (36)

00 I'
exp i(v. r —ad) ——

~t~
25

XF,'(r, t)drdt, (37)

where F,'(r, t) is the classical self-diffusion function
and Ace= E—Ep.

We shall consider two simple cases: (i) in which the
diffusive motion of an atom in the absorber is governed
by the simple diffusion equation, and (ii) in which the
atom jumps from one lattice site to another. Diffusion
in normal liquids probably comes under case (i) whereas
in solids it comes under case (ii). These two cases are
considered here more as illustrations rather than to give
a precise relationship between the resonance line shape
and diffusive motions.

'5 K, S, Singwi and A. Sjolander, Phys. Rev. 119,863 (1960).

Case (i)

In this case I', '(r, t) is given by

F.'(r, t)=(4 Dltl) 'exp( —r'/4Dltl), (3g)

where D is the diffusion coefficient. This function has
the right limiting form for large t but not for I,—+0.
One should rather use for F,'(r, t) the solution of
Langevin's equation for the Brownian motion with p(t)
as given by (13A). p(t) varies as t' for t -+0. We shall
not use the latter form of p(t) since the change in the
linewidth as a result of this refinement is negligible (see
Singwi and Sjolander" in connection with neutron
scattering).

Let us suppose that the absorber is in the liquid state.
The cross section for the absorption of a y ray of energy
E is obtained by substituting (38) in (36) and after
performing the integrations we have

o,(E)= (o aF/4) exp( —2W,) (F+2ha'D)/
((E—Eo)2+ i (F+2Pi~2D)~] (39)

where in deducing (39) we have replaced

exp L
—(E—Ea)/2kiiT j

by unity, since E—E«&2k&T in the resonance peak
and where we have put h'~'/SMkiiT=2W, . 2W, is

where Ep is the energy of the y ray and c is the velocity
of light. As an example let us take iron for which
D 10 ' cm'/sec in the molten state, and Ea——14 kev
(for Fe").Equation (40) gives Ae~6X10 ' ev which is
several orders of magnitude greater than the natural
width I'.

Experimentally what one measures is the self-
absorption cross section

a (s) = w, (E)o.(E+s)dE.
p

Here zv, (E) is the emission probability in the case of a
solid, since the emitter is in the form of a solid. If we
neglect the phonon part, the expression for Vo.(E) is

r
(E)— o

—2we

2' (E—Eo)'+F'/4
(41)

Using (39) and (41) in the expression for &r(s), we get

O.pI'

~(s) =
2

F+be'D
exp( —2W, —2W, ) . (42)

s2+(FyI.~D)~

Case (ii)

Let vp be the mean time for which an atom stays on
a given lattice site before jumping to a new lattice
position. If we now assume that there is no correlation
in motion between one jump and the next, it is possible

"B.N. Brockhouse, Phys. Rev. Letters 2, 287 (1959)."D.J. Hughes, H. Palevsky, W. Kley, and E. Tunkelo, Phys.
Rev. Letters 3, 9i (1959).' I. Pelah, W. L. WhitteInore, and A. W. McReynolds, Phys,
Rev. 113, 767 (1959).

Recently a cold-neutron scattering method has been
used to measure the diffusive broadening of the "quasi-
elastic" scattering in liquids. "" This method, un-
fortunately, suGers from the disadvantage of having a
poor energy resolution. But if we were to study the
di6usive broadening by Mossbauer technique, such a
disadvantage does not exist since the natural width of
the line is negligible compared to the diffusive broaden-
ing. However, this method seems at present to be hardly
practicable because of the smallness of a. (s) compared
to the other non-nuclear cross section such as the photo-
electric eRect. But under very favorable circumstances
such that F/Ae is not too small this method could be
used to investigate the shape of the resonance line and
determine the diffusion coefficient from the measure-
ment of line broadening.
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to calculate F, '(r, t) or rather its Fourier transform as
has been done earlier by Singwi and Sjolander ' in con-
nection with diffusive motions in water and cold-
neutron scattering. The problem under consideration
is in fact a special case of the more general formula of
Singwi and Sjolander. The present case consists in
taking r~ —+ 0, where ~~ is the mean time for which the
particle diffuses between its two oscillatory states and
in taking the function h(r, t) to be independent of time.
It is then easy to show by the use of formula (36) that

(44)

h(r) gives the probability of finding the particle at the
position r after a single jump, if the particle was at the
origin before the jump. Using (43) and (41) we have for
the self-absorption cross section

«r
o (s) = exp( —2W, —2W, )

I'+ (l't/rp) (1—n)
X (45)

~ + Lry W„)(1—)7

The diffusion coefficient D is dered by

1
fr'h (r)dr.

67.p
(46)

From formula (43) it is clear that the broadening 6»
of the resonance peak due to diffusive motions is

crpF
o, (E)= . exp (—2W,)

r+(2~/. ,) (1—)
X (43)

(&—&p)'+Ll'+ (2It/rp) (1—~)2/4
where

should increase. At the same time the magnitude of the
resonance absorption would decrease due to the ani-
sotropy of the Debye-Wailer factor (our formulas can
ea,sily be extended for an anisotropic solid).

Let us consider self-diffusion in iron. The emitter is
at low temperature and the resonance absorption is
studied as a function of the velocity of the emitter for
various temperatures of the absorber. At ordinary tem-
peratures, the self-diffusion in iron is so small that the
line broadening due to diffusive motion is negligible
compared to the natural width I'. For example even
at 760'C, the diffusion coeKcient is only 1.5X10 "
cm'/sec, which would give a value of 6X 10 ' sec for r p,
since r~~P/6D, 1 being the interatomic spacing. This
would correspond to a broadening (6p),„~2&& 10 "ev,
whereas I'=4.6X10 ' ev. However, at higher tempera-
tures, say 1000'C and above, it should be possible to
detect the diffusive broadening by a Mossbauer-type
experiment. At such high temperatures the Debye-
Waller factor e '~ (since 2W,&&2W,) would no doubt
decrease but it is still not too small ( e ') as to pre-
clude the possibility of observing the resonance effect.

It has been reported" that the rate of self-diffusion
in iron at 757'C, under plastic deformation, increases
by as much as a factor of thousand. "And if it is true,
the line broadening due to diffusion would now be
nearly 2X10—' ev which is greater than the natural line-
width and it might, therefore, be possible to detect it
by a Mossbauer-type experiment. It would be valuable
to perform such an experiment in view of the fact that
there exists a controversy between different experi-
mental workers regarding the enhancement of the self
diffusion and the range of temperature for which it is
significant. Besides a Mossbauer-type experiment is
different from the usual diffusion experiments using
tracers and should, therefore, provide an independent
check. One could also study the impurity diffusion of
iron in other metals like copper and silver. Such an
experiment would give a direct measure of the mean
time v.p and its temperature variation.

De=25/rp 1— exp(isp. r) h(r)dr . (47)
APPENDIX

We thus see that the maximum value of the broadening
is 2A/rp and the broadening depends on the angle be-
tween the direction of motion of the diffusing atom and
the direction of the p-ray quantum. Consider a Fe"
nucleus sandwiched between two layers of a graphite
lattice (it is possible to introduce iron atoms between
the layer planes of a graphite single crystal). The Fe"
nucleus finds it hard to move in the direction of the
c-axis but can diffuse with ease in the basal plane. If
the y ray from the emitter falls on the absorber parallel
to the c axis and the counter is also pointing along the
c axis, the diffusive broadening Ae in this case will be
negligible and the resonance line will have its natural
width. If we now rotate the absorber relative to the
direction of'the incident y ray, the diffusive broadening

The function G, (r, t) as defmed by Eq. (3) could only
in the classical limit be interpreted as the self-diffusion
function. For small times when the particle under con-
sideration has moved only a distance of the order of the
de Broglie wavelength, quantum effects are important
and G, (r, t) is complex. In fact, according to Van Hove'
it is only the real part of G, (r,t) which has the above
physical interpretation. It is, however, possible to ex-
press the emission or the absorption probability in
terms of the real part of G, (r,t).

' N. Ujiive, B. Averbach, M. Cohen, and V. GriKths, Acta
Met. 6, 68 (1958).

'0 For a general discussion see the review article by D. Lazarus,
Sotted State Etsysscs, edited by F. Seitz and D. Turnbull (Academic
Press, Inc. , New York, 1960), Vol. 8, p. 71.
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Now

2m'4
exp( —ia&t)(exp[ —ix. R(0)) exp[i' R(t)))ddt

og o
f
(n f exp(iso R.) f

no) f

X&[co—(o —o o)/It], (1A)

which follows from the definition of ( )r and g o

= exp( —E~o/k~T)/P„exp( E„—/ksT) Fur.ther

1
exp( —j&vt)(exp[ —ix R(t)] exp[iso R(0)))zdt

2X Qo

=P„, og„o, f(nf exp(ix R) fn0) f'B[oo+(o —o o)/5)

og o f (n0
f
exp(ix R) f n)

f
8[co—(s —o o)/It)

=e ~""P„„og„of(n f
exp(iso R) fn0) f'

X&[~—(o.—o.o)/lt]
00

=e ~""— exp( —i(ot)
2%

X(exp[—ix R(0)] exp[iso R(t)])ddt. (2A)

The last step in (2A) follows from (1A). The relation
g„=exp[—P(o o o))g o llas beell used lil tile secolld
step in (2A); P=1/kgT.

Introducing the real part of G, (r,t), which is defined

by

Re[G, (r,t)]=(2s.) 'j exp( ix r)—

X-', ((exp[—ix. R(0)] exp[i' R(t)]

+exp[ ix R—(t)] exp[i' R(0)])r)dx, (3A)

Schofield's result is easily obtained by noting that

1
exp( —idiot)(exp[ —ix R(0)) exp[i+ R(t)])rdh

2@8

=Q,„og„of(nf exp(ix R) fn0) f'b[oo —(s —e„o)/It)

=exp(pl'tee/2) p o(g g )~f(nfexp(ir. R) fn0) f

X8[~—(o.—o o)/lt), (SA)

and introducing a function

F, (r,t) =(2or) ' ' exp( ix—r)

X(Z.,.o(g.g- )'(n0I exp[—i R(o)) ln)

X(n
f
exp[iso R(t)) f n0)}dx. (6A)

We then have for the absorption cross section

O.pl'
a-, (E)= exp(Pro/2) exp[i(x r oot) (I'/—2k)

f

—t
f ]

45
XF,(r,t)drdk, pA)

F,(r,t) is real and is an even function of t and thus the
integral in (7A) is an even function of co. It is easily
shown by using the definition (3) of G, (r,t} that F,(r, t)
=G, (r, t+ih/2k~T). If one uses the classical self-
diffusion function instead of F,(r,t) in (7A) or for
Re[G, (r,t)) in (4A), the two expressions are identical
to the first order in A~/AT.

If we make the transformation as suggested by
Schofield, we have

F,(r,t) =[2sp(t)) '* exp[—r'/2p(t)], (8A)
where

and using (1A) and (2A) in Eq. (5) of the text we get
the following expression for the absorption cross section:

o oI' exp(Pka)/2)-.(E)=
4h cosh(PltM/2)

p(t) =k /4MksT+ (kiiT/M)t

for a free gas, and

"f(s)
p(t}= (k'/M) tanh(s/4kiiT)ds

J,

(9A)

X ~ exp[i(~ r ~t) (I'/25) ft f)—J
XRe[G, (r,t))drdt, (4A)

considering that I'«k~T.
Recently Schofield" has also suggested in connection

with neutron scattering that G, (r, t+N/2k~T) rather
than G, (r,t) should be considered as a self-diffusion
function. He points out that if, for instance, G, (r,t) is
replaced by its classical equivalent obtained from the
simple diGusion equation, as suggested by Vineyard,
the scattering cross section will not satisfy the condition
of detailed balance. If, however, G, (r, t+~7z/2ksT) is
replaced by the classical self-diffusion function the
principle of detailed balance will be satisfied. The same
is also true if we replace Re[G, (r,t)] in (4A) by its
classical equivalent.

t'" f(s) 1—cos(st/5)
+ (I't '/M) ds, (10A)

"o s sinh(s/2ksT)

for a solid. Equations (9A) and (10A) follow from Eqs.
(11) and (17) of the text, respectively.

We notice from (9A) that even at t=0, the particle
is distributed over a 6nite region. The 6nite extension
is given by the first term in (9A) and is consistent with
Heisenberg's uncertainty principle for a particle with
mean velocity (k~T/M)'. The real part of G, (r, t) on the
other hand, goes over to a 6 function around the origin
at t=0. It, therefore, appears that F,(r,t) as given by
(8A) is more directly connected with self-diffusion.

Schofield's suggestion, in the case of a liquid, is to
replace F, (r,t) in the first approximation by a classical
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self-diGusion function obtained, for instance, from
Langevin's equation. In that case p(t) will go to zero
as t' for small times and will approach 2D~ t

~

for large
times. If we, however, add a constant to p(t) corre-
sponding to a finite extension of the probability cloud
at t=0, the resulting formula. for the cross section will

be valid to some extent also for large momentum
transfers.

For a liquid it seems reasonable to take the same con-
stant as that for a gas, since we know that for large
momentum transfers corresponding to small times the
scattering cross section approximately goes over to a
free gas formula. Adding of this constant to p(t) will

simply amount to multiplying the right-hand side of
(7A) by exp( —A'~'/8Mk~T). In the case of neutron
scattering by liquids this factor is often nearly equal to
unity except for large incident neutron energy, whereas
in the case of y-ray resonance absorption it could be
quite small depending on the recoil energy of the
nucleus.

As a result of the foregoing discussion it seems plau-
sible to write (7A) in the form

apl
a, (E)= exp(her/2k&T A'r. '/831k~—T),

45

X '

exp[i(& r ~t) (I—"/25)—
~
t (]

XF,'(r, t)drdt, (11A)
and similarly,

w. (E)= exp( It~/2k~T I—'t2~'/8MkoT—)
2' ps

X J~ exp[i(x r —cot) —(P/25) (t(]
XP, '(r, t)drdt, (12A)

where for F,'(r, t) we take the expression (8A) with

p(t) as given from Langevin's equation, and is"

The characteristic time 1/P' is given by

P'= keT/D31, (14A)

"See for instance S. Chandrasekhar, Revs. Modern Phys. 15,
1 (1943).

D being the diffusion coefficient, Of course, this is
possible only if the diffusion can really be described by
Langevin's equation.

1Vote added in proof. Recent mea, surements of the

specific heat of indium by Bryant and Keesom [Phys.
Rev. Letters 4, 460 (1959)] and of niobium by Broose
et at. [Phys. Rev. Letters 5, 246 (1960)] both in the
superconducting and normal phases seem to show that
the lattice part of the specific heat is diferent in the two
phases, thus indicating that perhaps the phonon spec-
trum in the two phases is not the same. Broose et a/. , in
an attempt to explain their measurements on niobium
have suggested in the superconducting phase an altered
value of the Debye temperature as 243'K, which value
in the normal state they arrive at is 231'K. Thus, there
is a change of five percent in the value of 0D.

Here we wish to suggest an alternative and perhaps
more direct experiment to decide whether there is any
appreciable change in the value of 8~ in going from the
normal to the superconducting phase. The experiment
consists in studying the intensity of the Mossbauer line
both in the normal and superconducting phases. The
choice for such an experiment is very severely limited to
only a few isotopes. The intensity of the Mossbauer line
is determined by the Debye-%aller factor e 4", and in
the limit T«0D, 4w is equal to 3R/k&t)&, where R is the
recoil energy. In order to have an appreciable change
in the intensity of resonance absorption for a very small
change in the value of 0D, one would demand a large
value of 4m; i.e., a large recoil energy and a small 8D.
Re'" is such an example. It becomes superconducting
and the values of E. and 0& are, respectively, 0.051 ev
and 417'K. An almost trivial calculation will show that
a ten percent increase in the value of OD will give a 35 jo
increase in the intensity of the resonance absorption,
which should be easy to observe. Other isotopes which
one could study are Ta'" and Hf'7~.

The authors have been informed privately by Meyer-
Schuetzmeister and Hanna that their very preliminary
experiment on the Mossbauer eGect in Sn, both in the
normal and superconducting phases, indicates that there
is an increase of a few percent in the intensity of reso-
nance absorption in the latter phase. A five percent
increase in the value of 0D would, in this case, give nearly
three percent increase in the intensity.


