GENERALIZED ANGULAR MOMENTUM

bound states will of course give a peak of half-width 'y,
at a critical value of the energy Epc¢= E.n. Further study
of the hyperspherical harmonics should disclose other
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In some problems of chemical kinetics, 3-body reac-
tions occur in a statistical assemblage of colliding
particles. Similar events, governed by short-range

ways in which experimental observations can be used in
this sort of analysis—various combinations of data
including energies, angular correlations, and temporal
coincidences or delays, could be examined for 3-body
effects.?

forces, occur in the 3-body attachment of electrons to
atoms or molecules. In cases like these, it should be
possible to introduce the angular momentum description
of 3-body collisions into a statistical argument. In such a
description it is important to look carefully into the
relative contributions of pure 3-body processes and
events involving a 2-body metastable.

2 Compare the study of 3-body events for effects of 2-body
forces: G. F. Chew and F. E. Low, Phys. Rev. 113, 1640 (1959).
See also L. Fonda and R. G. Newton, Phys. Rev. 119, 1394 (1960).
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Starting from the premise that with modern dispersion-theoretical techniques one has a reliable method
for calculating the anomalous magnetic moment of a nucleon, we have calculated the modification or
“quenching” of this moment for a nucleon in nuclear matter. The effect we consider here is due to the
fact that nucleons are not allowed by the exclusion principle to recoil into states already occupied by other
nucleons in the nucleus. The actual technique we have used in our calculation is to sum all the Feynman
diagrams that are included in the dispersion-theory calculation of the single-nucleon moment. We then
write the nucleon propagator as a sum over states and remove those states in which the nucleon is inside

the Fermi sea. Our result is that the anomalous moment is reduced by ~7%,.

I. INTRODUCTION

IN this paper we wish to re-examine the question of
the quenching of the intrinsic magnetic moments of
nucleons in nuclear matter. The idea of quenching the
spin-g factor of a nucleon (g;) in nuclear matter was
proposed in 1951, independently, by Bloch,! Candler,?
Miyazawa,? and de-Shalit.* Their arguments were based
on the observation that in almost every case the ob-
served magnetic moments of odd-A4 nuclei could be
explained by a single-particle calculation with the
intrinsic nucleon moment lying somewhere between the
free-nucleon moment

pwp=14179) nm, p,=—1.91nm, 1.1
and a completely quenched moment
up=1nm, u,=0nm. (1.2)

If one plots the magnetic moments of the odd-4
nuclei vs the nuclear spin one obtains from the single-
particle model two Schmidt lines®® for /=74%, where

* Supported in part by the U. S. Air Force through the Air
Force Office of Scientific Research.

T National Science Foundation Postdoctoral Fellow.

1 F. Bloch, Phys. Rev. 83, 839 (1951).

2 C. Candler, Proc. Phys. Soc. (London) A64, 999 (1951).

3 H. Miyazawa, Progr. Theoret. Phys. (Kyoto) 5, 801 (1951).

4 A. de-Shalit, Helv. Phys. Acta 24, 296 (1951).

5T. Schmidt, Z. Physik 106, 358 (1937).

6 R. J. Blin-Stoyle, Revs. Modern Phys. 28, 75 (1956).

! is the orbital angular momentum and 7 the total
angular momentum, or spin, of the odd nucleon con-
sidered to be moving in the spherically symmetric
potential provided by the even-even core. The experi-
mental moments are found to cluster near these lines
but the fit is greatly improved if the value of the
intrinsic moment for a nucleon in nuclear matter is
taken to lie between values (1.1) and (1.2).

The physical assumption underlying use of un-
quenched values (1.1) in nuclear matter is that the
currents in the meson cloud about a nucleon are not
altered by the presence of other nucleons in the nuclear
matter. The values (1.2) would apply in the case that
the presence of other nucleons at the density of normal
nuclear matter completely discouraged a nucleon from
developing its normal meson currents. Thereby the
moment would be quenched all the way down to the
Dirac value which obtains in the absence of all meson-
current effects. There have been several attempts to
implement this idea with an accurate calculation.??
However, several major obstacles have barred the way :

1. It has not been possible to calculate from meson
theory the magnetic moments of free nucleons with
any accuracy. Indeed until the dispersion-theory
methods of the past two years there has not even
existed a systematic approach to a nucleon magnetic

7F, Villars and V. Weisskopf (unpublished).
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moment calculation other than the totally inadequate
weak-coupling perturbation expansion.

2. As emphasized especially by Blin-Stoyle, “nuclear
moments (particularly the magnetic moments) are very
sensitive to certain types of admixture in the nuclear
wave function. This means that nuclear moments
cannot in general be taken as a good guide to the purity
or otherwise of nuclear states. If the deviation in the
moment is small there may nevertheless be large
admixtures of states which do not appreciably affect
the moment. On the other hand, a large deviation may
only mean a small admixture of states to which the
moment is particularly sensitive.” ¢ Indeed, as a result
of the progress and refinements in our nuclear models
which have developed in recent years one no longer
expects nuclear moments to be closely correlated with
the single-particle Schmidt lines. Even if we confine our
attention to the doubly-magic-plus-or-minus-one nuclei
it is not clear whether or not the comparison between
theory and experiment shows any need for a quenching
hypothesis. Thus the observed moment of O'7 is —1.89
mm, in very close agreement with the Schmidt value
of —1.91 mm for an odd-neutron nucleus with 7=1[+43%
=$. In contrast, K® which is doubly-magic minus one
proton has an observed moment of 0.39 nm and a
Schmidt value for 7=I—%=3% of 0.12 mm.®

For these reasons the idea of the quenching of g
in nuclear matter has been in eclipse in recent years.
Now with the development of improved approximation
methods for studying the strong pion couplings we are
motivated to reeaxmine this problem. There may be
no obvious or significant quenching indicated by experi-
ment. Nevertheless there will be some implied by the
recent calculations of free-nucleon moments and we wish
to compute this here.

II. QUENCHING MECHANISM AND APPROXIMATIONS

The specific mechanism for quenching which we
consider here was discussed by Miyazawa in his original
proposal.? It is most simply described as the exclusion
principle effect. The anomalous magnetic moment of a
nucleon may be expressed in terms of integrals over the
momentum spectrum of the virtual intermediate mesons
contributing to its physical structure. Inside a nucleus
those meson states leading a nucleon to recoil into
states already occupied by the other nucleons are
forbidden by the exclusion principle. Their contribution
to the anomalous moment is thus suppressed and this
leads to a diminution in its value.

In our calculations we take for simplicity a Fermi
gas model of the nucleus. At normal nuclear density the
nucleons occupy all states up to an energy E;=p/2/2M
=40 Mev. We compute the exclusion-principle quench-
ing for a nucleon of momentum p;. This will be of direct
relevance for doubly-magic-plus-or-minus-one nuclei for
which the observed magnetic moment is due to the
extra-core nucleon, here represented by one at the
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Fic. 1. We illustrate in this figure the sense in which the

quenching mechanism we consider is equivalent to an exchange
current. In 1(a), we do not allow the intermediate virtual nucleon
to recoil into the states B, C, D . . . because they are already
occupied by other nucleons. If, on the other hand, we follow
Feynman’s prescription and neglect the exclusion principle in
intermediate states, we let nucleon A4 recoil into the filled states
in graphs of type 1(a) and in addition include the exchange con-
tributions indicated in 1(b). These also violate the Pauli principle
since A4 recoils into state B (or any of the other states) while B
is already filled. However, they enter with a minus sign due to
the antisymmetry of the nuclear wave function. The sum of the
two effects is exactly the same as excluding the filled virtual states
in (la).

Fermi surface. In this model we have no nuclear force
effects on the meson cloud other than that resulting
from the fact that there are nucleons held together at
the observed density of nuclear matter. This means one
may be ignoring possible exchange magnetic moment
contributions arising from spin-orbit or charge-exchange
forces. In the absence of a complete detailed force
theory we have no way of knowing precisely what it is
that we are neglecting in this way. In fact our presently
considered exclusion-principle effect may be construed
equally well as an exchange-current contribution.?
Following Feynman’s prescription we merely ignore
the exclusion principle for intermediate states and allow
the meson current originating on any one of the nucleons
in the nuclear matter to terminate on any other one as
well as on the one where it originated. Graphically for a
lowest order perturbation diagram we may consider the
process as pictured either in Fig. 1(a) or 1(b).

We next outline the approximations applied in the
calculation of the magnetic moment of a free nucleon.
The spectral representations of the dispersion approach
express the moment in terms of an integral over a
weight function, W. W is proportional to the amplitude
for the magnetic field to produce real particles which
then are absorbed by the nucleon; it is a function of the
invariant square of the four-momentum #? transferred
from the field to the nucleon. In practice one includes
in W only the amplitude to produce the lightest-mass
state connecting with the nucleon; this is the two-pion
state. The dispersion integral then extends from the
threshold, m?=4m,? to produce two pions to m?= o,
All other states are neglected. This means in particular
that in this approximation one calculates only the
isotopic vector part of the anomalous magnetic moment
[ (p—1)—p.)=1.85 nm and makes no attempt to
account for the much smaller isotopic scalar part
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I (up—1)+ur]=—0.06 nm. Since the momentum
transfer to the nucleon is time-like, m?>4m.? the two
pions may be viewed as scattering the nucleon from a
negative-to a positive-energy state—or equivalently, as
creating a nucleon-antinucleon pair. The recent calcu-
lations of Frazer and Fulco have established that with
a resonance interaction between the two intermediate
pions one can explain the observed value and structure
of the nucleon moment within this approximation.® The
resonance required for this fit is rather narrow and with
a maximum in the region of 3.57, to 4m, for the total
energy of the two pions in their center-of-mass system.
It serves to emphasize contributions from low-mo-
mentum pions to the weight function and thereby to
provide a more distributed structure. Simultaneously it
weighs against the high-momentum contributions. For
this reason Frazer and Fulco find it to be a good ap-
proximation to describe the absorption of the two pions
on the nucleon simply by Born approximation times a
form factor taking into account the large scattering
phase shift between the two interacting pions. They
show that higher order meson-nucleon rescattering cor-
rections contribute only very little in the moment calcu-
lation because they become important only at higher
momenta and their effect is damped out by the m-m
resonance. Schematically we can represent their working
approximation for the weight function by Fig. 2.

In the present analysis of quenching we are dealing
with the magnetic moment not of one single free nucleon
but of a nucleon swimming on the surface of a Fermi
sea of nucleons. This makes it impractical to take an
excursion into the complex momentum-transfer plane
in the canonical manner which yields the dispersion
relations, since the electromagnetic interaction depends
on the momenta in the Fermi sea as well as on that
transferred by the field. We therefore construct a set
of Feynman graphs which should be kept to reproduce
the accuracy of the dispersion approach and then cal-
culate how much the values of these graphs are altered
by the exclusion-principle effect.

This in no way constitutes a defense of the dispersion-
theory approximation of keeping only the lighest-mass
two-r-meson state in the weight function W. Our
result, however, is to be interpreted as an implication
of that approximation. Moreover we can appeal to
low-energy approximations in the present application
since the quenching affects only intermediate nucleons
recoiling with low momentum below the surface of the
Fermi sea, E;=p2/2M =40 Mev. This will strengthen
the accuracy of our method. :

III. DISCUSSION OF PROCEDURE

We want now to give a development of our procedure
and approximations for calculating the magnetic

8 W. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1609 (1960).
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F16. 2. Working approximation for the dispersion-theoretical
calculation of the vector part of the free-nucleon magnetic
moment. The subscript B.A. means Born approximation.

moment within the framework of Feynman graphs and
to compare with the corresponding dispersion approach.
It is convenient to begin by defining the electromag-
netic vertex of a nucleon. The amplitude for a nucleon
of four momentum p*, with p2=M?, to absorb a virtual
photon of four momentum &* from an external field,
emerging with (p-+k&)2=M?, is®

M2
Ey E,

Sﬁ=-2”i( )2(1"|JuIP)Aexa"ﬁ‘*(p’—p——k). (3.1)

To lowest order in perturbation theory we write

(p+E|J.| p)=eott(p+F)v.u(p)

in terms of free Dirac spinors #(p), (") =ut(p")yo and
of the unrenormalized bare charge e,. For the complete
vertex we write

(p+k| Tl p)=a(p+R)Tu(p+Ek, pu(p).

The most general form of the vertex operator T',
standing between Dirac spinors may be written

a(p+k)Tu(ptk, pu(p)
= (p+E) [F1()yu+iF2(k)owk’+Fs(R)k,Ju(p)
=a(p+k)LeovutAu(ptk p)Ju(p), (34

where F1(0)=e, the observed physical charge; F5(0)
= -+\e/2M, the anomalous magnetic moment; and the
third term F3(k%)k, does not contribute by gauge in-
variance.! Equation (3.4) follows by consideration of
Lorentz invariance and by use of the Dirac equation
for the spinors #(p): (p—M)u(p)=0, where p=p,v*.
Since we are interested here in the anomalous magnetic
moment, or F5(0), we must calculate the general nucleon-
electromagnetic vertex through terms linear in % as
kr— 0.

In order to project out the magnetic moment term

(3.2)

(3.3)

82 We use the notation of S. Schweber, H. Bethe, and F. de
Hoffmann, Mesons and Fields (Row, Peterson, and Company,
Evanston, Illinois, 1955) Vol. 1.

9 The appearance of the %, term in the operator can be ruled
out directly by time-reversal arguments. [F. J. Ernst, R. G. Sachs,
and K. C. Wali, Phys. Rev. 119, 1105 (1960).]
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we perform the following readily constructed operation:
YVu (p+3k)u
L é’i e ){ 1+B/2M M (1—R/4M?) }
Xu(p+R)a(p+r)Tu(p+k, p)u(p)
kB 2—k/2M*
zﬁ( 1+E2/4M>

)F2(k2), (3.5)

and then keep the leading terms as k2 — 0.

The general prescription for calculating the electro-
magnetic vertex within the framework of Feynman
diagrams is as follows. One draws pictures and writes
down corresponding expressions for all irreducible
graphs contributing to the vertex. In these graphs one
then inserts into each nucleon, pion, and photon line
the exact propagators, S¥’, Ar’, and Dy, respectively,
and, at each vertex, the exact proper vertex parts eol’,
for the nucleon-photon vertex, eV, for the pion-photon
vertex, and gol's for the pion-nucleon vertex; e, and go
are the unrenormalized coupling constants. According
to the general renormalization theory arguments these
exact quantities are equal to finite parts multiplied by
infinite constants, Z;. The Z; can always be grouped
together in such a way as to renormalize the charges
appearing in the theory.’® This means then that we have
effectively inserted into the irreducible graphs the
renormalized coupling constants e and g, and the finite
parts of the propagators and vertices, Src’, Drc’, Arc’,
T'se, Ve and Tue, and are thus left with finite results.

Applying this procedure to the vertex we illustrate
in Fig. 3 the first few of the infinite series of graphs
contributing to the vertex. Diagram 3(a) represents our
basic approximation. In parallel with the dispersion
approach we concentrate only on graphs in which the
interaction with the electromagnetic field (which is
treated in lowest order) is through the meson current
which is treated exactly. We find contributions of this
type also in the other graphs in Fig. 3 when we expand
out the vertex blobs in a perturbation series. For

———
-
=<

(@) (b) ()

(d) (e

F1c. 3. Irreducible graphs of the nucleon electromagnetic vertex.

1 J. C. Ward, Phys. Rev. 84, 897 (1951).
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example graph 3(b) includes a process such as in Fig. 4.
which corresponds to a meson rescattering correction
along the nucleon line. The work of Frazer and Fulco®
including the 7 scattering showed this to play a minor
role in the calculation of the free-nucleon magnetic
moment. We shall show by calculation that it is unim-
portant also in our quenching calculation because the
dominant rescattering correction in the 3-3 state of the
meson and nucleon cannot operate effectively if the
intermediate nucleon must lie within the Fermi sea.
Diagrams of the form 3(c) are not included in the
Frazer-Fulco analysis of the absorptive amplitude and
will also be dropped here along with 3(d) and 3(e) since
they correspond to higher-order rescattering corrections.

Our basis for neglecting these higher graphs is then
summarized in these two remarks:

(a) They correspond to amplitudes which are shown
to contribute negligibly or are entirely neglected in the
Frazer-Fulco analysis which is the starting point for us
here.

(b) Rescattering and higher-order corrections in the
meson-nucleon interaction are expected to be unim-
portant because in the quenching calculation we are

- —m————

Fic. 4. One graph in 3(b)—a
rescattering correction.

VSN

interested only in that part of the amplitude for which
the nucleon remains in the Fermi sea. Direct calcu-
lations of the rescattering in the 3-3 resonant state gives
a correction of 159;-209, to our work.

In our approximation we have then included all
Feynman graphs contained in the final working ap-
proximation of the dispersion approach. The difference
in the approximations lies in the fact that we here
retain the entire Feynman graph rather than just those
absorptive parts of the graphs which contribute to
diagrams of Fig. 2. However our methods here shall
yield information only on the static moment F,(0)
whereas the dispersion analysis also gives the structure,
Fy(k?), for all £2#0.

IV. FORMAL DEVELOPMENT

We concentrate on graph 3(a) where the interaction
with the electromagnetic field (which is treated in
lowest order) is through the meson current. The general
form of all such graphs is indicated in Fig. 5. For present
purposes we have replaced the internal nuclear line
and the nucleon-pion vertices by a general box; this in
no way affects our arguments. The top half of this
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graph can be written
—1

(2m)®

(821052—8a2081) AR (¢PeaV,u(q+E, q)
XA ((g+k)%),

Viu(gt+k, 9)=i(2¢+k)ut+xu(q+%, @) 4.2)

is the sum over all proper pion-electromagnetic vertex
parts. The bottom half of the graph has a form similar
to the pion-nucleon scattering amplitude. We can use
the usual arguments to classify the possible invariants'
that appear here since our vertex I', stands between
Dirac spinors in Eq. (3.4). However, since the pions
are virtual, we will now have two extra scalarsin the
problem which we take to be

4.1)
where

q12 = m12)

(4.3)

Therefore, for the lower part of the graph indicated in
Fig. 5, we can write the scalar

1’2(?2) T(m12,m22,k2,W2)u(p1),

k= (ga—q1)%

g =md.

4.4)
where

W= (qi+p1)? (4.5)

with
T=A4+3(q1+¢2)B, A=A%aAA"3757a],

and

(4.6)

B=Btdga+ B 1[78,7a .

It must be noted that this box in Fig. 5 is not just
pion-nucleon scattering off the mass shell since many
of the graphs that contribute to pion-nucleon scattering
are now contained in the pion vertex V,.(¢+%, ¢). Our
argument here is purely one on the form of the ampli-
tude as limited by covariance and isotopic spin con-
servation. Joining the two halves of our graph in Fig. 5
and summing over isotopic spins and momenta ¢ gives,
with

(5a1552—5a2551)%[7'p,7'a:] = ~2i73, (4:7)

the result

(
XAF ((q+E)) T~ (mi?,ma? B2, W),

26073
Au(ptt, p)= f dq A (@ Valg+h, 9)
2mr)*

4.8)

To approach an evaluation of this vertex we wish
to establish first that in evaluating the magnetic
moment it is possible to set the momentum transfer
equal to zero everywhere in Eq. (4.8).

The entire 2 dependence need only be kept in the
Dirac spinors. It can then be brought out explicitly for
the static magnetic moment in the form o,,k” through a
term p, and the Gordon decomposition of the current.
Once we establish this result we can draw upon Ward’s
identity to simplify the calculation greatly.

1 G, F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (1957).
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Fic. 5. The general graph
where the interaction with the
electromagnetic field is through
the meson current.

We can readily establish this result by recalling the
general form of the operator A,(p-+k,p) which must be
a 4X4 matrix which transforms as a four vector. Since
pP=M? and (p+k)?*=M? for real initial and final
nucleons on the mass shell we can construct only one
scalar variable from the vectors p and % for A, to depend
upon. We thus can write, for the general form of A,,

Au(pFE, p) = a1 () vu+as (B bu+-as (k) P,

+as(kB)ouk’+as(R)anP?,  (4.9)
where for convenience we introduce
P,= (ptk+p)u=2putku, (4.10)

which satisfies the relation P-k=0. No terms containing
the scalar p=p,v* or k appear here because we antici-
pate sandwiching A, between Dirac spinors as in Egs.
(3.4). Then it is possible, using the commutation rules
of the Dirac algebra, to reduce such terms to the above
form since (p—m)u(p)=0, and #(p+k)ku(p)=0. By
straightforward application of the Dirac equation and
the y-matrix algebra we can combine terms of A, into
the form

Au(p+k, p) = b1 (F) v+ 0o (B kutb3(B) Py (4.11)

This form follows directly from Eqs. (4.6) and (4.8).

Only the b; term in Eq. (4.11) contributes to the
anomalous magnetic moment, as we see by comparing
with Eq. (3.4). To exhibit the b3 term in the form of a
magnetic moment we recall the Gordon current decom-
position,

a(p+k) Puu(p) = (p+Fk) QMy,—iowk )u(p). (4.12)
Comparing with Eq. (3.4) we see the correspondence

Fi(k?) =b1(k?)+2Mbs(k?),
Fz(kz) = ba(k2),
Fy(k?) =b2(F).

Thus to evaluate the static moment we can set £2=0
in Eq. (4.8). The procedure then is to first express the
general form for the lower half of the Feynman diagram
as in Eq. (4.4). All terms of the form o,,%” are reduced
by the Gordon identity (4.12). We can then put #*=0
everywhere and extract the moment term by the pro-
jection in Eq. (3.5). In the following we shall always
have this sequence of operations in mind upon setting
[ to zero in Eq. (4.8). With this understanding we have

(4.13)
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F16. 6. Born approximation calculation of the anomalous magnetic
moment as a function of the intermediate meson mass.

proved our contention that we need only study

q A (¢ Vu(g,9)
XA (P T (%0,  (4.14)

An(?;?) -

in order to evaluate the static moment.

We may now use Ward’s identity' to simplify this
expression. The product Az’ (¢®)V.(g.9)AF (¢%) corre-
sponds to the insertion of a zero-energy photon into the
pion propagator and can be simply expressed according
to Ward’s identity as a derivative of the propagator:

AF ()Vu(g,9AF (¢*) = —ia%AF’(qZ). (4.15)
Equation (4.14) now reads
Mo~ 1l d4q(—iiAp'<q2))
(2m)* ag*
XT(¢%¢%0,W?). (4.16)

We now limit ourselves to the diagrams of type 3(a)
as indicated in Fig. 5. g?T's(p, p—q)S¥' (p—)Ts(p—¢, p)
replaces 7—, with T's and Sy’ the complete nucleon-
meson vertex operator and nucleon propagator, re-
spectively.’? Carrying out the renormalization program
we can express the vertex in terms of the renormalized
coupling constants and the finite parts of the vertices
and propagators. In the approximation of Fig. 5 there

12 We recall here that we must follow the sequence of operations
discussed above Eq. (4.14); that is, we first write

85 (p+k, p—q)SF' (p—q)Ts(p—q, )
in the form 4=—%(2¢+%k)B~ and then set £,=0,

XP50(P7 P"EI)SFC'(P—‘])PM(P_Q: P) (417)

Our next step is to introduce a spectral representation
for the pion propagator®®:

® p(m*)dm?®
Ard (¢)= f 0
o @—mtie

with a weight function p(m?) that is everywhere non-
negative:

(4.18)

p(m?) =8(m2—m.2)+ O(m2— 3m,))a(m?) 20. (4.19)
The vertex now reads
Auc(p,p)= e’ fd4 fp (m2)dm2——2i?———
(2m)* (g?—m?-ie)?
XTso(p, p—q)Sre’ (p—Tse(p—g, p). (4.20)

We note in passing that the lowest order perturbation
approximation of replacing I'sc — 5 and

Srd' — Sp(p—q)=1/(p—q—M)

is simply recognized as an integral over the pion mass
spectrum of the lowest order perturbation approxima-
tion .contribution of the meson current to the nucleon
vertex. Projecting out the moment contribution we can
write explicitly in this approximation

A(ma) = f (Mg (12%) 2

“NoamA+ [ omIns ()i,

© Omg?

(4.21)

where A\ (m?) means the moment calculated assuming a
meson mass m and the subscript B.A. stands for Born
approximation in lowest order perturbation theory.
Since both ¢ and Ag.a. are positive functions of m? we
conclude immediately that

A(m2)>Ap.a.(m.?)=1.6 nm. (4.22)

This gives a pretty fair agreement with the known
isotopic vector part of the moment, 1.85 nm, if the
higher-mass contributions to the weight function are
not too pronounced. The behavior of Ag.a.(m?) as a
function of 2 helps in this regard since it is a uniformly
decreasing function as shown in Fig. 6 and the ratio
As.a.(m?)/Ap.a.(m,?) has already fallen to ~0.6 by the
threshold of 9.2 for additional contributions. However,
little more can be said about this added term due to our
ignorance of the pion spectral function o. We mention
here that the quenching calculation, since it weights low-

3 H. Lehmann, Nuovo cimento 11, 342 (1954).
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momentum contributions very heavily, will be much
less sensitive to o.

Let us return now to Eq. (4.20) for a more systematic
treatment of I'sc and Src’. The renormalized propagator
is expressed explicitly in terms of the vacuum expec-
tation value of a time-ordered product of renormalized
Heisenberg fields:

iSFc’(t)=fd4x et =(0] T (¥ (x),#(0))]0). (4.23)

Displacing the fields to the origin with
O(x) =€ *0(0)e~ =,

inserting a complete set of energy momentum eigen-
states P|n)=pn|n), and performing the space-time
integral, we obtain

Oly|n) (n]¥]0)
to— E,+ie
O[¢[n) (n|¥]0)

to+En— 1€

Sel ()= (2a)° z[a@n—t)

+6(patt) ] (4.24)

If we limit |#) to one-nucleon states, then, with

) 1 M\
(%I‘HO)—EZW—)%(E—W) %(pn),

) N (4.25)
we find
M
Srd ()= 2 —u.() is(4).  (4.26)

S——
ho— (M2}

spins Et

Furthermore, for the quenching calculation we are
interested only in the contribution to Sr¢’(¢) for nuclear

2igud'q
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states which lie outside of the Fermi sea; i.e., those for
which (€2+M?)¥>Ep. Consequently for calculating
the difference between the moment of a nucleon which
is free and that for one in nuclear matter we are inter-
ested in calculating the contribution to (4.20) from

8Srd ()= —Srd () O (Er— (€+M2)%).  (4.27)
It is here that we make use of the fact that our study
is confined to low-energy intermediate nucleons within
the Fermi sea. First of all the validity of keeping only
the nucleon state in the sum in Eq. (4.24) is strengthened
by the fact that very little of the phase space for the
higher-mass states corresponds to a nucleon within the
Fermi sea. An approximate calculation of the contribu-
tion from the one-meson plus nucleon intermediate
state, taking into account the resonant 3-3 rescattering,
verifies this as will be shown shortly. Secondly, incor-
porating Eqs. (4.26) and (4.27) into (4.20) and taking
its matrix elements between initial and final spinors
a(p)- - -u(p’), we may evaluate the vertex operator. By
invariance arguments it is possible to write

g (p)Tse(p,p)u (') =gSL(p— ') Ja(p)ysu(p’). (4.28)

g is the renormalized coupling constant,
(g2/4m) (m/2M)?=0.08,

and § the form factor for the nucleon-meson vertex.
For 4-momentum transfers (p—p’)2 ~m.? we may ap-
proximate § to unity since we know from the success
of the Chew-Low effective-range theory that & has no
large variations for momentum transfers of =m,. In
our quenching calculation (p—p’)? must be less than
= (4m,)? if the recoil nucleon is to remain within the
Fermi sea; most of the contribution will come from
(p—p")? = (2m)% Therefore we approximate §=~1. If
we take Egs. (4.20), (4.26), (4.27), and (4.28) and
anticipate sandwiching the vertex between free-nucleon
spinors #(p+k)- - -u(p), we obtain for the modification
of the vertex due to quenching

q'0(Er—[(p—@*+M*])

—2eg’r; A
5AM(P’P) = (27'_)4 fp(m )dm f (

with

In obtaining this form for the numerator we have used the identity

, (4.29)
¢*—m*+ie)* 2[ (p— Q>+ M H{ (*+ M) —[(p— @)+ M —qo+ie} (
¢'=(+p)—[M*+ (p— 0* 1) (4.30)
1
a(p+k)lvs 2 u(i)—q)ﬁ(P~q)~/a]u(1>)=—E[ﬁ(pﬂ)q’u(z)). (4.31)

E>0

14 To measure the accuracy of this approximation we note that the difference between the Kroll-Ruderman coupling constant
(defined at $2=0) and the Watson-Lepore coupling constant (defined at p?=m.?) evaluated in second-order perturbation theory is

£K.R. =gw.L.[1-———
6

mr \ % gw.L.2
] 4r |
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We are now ready to project out the magnetic moment term according to Eq. (3.5). This gives

g dq

8F>(0)= L

O(Er—

[(p— >+ M*]F)

L (Ze )M [otmmame [

(¢—m+io?

V. NUMERICAL CALCULATION

Our first step in getting a number is to carry out the
¢go integration in Eq. (4.32). If the contour is closed in
the lower half go plane, then one only picks up a double
pole coming from the meson propagator. Carrying out
the integral gives

6g27‘ 3
8F(0)= L f o (m)dm?
k—0 64:,".3M3

fd3q®(Er—[(p—q)2+M2]% 1

C(p—aq)*+M*]} @ (w—A4)?
X[A(2w—A)+Be?], (5.1)
with w=(g*+m??,
A= (p+M*)—[(p—q@)*+M*], 5.2
e G q)2)+0(1),
e k@) /1
B=M(q2+p-q——i;-——)+0(ﬂ).

4 and B have been expanded in terms of momenta-
squared over M2. This expansion is justified since both
p and q are limited by the Fermi momentum and k is

Ot hin iy b

F1c. 7. Born approximation calculation of the quenching of the
anomalous magnetic moment as a function of the intermediate
meson mass.

2L(p—ay+ P

(k-q) (k-q’))
« B/ M?
(P2 [ (p— @)+ M2 —gotie}

(—3(19-9) () +Mq-q'—

(4.32)

to go to zero. Nowehere, however, do we expand in
powers of w/M since we must still integrate over the
meson mass spectrum. In evaluating (5.1) we set
|p| =pr corresponding to a nucleon at the surface of
the Fermi sea and average over orientations of k. q is
then limited to the region

[p—a|?= pr*+*—2prg cosf < pr’.
The limitation on @ is that

0 <0< cos(q/2pr). (5.3
Using F»(0)=-Xe/2M we find
A=0\p.a.(m.2)+ i o (m2)d\s.a. (m%)dm?, (5.4)
with o
Poa )= f e
321 M Y jpr—qr< om0
<o (orra) ] 69
3 M 3
Introducing
x=q/2pr, r=m/2pp, (5.6)

and carrying out the angular integrations, we get

o () 22
) e

3
X [1 —-—(xz-l-r‘*)%(
2M

For
e \? g
pr=2m, and (— —=0.08, (5.8)
2M] 4w
we find
5)\B,A,(m7r2)=—0.117'3 nm. (59)

In order to evaluate the higher-mass contributions
to 8\ in (5.4) we would first have to know something
about the presently unknown weighting function o (m?).
However as we see from Fig. 7, d\p.a.(m?) has fallen to
~1/10 of its value by the time m? is increased from
m,2 to the threshold (3m.)? for contributions from the
next lightest or three-pion state. We may therefore
hope that due to the rapid fall-off of o\p.a.(m?) with
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increasing mass these additional contributions are
small.!s

So far our result is based on the approximation in
(4.26) of neglecting all but the one-nucleon inter-
mediate state in evaluating the nucleon propagator. We
expect the major corrections to this to come from one
nucleon plus one pion in the resonant 3-3 state. We do
not evaluate the one-nucleon-plus-one-pion contribu-
tion in (4.24) because this corresponds to Fig. 8 and
allows the nucleon and pion to be only in the non-
resonant (%,1) state. The resonant amplitude arises
from crossed graphs of the type in Fig. 4. We evaluate
this contribution in the static approximation. From
Walecka,'® the magnetic moment in the static theory
can be written

w2

1
urmJ ot L9 (otwn)?

with wg = 2m.,. The first term is the Born approximation
and the second term is due to the resonance. We can
obtain an estimate of the ratio of the contribution to
the quenching of the resonance term to the Born term
by equating the momentum of the intermediate
“isobar” to that of the nucleon. This is approximately
valid due to the large mass ratio of the nucleon to the
pion. We therefore write

], (5.10)

— 873 gdq
Mon) == [ === (pr—a)]

2 w(2w+twg)
e

. (511
9 (w+wR)2.] .11

The second term increases the integral by less than

20%. Our final value for the quenching is then
A (m,5)=—0.1373 nm. (5.12)

This means a 79, reduction of the isotopic vector part
of the anomalous nucleon moment, 1.85 nm.

———X

Fi1c. 8. Graph contributing
to the one-meson, one-nucleon
term in the nucleon propagator.

15 Even a Born approximation calculation of the = — 3w
amplitude with a ¢* coupling which violates unitarity in =#—m
scattering by more than a factor of 10 contributes only an addi-
tional 209, to the quenching.

16 J. D. Walecka, Nuovo cimento 11, 821 (1959).
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DISCUSSION OF RESULTS

To conclude we wish to comment on the accuracy
and on the experimental significance of our result, (5.12),
that the magnetic moment is quenched by 7%, in nuclear
matter.

The main contributions to o\ (.2 comes from the
Born approximation calculation of the contribution of
the meson current to the magnetic moment, (5.9).
There is, of course, no reason to have confidence in
perturbation calculations in pion physics. In this paper,
however, we have derived (5.8) and (5.9) by a more
general approach which has specific advantages:

(¢) Our answer emerges in terms of the physical
renormalized pion-nucleon coupling constant g which
is introduced in (4.28). The form factor there was
approximated to unity on the basis of low-energy argu-
ments as used successfully in the effective-range plots
of Chew and Low.

(b) The accuracy of our result can be defended on the
same grounds, as was shown in Sec. III, as the dis-
persion; theoretic approach to the free-nucleon mag-
netic moment calculation. This certainly does not put
the accuracy beyond question. However, relative to a
perturbation approximation, the dispersion-theory ap-
proach has the great advantage of giving approximately
correct results for the free-nucleon magnetic moment.

We estimated in (5.11) the corrections due to reso-
nance (33) rescattering of the intermediate pion and
found it to add an additional quenching contribution
of <209%. To calculate the correction from higher
masses in (5.4) one needs information on the amplitude
for the process!® w— 3w. This amplitude is of great
interest in other connections also.

As to the experimental significance of a 79, moment
quenching we note that there are many other factors
which may alter the magnetic moment of a nucleon in
nuclear matter. Among these are the contributions from
exchange currents arising in conjunction with charge
exchange and velocity-dependent forces. Little can be
said about their effect on the magnetic moments in the
absence of a detailed nuclear force theory. In the ex-
treme shell model it is possible to estimate the exchange
moment arising from the spin-orbit forces phenomeno-
logically introduced to explain the observed level
splitting. This effect is shown in Table I and evidently
leads to large uncertainties. Another effect is the
relativistic correction arising from the Fermi energy of
a nucleon in the nuclear matter. This multiplies the
Dirac part of the total nucleon moment by a factor
M/E. We have included this effect in Table I; it is
comparable with the quenching effect for protons.
There is also a correction to the single-particle moment
when the motion of the center of mass of the system is
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TasBLE 1. Listed are selected odd-proton and odd-neutron nuclei together with indicated moments and corrections. The Schmidt
values are given in column I. Modifications of the moment due to a one-body shell model spin orbit coupling for the extra-core nucleon
(hole) are given in column II according to calculations of Jensen and Mayer® and of Marty?; see also Blin-Stoyle.® Modifications of
the moment due to a relativistic factor M /E, which reduces the Dirac part of the moment only, are given in Column III; for a nucleon
at the Fermi surface the correction here is proportional to [ (#/Er)—1]= —0.04. The modifications due to quenching as calculated
in this paper are given in column IV. The experimental moments are taken from Klinkenberg.d

I I 111 v
Schmidt Modifications
value for moment due to spin
Shell moment in orbit coupling Relativistic Total moment
model nuclear in shell model correction Quenching T4II4-II1+41V) Experimental
Nucleus state magnetons a b to moment effect a b moment
Nis P12 —0.26 +0.17 +0.14 —0.01 +0.04 —0.06 —0.09 —0.28
1o S1/2 2.79 —0.17 —0.04 —0.13 2.45 +2.63
K ds2 +0.12 +0.21 +0.46 —0.05 +0.08 +0.36 -+0.61 +0.39
Bi2»9 hopa +2.62 +0.24 +0.30 —0.16 +0.10 +2.80 +2.86 +1.08
(2 ds2 —1.91 0 0 0 +0.13 —1.78 . —1.78 —1.89
p27 puz +0.64 0 0 0 —0.04 +0.60 +0.60 +0.59
a J. H. D. Jensen and M. G. Mayer, Phys. Rev. 85, 1040 (1952).
b C. Marty, J. phys. radium 15, 783 (1954).
¢ See reference 6, p. 93.
d Z. A. A. Klinkenberg, Revs. Modern Phys. 24, 63 (1952).
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