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With short-range forces, initial and 6nal states in a classical 3-body collision are straight-line trajectories
into and out of a region where all three particles are close together at the same time. Using six coordinates,
three describing the relative position of a pair of particles, and three the relative position of the third particle
and the center of mass of the pair, the condition for simultaneous togetherness can be expressed with the help
of the 6&(6 grand angular momeatem lessor, A., whose components are A;;= (m~/m;)&x~p; —(m;/m;) 4;P;.
For a close 3-body collision A'= —,

' Z;, ; h.;P must be small. A' commutes with the ordinary angular momentum
operators and with the kinetic energy; its eigenvalues are X(X+4)A, with integral X, and its eigenfunctions
hyperspherical harmonics. Initial and final 3-body states can be described quantally by the total energy
g, g', and a commuting set of ordinary angular momenta; this description has the same relation to a mo-
mentum representation as the ordinary angular momentum analysis has for a 2-body collision. A collision of
(&+1) particles can be described by using a hierarchy of operators A„(2 &~ a&~Ã) i their eigenvalues are
l „(l„+3m—2)k'.

I. INTRODUCTION

A NGULAR momentum and rotational symmetry in
3-dimensional space are intimately and indis-

solubly connected. But the value of analysis in terms of
angular momentum, its conjugate angular coordinates,
and its eigenfunctions transcends the limits of exact
rotational symmetry, providing expansions, tools for
computation, and insights in a galaxy of problems. In
2-body collisions, for instance, it provides a classification
of initial and final states in terms of the particles' spins
and the collisional angular momentum even though the
separate conservation of some of these quantities breaks
down in the region of close collision.

In problems involving three or more interacting
bodies, it will often be found that important parts of the
problem involve operators which are formally sym-
metric with respect to rotations in a space of six or more
dimensions. Such operators are, for instance, the kinetic

energy for the 3-body problem, and even the Hamil-

tonian for that problem in the absence of any interac-
tion. True, the latter case appears trivial —but the
extended symmetry of the problem leads to a generaliza-

tion of angular momentum that provides a description
for initial and 6nal states in a 3-body collision with
short-range interactions even though the quantity con-

cerned is not conserved while the particles are close to
one another. And it may be expected that this gener-

alized angular momentum, together with its conjugate
angular coordinates and its eigenfunctions, will lead to
new insight and computational methods in other prob-
lems where the full symmetry does not persist.

Collisions involving 3 or more particles are often
described formally in a momentum (plane-wave) repre-
sentation. ' Such a description would be directly appli-
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cable to the unscattered beams in an experiment where
two collimated beams impinge on a relatively stationary
gas. That experiment is rare, and it is much more usual
to encounter 3-body collisions in statistical assemblages
like a chemically reacting gas or a recombining plasma;
the inverse process of 3-body or E-body breakup is im-
portant in many places, including ionization or dis-
sociation by electronic, atomic, or molecular collisions,
nuclear reactions, and high-energy events. These events
can be discussed as wave packets in the plane-wave
representation, but Delves' has shown that another
representation, involving a new, "unphysical, " angular
coordinate and a new quantum number A. , is much more
convenient. Similar coordinates have been invoked be-
fore, ' notably in the problems of the helium atom4 ' and
of the threshold law for ionization by electron impact. '
It is one of my aims in this paper to show that the
quantum number X in Delves. 's representation of 3-body
states arises naturally from the generalization of angular
momentum, and to give it further physical and intuitive
signihc ance.

In considering the possible collision of 3 bodies moving
in space, it is natural to ask: If the particles continued
undisturbed on their initial straight trajectories, how
close would they come to colliding simultaneously at a
point? This question arises most simply when the 3
particles are constrained to move along a line. Its answer
can be found in quantities like h. ,;= (m;/m;) ~x,p,—(m, /m;)lx, p; (where the coordinates are measured
from the center of mass), which must vanish if the
trajectories lead to an exact 3-body collision. A condi-
tion for a close (if not exact) 3-body collision course is
that A.„., or, more generally, A'= rs P;;(A,;),' be small.

' I . M. Delves, Nuclear Phys, 9, 391 (1958—1959).' P. M. Morse and H. Feshbach, M'ethods of Theoretical Physics
(McGraw-Hill Book Company, New York, 1953), p. 1730.

T. H. Gronwall, Phys. Rev. 51, 655 (1937),and J.H. Bartlett,
Phys. Rev. 51, 661 (1937).

5 V. Fock, Izvest. Akad. Nauk S.S.S.R. Ser. Fiz. 18, 161 (1954)
)translation: Kgl. Norske Videnskab. Selskabs Forh. 31, 138, 145
(1958).

6 G. H. Wannier, Phys. Rev. 90, 817 (1953).



GENERALIZED ANGULAR MOMENTUM

Related to A.' is a characteristic distance, analogous to
the impact parameter for a 2-body collision. These
relations persist for 3-body collisions in space, and even
for collisions involving E particles, and there results an
antisymmetric grmd angmlur momeetmm tensor A. with
3X—3 rows and columns, embracing the ordinary
2-body angular momenta among its elements.

In quantum mechanics, one can construct from the
elements of A. a set of operators which commute with
each other and the kinetic energy. They include the
familiar angular momentum operators, and one or more
new operators of the general type of A', which lead to a
class of hyperspherical harmonics as their eigen-
functions.

In this paper, I shall develop the basic physical ideas
and formalism of the grand angular momentum tensor,
erst in classical mechanics and then in quantum me-
chanics, and apply them to the description of 3-body
collisions. The argument of the first section opens with a
discussion of the motion of 3 particles on a line, in-
cluding the classification of possible collisions among
them and the erst appearance of grand angular mo-
mentum, in a situation where the ordinary angular
momentum is zero. There follows the treatment in full
3-dimensional space. An important preparatory point is
the systematic use of normalized center-of-mass coordi-
nates, which exhibit the symmetry of the kinetic energy
and encourage its exploitation. Once the proper generali-
zation of angular momentum has been found in the
antisymmetric tensor A, , the development of its formal
properties is straightforward.

In Sec. II, this development is continued with the
quantal commutation rules and the construction of
commuting sets of operators suitable for describing the
3-body system in regions where the interaction is
negligible. This description has to the more familiar
momentum representation the same relation as the
angular momentum description has for 2-body collisions.
It has various advantages, concentrating the focus on
true 3-body collisions (small A'), and providing solu-
tions that are normalized in the same way as, and
orthogonal to, 2-body solutions, so that they are par-
ticularly suited to describing processes like A+BC —+

A+8+C.
The key notions leading to the concept of grand

angular momentum seem to me to be the following:
hrst, the use of a symmetric, normalized coordinate
system; second, focusing attention on simultaneous
closeness in a three-body collision (which is assisted by
a position rather than a momentum representation);
and third, the generalization of angular momentum as
an antisymmetric tensor.

I. CLASSICAL MECHANICS

A. Classi6cation of 3-Body Collisions

Three-body collisions involving short-range forces can
be conceptually dissected into three stages: the ap-

proach, when the particles are moving without interac-
tion; the collision proper, when the interaction inRuences
the motion strongly; and the retreat. If a trajectory is
thought of as a path in the 9-dimensional space defined
by the coordinates of the 3 particles —or in the 6-
dimensional space remaining when the motion of the
center of mass of the system is eliminated —the ap-
proach and retreat trajectories are represented by
straight lines. The collision, or interaction, stage need
not be examined in detail here. We need only know that
it converts an approach trajectory into some retreat
trajectory, and that it involves one or more of these
processes:

(a) No collision —approach and retreat trajectories
the same;

(b) A 2-body collision only;
(c) Successive 2-body collisions, separated by a seg-

ment of straight trajectory without interaction;
(d) A 2-body collision between a stable compound

and another particle;
(e) Complex 2-body collisions —an initial 2-body col-

lision forms a metastable collision complex that survives
long enough to collide with a third particle;

(f) A pure 3-body collision —the approach trajectory
brings the three particles together directly into a region
where all three are subject to forces of interaction.

Some of these events are illustrated in Fig. 1. The first
three processes, (a), (b), (c), involve no true 3-body
events. True 3-body collisions have trajectories passing
through the central region of simultaneous 3-body
interaction; entry and departure may each occur by any
of the processes (d), (e), and (f)—in a rearrangement
collision, for instance, both entry and departure occur
by process (d).

If we ignore the process (d) and start with three
separate particles, it is obvious that the chance of
entering the region of 3-body interaction is the greater,
the closer the initial trajectory is aimed at the origin in
Fig. 1. For the initial trajectory (e) in the figure, the
distance of closest approach, R», is a generalized impact
parameter which must be small if a 3-body event is to be
likely. In fact, R will be an appropriate parameter for
classifying 3-body collision trajectories.

B. Normalized Center-of-Mass Coordinates

It is necessary here to specify the coordinate system
in more detail. The positions of three particles in space
are fixed by nine coordinates x, , where n(=1, 2, 3)
labels the particles, and i(= 1, 2, 3) the directions in a
Cartesian coordinate space. x" is an ordinary 3-com-

ponent vector, while x; has the three components, x,',
x,', x,'. With both af6xes omitted, the symbol x repre-
sents a 9-component column vector, whose components

may be represented by x„where the single suffix runs
from 1 to 9 Lj=i+3(a—1), x,+3&~ n=x, ).The masses
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the desired properties. This one has the additional
feature that the vector P describes the relative motion
of particles' and C, and P describes the relative motion
of 2 and the center of mass of BC. There are two other
such privileged coordinate systems, related to it by
orthogonal transformations. The system {g'),where P
represents the relative motion A and C, and $" the
motion of 8 with respect to AC, is related to {O by

cosp" sinp"

—slnp cosp

—1/d-
$ =0"$,, 0"=

m3dm2d'

(1)
where P" is an obtuse angle such that

g;=Us;, U=' —d
m2+mo m2+mo

of the particles are m, and their momenta are (clas-
sically) p =m dx/dt .

It is convenient to make a transformation to a center-
of-mass coordinate system. This can be done so that the
volume element is unchanged, and the kinetic energy
matrix becomes a diagonal form with a common reduced
mass for all the internal coordinates of the center-of-
mass system. Such a transformation leads to coordi-
nates $,'

.m, /M m2/M mo/~-
where

~po=g m~, and momod'=p(m2+mo)

mc mc' mc'2
tan'p" = + +

mg mg mgmg
(6)

The momenta transform to

0 —dp/mt 1.

g;=U'p, , U'=~mod m2+mo

.mod m2+mo

and the kinetic energy is

This transformation may be called a kinematic rotation, '
to distinguish it from ordinary rotations of the vectors
in Cartesian space. A similar kinematic rotation leads
to the coordinate system {(").Figure 1illustrates these
coordinates, and the trajectories (or their projections),

(2) in the plane of &tt and $22. The momenta obviously
transform in the same way as the coordinates.

When the collision of 4 or more particles is in question,
it is again possible to set up a normalized center-of-mass
coordinate system. In the general case, with Ã particles,
the kinetic energy is a form like (4), with a reduced mass

~=2 Z (P')'
i,am

p=(g m/Pm~)'~i" —'&.

a 1 e 1
(7)

3 ff 11+,l L(~.1)2+(~,2)2$+ (~ 3)2 (3)
'-rip M

Since the motion of the center of mass can always be
separated out, we can henceforth assume that x 3=0
and $,2=0, and write simply

6

T= P(m;)2=&-
2@, 7' 1

(4)

In these normalized coordinates the kinetic energy &s

conveniently symmetric. This can be contrasted with
its form in the common center-of-mass coordinates,
obtained by setting d=1 in Eq. (1), where a diferent
reduced mass p appears for each value of n in the
kinetic energy. To gain this symmetry, it is worth
paying the small price that ordinary physical distances
are measured not by Q, (P, )2$'*, but by dLP, (g )2j&

and d 'Q„;(g 2)2j&, respectively. With this caveat, it is
still possible to say that ( describes a physical vector
representing the relative positions of certain particles.

The transformation of Eq. (1) is not the only one with

7 Similar coordinates, often chosen so that p = 1, have been used
before. See, for instance, D. W. Jepsen and J. O. Hirschfelder,
Proc. Natl. Acad. Sci. U. S. 45, 249 (1959).

or
6 (t) =6 (to)+(t-to)p, —'m-t,

b(t)=4(to)+(t —to)p, 'gt.

(If we had not used the normalized coordinate system
a diferent reduced mass p would have been associated
with each value of n in Eq. (8), and it would have been
impossible to write the simple vector equivalent, Eq.
(9).$ As expressed here, the problem is formally identi-
cal with the center-of-mass description of a 2-body
collision in a plane. An initial trajectory aimed at the
origin in Fig. 1 would lead to the simultaneous collision
of 3 mass points (in the absence of a potential). The
extent to which a trajectory misses being such a simul-
taneous collision course can be measured by a generalized

F. T. Smith, J. Chem. Phys. 31, 1352 (1959).

C Collision on 8 Line

I,et us now consider the collision of 3 particles on a
line. This can be described by the normalized center-of-
mass coordinates ($22,$22), and illustrated by a tra-
jectory like (c) or (e) in Fig. 1.At first, the particles are
far apart and approaching each other on a trajectory
described by
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the preceding section. If the initial straight-line tra- and
jectory in the 6-dimensional space {Q is to lead to an
exact 3-body collision (that is, pass through the origin
of the coordinate system), all of the quantities

+11 ~12

~21 ~22

(i, j=1,"., 6) (13)

must vanish. This condition is equivalent to the
vanishing of the single, positive definite, quantity

(14)

A.' is a suitable measure of the closeness with which the
trajectory approaches a 3-body collision course.

The array of the A„. forms an antisymmetric 6X6
tensor, which will be denoted A. and called the greed
mgllar monzeetlm tensor. A2, the total squared grand
angular momentum, is an invariant of the straight-line
trajectory, independent of the coordinate system. A2 is

generally not invariant in a collision with interaction,
and its initial and final values may differ (this is true
even when only two of the particles interact and the
third passes by without interaction).

In the six-dimensional coordinate space, the distance
from any point to the origin will be denoted p.'

p'= Z (&')'
j=l

=ti{m —i~x2 —x3j +m ~xa—x [ ym3 tx —x
~ }

= (2piyr)-' p m'm~I x' x')'—

These identities follow immediately:

Z. $.tt v= p'~i pp.4—
Zi ~~pi =2ti2 k~ ppp'~

g2= p~(2„T—p 2)

(17)

(18)

The minimum value of p on a straight-line trajectory,
say R, is the analog of the impact parameter of a 2-body
collision, and will be called the 3 body impact distaec-e of
the trajectory. It is related to the invariant A2 by

42 =ATE.2. (20)

obviously includes ordinary angular momenta

among its elements. We may write, as an alternative
form of (17),

A, , ~=(, ~,e g,e7r;, (i, j=1, 2, —3;n, P=1, 2), (21)

(The first and last forms can be extended directly to
define a generalized distance coordinate for the problem
of E particles. ) The associated momentum is

p, =pdp/dt= p

A." is just the usual angular momentum of relative
motion of 8 and C expressed as a tensor, and A."is the
same for A and BC. The total angular momentum is

L=~ii+~22 (23)

The other terms, A."and A."are more complicated; one
is the negative transpose of the other, and they can be
analyzed in terms of a symmetric tensor X and an
antisymmetric tensor A:

so
x —~» %21 A=~»+~21

2~»=A+x, 2~2i=A
(24)

As will be shown below, A can also be identified with a
combination of ordinary angular momenta. It is closely
associated with the quantity Y defined by

Y—~11 ~22 (25)

The full tensor A. can now be written in the form

L x tY A
2~=

I
—x L A —Y

Y and A transform together like the components of a,

vector, rotated through the angle 2p":
Y'= Y cos2p" +A sin2p",
A'= —Y sin2p "+A cos2p".

(28)

E. Tensor in 3-ParticIe Coordinates

I.et us now define the grand angular momentum
tensor in the initial 3-body system, with the coordinates
taken from the center of mass. The coordinates and
momenta are subject to the constraints:

p m x;.=0, p. p,-=0.

The grand angular momentum tensor I. can now be
defined by

or
I-„'e= (m./me):~;p, e (me/m. ):*-ep-

I-„=(m;/mt) 'x;p; —(m, /m, )r g p;.

(30)

which is the natural form for displaying the effect of the
kinematic rotation, Eq. (5), to the new coordinate
system {P,'}. L and X are invariant under such a
transformation, and we have

L x Y' A'
2X'=20"aO"= ~ + t (27)

I
—x L A' —Y'I
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)The mass coeKcients enter here because the L,; ~ are
related to the symmetry of the kinetic energy in the
form T=-2 P (P,')' that results when the coordinates
and momenta are transformed to X, =(m )~x, and
P, =(m") 'p; jIn. view of the conditions (29), it is
easy to show that

P.(m )1L &=0. (31)

The 3X3 tensors L, lying along the diagonal of L
are obviously just the angular momenta of the particles
about the common center of mass. The others can be
written as a sum of symmetric and antisymmetric parts,

2L ~=A ~+S &, (A;, ~= A;; —~=A;,~,
~.' ), (32)

and the antisymmetric part, by (31), can. be expressed
in terms of the ordinary angular momenta:

It is interesting to note that a simple case of the grand
angular momentum tensor can be constructed in the
case of a 2-particle collision, if the coordinates of the
separate particles are measured from the center of mass.
In this case, L=A. is the total angular momentum of the
pair, and L is the 6X6 tensor

m2L
L= (mi+m2) —'

—(mim2) &L

—(mim~) &L
) (43)

m, L

The preceding theorem, Eq. (42), is obviously obeyed.

F. Properties of the Grand Angular
Momentum Tensor

Hence,

-,'P, ,(L„,) =2r P, m'(x;) —(P, x,p, ) =A'. (42)

(m m~)&A ~=m&L» m~—L~~ m~—L~i' (33) In the 6-dimensional coordinate space, the grand

m3 A@2

pA= miL" +m2L"—m3L"
m2+mg

(37)

( 2mi
Y=

) 1+ ~L"—L"—L".
m, ym, )

Finally, it can be shown that the invariant A2 can be
computed directly from the I„&:

(39)

To prove this, note that the transformation (1) implies
that

and

pp'= p Z.(k.)'=Z. m'(x. )'

pp, =Q, ppr, =Q, x;p;.

(40)

(41)

The symmetric parts, S ~, by (31), are all related to a
single symmetric matrix, e.
(m~m~)lS~&= —(m~m~)lS~ = e, (nP= 12, 23, 31). (34)

The 9)&9 tensor L can thus be expressed in terms of the
three angular momenta L ~ and the symmetric 3X3
tensor o.

The elements of the symmetric tensor e are related to
the quantity h. iii2 of Eq. (10), which appeared in the
discussion of the 3-body collision on a line where the
true angular momentum was necessarily zero. They thus
refer to the relative simultaneity of the 2-body collisions
implicit in the 3-body trajectory. In general, cr may not
vanish even when all the angular momenta L are zero.

Applying the transformation (1), one can relate the
components of A. to those of L as follows:

I,—Lu+. L22y L33 (»)

angular momentum tensor ~ defines a magnitude ~A
~

and the orientation of a 2-dimensional plane containing
the coordinate origin and the straight trajectory from
which A. was derived. If the coordinate system is rotated
so that the axis of the new coordinate gi' is parallel to
the 6-vector ~, and the axis of $2' is parallel to the
6-vector $(R) running from the origin perpendicularly
to ~, A.' has only two nonzero elements,

(44)

This may be thought of as the normal form of A. ; it
shows that A. has four zero roots, and two that are
conjugate pure imaginaries, &i~h, . Generally if A. is
known, an orthogonal coordinate transformation can be
found that will put A. into its normal form and identify
the plane in which the trajectory lies.

Of the 15 elements of A., how many are algebraically
independent? Certainly not more than the 12 inde-
pendent coordinates and momenta. Clearly, the total
kinetic energy T is independent of A. ; when T is known,
the trajectory is limited to a family of straight lines
tangent to a circle of radius E in the plane defined by A..
One additional parameter suffices to determine the
particular straight line (for instance, the angle yi in
Fig. 1 or, by Eq. (12), an additional energy such as Ez).
The velocity with which this trajectory is traced out
is known from T, but the initial position at time 1=0
requires one further independent parameter; Three
parameters in addition to A. are thus generally needed
to specify the straight-line motion completely (but in
the singular case ~A ~'=0, these 3 do not su%ce). This
suggests that A. implicitly contains in general (12—3
= 9) independent quantities.

Since A. has only two nonzero roots, a set of implicit
relations among its elements can be obtained by con-
structing third-order determinants from its elements
and setting them equal to zero. This leads to .a set of
identities (which can be verified directly by expanding
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in terms of x's and p's):

(ij,kl) —=A@Ai(+A, ~;i+Ai;A;( ——0, (45)

II. QUANTUM MECHANICS

Introduction

(12,ki) =0, (k&2, t&k), (46)

and the rest can be expressed as combinations of them
by using the identity (which depends only on the form
of the definition (45) and the antisymmetry of A.):

A.; (ij,kl) =A;, (im, 8)+A;&(ij,ml)+A;&(i j,km). (47)

Another set of relations can be found in the Poisson
brackets containing the A;;; these are in all respects
parallel to the commutation rules to be derived in the
next chapter.

G. Many-Body Collisions

Although the almost simultaneous collision of 4 or
more free particles is very rarely a matter of concern, the
opposite process, N-body breakup after the collision of
2 or 3 particles, is often of physical importance. All the
development of the preceding sections can be extended
immediately to the description of such N-body events.

In the 3N —3 dimensions of a normalized center-of-
mass coordinate system, the N-body grand angular
momentum tensor A.~ is constructed as in Eq. (13); it
is related to the tensor L~ defined in the coordinate
system of the X particles by an equation like (30).
Either of these can be used as in Eqs. (14) and (39) to
construct the quantity Az' which is an invariant of the
straight-line trajectory. A.& has two roots, and can be
transformed by an orthogonal coordinate transforma-
tion to the normal form of Eq. (44), which identifies
(except when A~' ——0) a 2-dimensional plane through the
origin in the hyperspace. The —,'(31V—3)(3Ã—4) ele-
ments A.,., are connected by -', (3'—5)(3/V —6) inde-
pendent identities of the form of Eq. (46), leaving
(61V—9) independent parameters to 6x this plane. The
trajectory's closeness to an N-body simultaneous colli-
sion course is characterized by A&' or by the N-body
impact distance E~ that is related to it by Eq. (20).

The tensor A.~ incorporates the elements of the
tensors A.~ ~, etc. , of lower order which characterize the
collision trajectories of the various possible subgroupings
of the N particles. To exhibit these various possible
groupings, diGerent sets of center-of-mass coordinates
must be used; these are related to one another by
orthogonal transformations like that of Eq. (5), but
with, in general, 1V—1 rows and columns (for examples
of these kinematic rotations, and an indication of how
they can be decomposed into a sequence of simple
rotations, see reference 8). Under these transformations,
A.& behaves as in the erst part of Eq. (27).

where i, j, k, 1 are all unequal; because of the antisym-
metry of A., the cyclic permutation in the sum may be
taken over any 3 of the 4 indices. Only 6 of these
equations are independent, for instance the set

In quantum as well as classical mechanics, a 3-body
collision can be considered as an event causing a transi-
tion from an approach trajectory to a retreat trajectory.
The uncertainty principle limits the specification of the
initial and final trajectories, but it leaves us with a
compensating freedom to choose from a number of
possible representations one that comes close to repre-
senting an experimental situation or seems particularly
convenient for calculation.

In the theory of 2-body collisions, it is common to
begin by describing an idealized experiment in terms of
the scattering of a plane wave, with a well-defined mo-

mentum vector. In dealing with low-energy collisions,
at least, one quickly analyzes the plane wave into a set
of spherical waves with well-defined angular momenta
about the center of mass, and from then on carries out
the analysis in this more convenient representation. A

parting glance may finally be given to the plane wave, in
order to compute the interference eGects that may be
observed in experiment. The prime reason for the use of
spherical waves is that they are concentrated on the
region of interaction, which may indeed, at low energies,
not extend far enough to affect any but the first one or
two partial waves. A related reason is that the outgoing
scattered wave is in any case conveniently described in

spherical terms, having lost the directional character of
the incident wave; when the experimental observation
is a function of angle made at a large distance from a
small region of interaction, the spherical description is
particularly appropriate.

Similar considerations apply to the specification of
3-body collisions. Analogy suggests that 3-body colli-
sions can usefully be analyzed in terms of some sort of
spherical or hyperspherical waves, classified in terms of
a generalization of the angular momentum. The grand
angular momentum introduced in Sec. I proves to have
the desired properties. By Eq. (20) of Sec. I it is related
to E, the 3-body impact distance that measures the
closeness of the 3-body impact, in just the way the
ordinary angular momentum is to the 2-body impact
parameter.

A. Commutation Rules and Commuting
Observables

The coordinate transformations of the previous sec-
tion are linear with constant coefficients and unit
Jacobian, and they and their consequences for the
mornenta and the quantities derived from them (kinetic
energy, angular momenta) carry over to the quantum
operators without change. It will suffice from here on to
use a center-of-mass coordinate system, and I shall
return to the use of Latin instead of Greek letters for the
coordinates and momenta. Also, in deference to the
usual terminology, ordinary angular momenta will be
denoted by the letter L, but A will still be used for the
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FIG. 2. Representations of the
grand angular momentum for 3-
body collisions.
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The following commutation rules are obeyed:

(2)

full grand angular momentum tensor. We may redefine

Ll —All L2 A22

other complete set derived from Eq. (10) by linear
combination.

The five angular momentum operators of (A) can be
represented graphically as shown in Fig. 2(A), since the
Mi represent sums of squares of the matrix elements in
successive columns of the upper triangle of the matrix
A.. Some alternative ways of partitioning this triangle
are also shown; each represents a set of commuting
operators.

Of the representations shown in Fig. 2, (A) and (B)
are the most important. (B) in particular can be related
to familiar quantities, since only S is unfamiliar:

t A,„x;7=—LA, ;,x,7=ills, ,

fA;l,p;7= —LA;;,p,7=2hp, ,

PA;;,A, 27 = iAA;1,

$A...A &7=0, (2, j, k, 212 all unequal),

(3)

(4)

(~)

M2'= (L 2)2, M2'+M4' ——(L')',

(A . 12)2

M2 ——A122= (L,')', M2+M2 ——(L')',

PAg, (A, 12+A,22)7=0, (zAk, j&k). (6)

The kinetic energy matrix, T= (1/2p)g;=1'P 2, com-
mutes with each element A;, ,

LA,;,T7=0.

where the usual symbols for angular Inomenta and their
s components are used. Instead of S,A' may be taken as
the fifth operator of the set. Then we have

(B') jL&' A2 (I 1)2 L 1 (L2)2 L,2) (12)

as a complete set of operators. (L,' and I need not be
referred to the same direction in space. ) Alternatively,
we can use the total angular momentum, L:

Quantum mechanically, the approach stage of a
3-body collision, in the region where the potential is
negligible, is completely described in terms of the
eigenvalues of a commuting set of operators. Ordinarily,
the total kinetic energy, T, is one of the set. In view of
Eq. (7) any commuting set of operators derived from
the A;; will also commute with T. Let us see what can be
done with combinations of the A;;. From Eqs. (5)
(6), A12 commutes with each of the operators

(13)(P A2 L2 L (Ll)2 (L2)2)(BI/)

since
L'= (L')'+ (L')'+2L'L' L,=L '+L ' (14)

M;= PA;;2.

The Mi also commute among themselves,

LM;,M;7=0;
and an additional eigenvalue, A. . This is of the form

A2=X(X+4)A2,

for instance,

(M„M.7=LA,P, (A,:+A,.')7+9,:, (A,:+A,:)7=o.
Thus we have the set of commuting operators,

with
X Il P= 2q ~) 0, —(q—integral). (16)

and The initial and final states of a 3-body collision can
now be specified in terms of the quantum numbers as-
sociated with the eigenvalues of a set of operators like
(A), (B'), or (B").The sets (B') or (B") involve the
familiar eigenvalues of the ordinary angular momenta,

(L~)2=3 (l +1)h2

L, =52244 (~2224
~

&l ), (15)

{A12,M2, M4, M2, M4, T). (10)

Since A'= Q;&, A;,'= L122+p; 2' ' M;, it is possible to
substitute A' instead of M4 in the set (A), or to use any (B') {E,X,P, 222, 4,P2P22),

The initial and final states may then be labeled with the
quantum numbers
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or

f8;A, l,mi, P,P), (17)

where 1 and vs~ refer to the total angular momentum,

(I.)'= I(1+1)0', l ~& P,

L,=no)A, /nag' &l.

These quantum numbers are convenient for labelling
the elements of the scattering matrix for 3-body
collisions.

The representation (8") is properly adapted to
expressing the conservation of total angular momentum„
but it has a disadvantage for some purposes in that
the 3 particles enter asymmetrically in the definitions of
L' and L'. In Sec. I, Eels. (26) and (27), we saw that the
symmetric tensor X, as well as the total angular mo-
mentum L, is invariant under the kinematic rotation
which represents a change to a diGerent pairing of the
particles. If a set of 5 independent commuting operators
can be derived from cV, L, and X, we shall have a
representation that treats the particles symmetrically.
Such a representation will apparently involve three
angular momentum operators, connected with the
Euler angles of the plane of the three bodies, and the
trace of X,

+T +11++22+~33.

This representation may be advantageous for some
forms of the 3-body problem. '

and

j=l i&j

9

X,2= p pX;,2.
j-1 i&j

(20)

The eigenvalue of A3' has the form

Ap =Xa('As+7) A',

where

X3—X2—P = 2q' )~0, (q' integral). (21)

When five or more particles are involved in the collision,
the hierarchy of grand angular momenta can be ex-
tended as far as needed. It is convenient to use the
convention that A.„refers to a system of (v+1) par-
ticles, so that A.~ is an ordinary angular momentum. The
eigenvalues of A„' are then

terms of a discrete spectrum continues to be available.
The treatment can be sketched brieRy. Let x' be the
normalized vector between two particles, x' run from
their center of mass to a third, and x' run from the center
of mass of all three to the fourth. Then, letting i run
from 1 to 9, the grand angular momentum can be defined
as before. A complete set of commuting operators now
includes 8 composed from the A.;,, plus T, the kinetic
energy. A possible representation is shown in Fig. 3,
where

B. N-Body Operators A '=) (X,+3m —2)A'. (22)

Similar principles apply when energy is available to
produce four or more particles, and a representation in

For (I+1) particles, a complete set of observables in
the center-of-mass system would be:

{TA„' A~p A2' (L")' (L')' L," Lg'). (23)

As the number of particles goes up, so does the
variety of possible choices for a set of commuting
operators. YVith 6ve particles, for instance, the hierarchy
A.4 A.3 A.2 can be replaced by A.4, A.2, A.2', where A.2

involves coordinate indices running from 1 to 6, and A2
involves coordinate indices from 7 to 12.

C. Coordinates and Eigenfunctions

Just as spherical polar coordinates are associated with
problems involving ordinary angular momenta, so
hyperspherical polar coordinates are naturally used for
problems involving the grand angular momentum opera-
tors. Corresponding to the diferent possible sets of
commuting angular momentum operators are different
choices of the (3n —1) angular coordinates in the
problem of (v+1) bodies, but the hyperradial coordi-
nate r is independent of the choice of angular
coordinates:

FIG. 3. A representation of the hierarchy of angular momenta for
a 4-body collision.

I hope to discuss this representation more fully elsewhere.

r'= Q (x~)'.
i=1

(24)
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Kith the operator

B( B)
p s= —jpr—"+i—

~

r"—~
Br( Br)'

the kinetic energy operator is

1
7'= p,'—+ A '.

2p 2@1'

(25)

(26)

In these coordinates, A' becomes

—1 B ( B ) (I.')' (L')'
A'= —

~

sin'2y —~+ +, (31)
sin'2y. By & By J cos'y sin'y

and generates a hyperspherical harmonic which is a
product of ordinary spherical harmonics and a function
X(y) which can be expressed' ' in terms of the Jacobi
polynomial 2P» ..

For the collision problem with short-range forces there
is a region at large r where the Schrodinger equation can
be separated into an angular and a hyperradial part.
The hyperradial equation can be solved by a Bessel
function; for instance,

R„, b(r) =r ' "'&Jo,„ i+~~si(kr);

incoming or outgoing waves can be expressed similarly
in terms of Hankel functions. '

The solutions of the equation in the angular coordi-
nates or,

LA.„'—A9 P +3m —2)/Q(ce)=0, (28)

are hyperspherical harmonics. These have diferent
forms depending on the angular coordinates chosen; the
ones of interest here can be written as simple products
of functions of a single angle each. I et us look briefly at
a couple of these representations for the 3-body problem.

If we introduce what may be called the regular
hyperspherical polar coordinate system (A), defined by

X(y) = cos'&y sin "y

(4+4—& 4+4+&+4
XsFi~ , ls+z, sin'y ~, (32)

2
'

2

D(co) =X (y)Q. (co,)Qb(a)b).

X (y) satisfies the equation:

dt' d
cos ~'+'y sin ~b+'y—

~

cos~' 'y sin~b 'y—
(

dy E gyi

(33)

where X )~fr+is. /Note that Delves calls "X" what
appears as —,('A —li—ls) here. $ Delves shows how to
transform between this representation and the mo-
rnentum (plane-wave) representation.

Similar expressions can be found for the hyperspherical
harmonics needed in the angular momentum analysis of
a system of four or more particles. If the m-dimensional
grand angular momentum tensor A. is partitioned in a
way involving the ns, -dimensional tensor A. and the
mb-diniensional tensor A. b (where m, +mb= m) the
angular eigenfunction can be written:

xs ——r cost b,

xb ——r sin| b cos| 4,

xr ——r sings sini 4 sini's sini's sinl t, (29)

z.(lt.+m.—2) lib(zb+mb —2)

cos X sin g

pit(ltym —2) X (y)=0. (34)
we find that the operator A' is naturally subdivided in a
way related to the partitioning of Eq. (10) and Fig.
2 (A). Separation of variables leads to angular functions
related to the Gegenbauer polynomials. "

The coordinate system (A) is not very useful, how-
ever, because it is not adapted to singling out the
ordinary angular momentum of the system. For this
purpose, A.' is more appropriately subdivided as in
Fig. 2(B) and Eq. (17). The associated coordinates
(r,y,8i,&t,8s,&s) are derived from the ordinary spherical
polar coordinates (r&,8&,@i, rs,8s,ps) by

lt+lt, +Xb+m —2 mb 5
, »+—;."I, (»)

2

The solution is

X„(y)=X(m,m„mb' , lt, X„&»,y)

fX,+Xb—lt=E cos" y sin"byF~
2

t'], =f cosX» t'2 = t' slnx. (30)
where (&—&,—& b) is an even non-negative integer.

The normalizing constant can be fixed by

Lz (lt ~n lt b)j!p' (Xb+ -,' mb) j'FL—', (X+lt,—Xb+ m, —2)j
(2K+m —2)l'p —,'(it+A +Xb+m —2)]1'pzrp —lt, +lib+mb) j (36)

"L.Infeld and T. E. Hull, Revs. Modern Phys. 23, 21 (1951)vrhere these functions are called "generalized spherical harmonics. "A.
Krdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Trunscenden]a/Functions (McGraw-Hill Book Company, Inc. , New
York, 1953), Chap. XI. Similar representations hav been used by G. A. Gallup, J.Mol. Spectroscopy 3, 673 (&959), and by J. D. «uck
and W. H. Schaffer, J. Mol. Spectroscopy 4, 285, 298 (1960) in connection with the n-dimensional isotropic harmonic oscillator: they
construct the generalized angular moementum tensor and associated raising and lowering operators.
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so that

m/2

X(m,m„mg, X,X„Xg,x)X(m,nz„my, X',X„Xg,x)

Xcos 'X sin ' 'xdy=~), ,&, (3&)

v, = (2E2'p)&, (38)

(assuming the ordinary angular momenta are negligible,
l1——l2 ——0), and if the average metastable lifetime is

A simple criterion for such metastable processes can
be found as follows: If the velocity in the trough is

which corresponds to unit normalization over a hyper-
sphere. ' =5/2r-, (39)

D. Description of Collisions

The eigenfunctions in the hyperspherical coordinate
system make it easy to describe the asymptotic form of
a collision involving three or more particles. The wave
functions can be normalized to unit total inward or
outward Aux through a hypersphere. When a 3-body
collision leads to a bound state (of a molecule BC, for
instance) the quantum number X is replaced by v', the
vibrational quantum number of the molecule. Con-
versely, a collision of the type A+BC ~ A+B+C can
be described by a term of the scattering matrix leading
from the incoming state (E,v', l,m1,P,l2) to the outgoing
state (E,),l,m1,l",l"), where E, l, and m1 are con-
served and no other labels are needed if A, 8, and C are
structureless, spinless particles. When three or more
bodies are produced from a 2-body collision, the con-
venience of a representation in which all the quantum
numbers except the energy remain in the discrete
spectrum instead of passing into the continuum is
obvious. In such a representation, problems of normal-
ization also disappear; for a bound state BC the condi-
tion of unit Qux through a hypersphere reduces to unit
flux through a sphere in the coordinates of x' describing
the relative motion of A and BC and so the same
prescription su%ces for 3-body trajectories and for the
bound states A+BC, AC+8, and AB+C. At sufhcient
distances, the free 3-body states labeled by ) and the
bound states labeled by v', ~", and ~'" are asymptotically
orthogonal, so the description in these terms is unique.

How do metastable 2-body states like A+BC', where
BC* has enough energy to dissociate, fit into this
picture? In principle, these contribute ultimately to
outgoing waves with large values of A', which appear to
originate near the potential trough along the axis of the
coordinates x' ($12 in Fig. 1). Strictly, they should be
described in terms of a superposition of these 3-body
states with various values of X (and certain phase
relations). This will describe their eGect everywhere
except in the potential trough —and asymptotically, at
large enough r, this state will have decayed away from
the trough and will not be noticeable there. Practically,
observations will be made at a 6nite distance, and it
may be more realistic to treat the metastable state like
a true bound state and ignore its contribution to waves
with large X. In doing so, it must be recognized that the
procedure is not completely self-consistent, and be-
cornes especially fuzzy for metastable states with short
half-lives which may contribute a good fraction of their
Aux to states of low X.

then the average normalized distance traveled in the
trough is

(x2)=v, v. =(A/F )(E2/2p)l. (40)

)X ~=~p, ~(*,)=A, (E E,)-:/r ="'. (41)

The metastable state will produce waves with different
values of t with relative probabilities given by

P (X)=X 'exp( —),/X ). (42)

The largest value of ) that can be involved in a pure
3-body interaction with range 0-, when the total energy
1s E=E-+E2, 1S

X,=A '(2pE)'0. . (43)

The criterion for processes involving metastables then
becomes ) )))„or

E (E—E )»r 9,.'. (44)

It has been implicitly assumed in this argument that the
half-width F is much smaller than E and (E E);-
when this is not the case, more detailed discussion is
required. "

E. Ayylications to Experiments

It must be admitted that the sets of observables
derived from the grand angular momentum tensor are
not always the most convenient ones to compare with
experiment. But in this, after all, they do not di8er
greatly from ordinary angular momentum, which is not
usually observed directly in scattering experiments. In-
stead, one deduces angular momentum effects from the
angular dependence of scattering cross sections. Like-
wise the contribution of states of diGerent values of 'A

to 3-body processes can be deduced from experimental
measurement of the distribution of energy between the
three particles. Delves' discusses threshold phenomena
from this point of view; states with X=O (or X=l1+4)
should predominate here. At higher energies contribu-
tions from states of larger ) will appear and produce
more structure in an energy distribution plot. Metastable

"See also I'. 'jL'. Smith, Phys. Rev. 118, 349 (1960).

If the characteristic range of the 3-body interactions is
0-, the processes going by way of metastables are
eGectively distinguishable from 3-body events when
(x2)»o.. Dining the energy level of the metastable BC*
with respect to the dissociated fragments B+C as E,
it is interesting to note that the average value of ~A

~

becomes
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bound states will of course give a peak of half-width F
at a critical value of the energy E~g= E . Further study
of the hyperspherical harmonics should disclose other
ways in which experimental observations can be used in
this sort of analysis —various combinations of data
including energies, angular correlations, and temporal
coincidences or delays, could be examined for 3-body
sects."

"Compare the study of 3-body events for effects of 2-body
forces: G. F. Chew and F. E. I,ow, Phys. Rev. 113, 1640 (1959).
See also L. Fonda and R. G. Newton, Phys. Rev. 119, 1394 (1960).

In some problems of chemical kinetics, 3-body reac-
tions occur in a statistical assemblage of colliding
particles. Similar events, governed by short-range
forces, occur in the 3-body attachment of electrons to
atoms or molecules, In cases like these, it should be
possible to introduce the angular momentum description
of 3-body collisions into a statistical argument. In such a
description it is important to look carefully into the
relative contributions of pure 3-body processes and
events involving a 2-body metastable.
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Quenching of Magnetic Moments in Nuclei*
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Starting from the premise that with modern dispersion-theoretical techniques one has a reliable method
for calculating the anomalous magnetic moment of a nucleon, we have calculated the modification or
"quenching" of this moment for a nucleon in nuclear matter. The effect we consider here is due to the
fact that nucleons are not allowed by the exclusion principle to recoil into states already occupied by other
nucleons in the nucleus. The actual technique we have used in our calculation is to sum all the Feynman
diagrams that are included in the dispersion-theory calculation of the single-nucleon moment. We then
write the nucleon propagator as a sum over states and remove those states in which the nucleon is inside
the Fermi sea. Our result is that the anomalous moment is reduced by =7'Po.

p,„=1nm, y„=0nm. (1.2)

If one plots the magnetic moments of the odd-A
nuclei vs the nuclear spin one obtains from the single-
particle model two Schmidt lines' ' for /=I& —'„where

* Supported in part by the U. S. Air Force through the Air
Force OS.ce of Scientihc Research.

f National Science Foundation Postdoctoral Fellow.' F. Bloch, Phys. Rev. 83, 839 (1951).' C. Candler, Proc. Phys. Soc. (London) A64, 999 (1951).' H. Miyazawa, Progr. Theoret. Phys. (Kyoto) S, 801 (1951).
4„'A. de-Shalit, Helv. Phys. Acta 24, 296 (1951).' T. Schmidt, Z. Physik 106, 358 (1937).' R. J. Blin-Stoyle, Revs. Modern Phys. 28, 75 (1956).

I. INTRODUCTION

' tN this paper we wish to re-examine the question of
~ ~ the quenching of the intrinsic magnetic moments of
nucleons in nuclear matter. The idea of quenching the
spin-g factor of a nucleon (g,) in nuclear matter was
proposed in 1951, independently, by Bloch, ' Candler, '
Miyazawa, ' and de-Shalit. 4 Their arguments were based
on the observation that in almost every case the ob-
served magnetic moments of odd-A nuclei could be
explained by a single-particle calculation with the
intrinsic nucleon moment lying somewhere between the
free-nucleon moment

tso= (1+1.79) nm, ts = —1.91 nm,

and a completely quenched moment

l is the orbital angular momentum and I the total
angular momentum, or spin, of the odd nucleon con-
sidered to be moving in the spherically symmetric
potential provided by the even-even core. The experi-
mental moments are found to cluster near these lines
but the fit is greatly improved if the value of the
intrinsic moment for a nucleon in nuclear matter is
taken to lie between values (1.1) and (1.2).

The physical assumption underlying use of un-
quenched values (1.1) in nuclear matter is that the
currents in the meson cloud about a nucleon are not
altered by the presence of other nucleons in the nuclear
matter. The values (1.2) would apply in the case that
the presence of other nucleons at the density of normal
nuclear matter completely discouraged a nucleon from
developing its normal meson currents. Thereby the
moment would be quenched all the way down to the
Dirac value which obtains in the absence of all meson-
current effects. There have been several attempts to
implement this idea with an accurate calculation. ' '
However, several major obstacles have barred the way:

1. It has not been possible to calculate from meson
theory the magnetic moments of free nucleons with
any accuracy. Indeed until the dispersion-theory
methods of the past two years there has not even
existed a systematic approach to a nucleon magnetic

' F. Villars and V. Weisskopf (unpublished).


