(4) we see that the radial coordinate r_{∞} of this particle (the suffix denotes that the meeting takes place in the infinite future) is given by

$$
r_{\infty} = R \tan \chi. \tag{19}
$$

The acceleration α corresponding to an *n* as in (18) is found, from (10), to be

$$
\alpha = R^{-1} \tan 2\chi,\tag{20}
$$

and this allows us to eliminate χ from (19). Thus we easily find

$$
r_{\infty} = \alpha^{-1} \{ (1 + \alpha^2 R^2)^{\frac{1}{2}} - 1 \}.
$$
 (21)

The same result was obtained analytically in paper I, which should be consulted for the connection between r_{∞} and the "a horizon." If α is infinite, the "accelerating" particle is a photon. This corresponds, by (19) and (20), to $r_{\infty} = R$. Hence even a light-signal does not overtake all fundamental particles on its line of motion, which is, of course, a well-known fact.

It is also clear from the diagram that there exists a photon which, sent after the accelerating particle, only intercepts it in the infinite future, Its projection on to the (x,y) plane is QQ' , parallel to PP' and tangent to the waist-circle. The coordinates of Q are evidently $(0, R \csc 2\chi, 0)$, while the coordinates of the point on 30 whose projection is Q are $(0, R \csc 2\chi, R \cot 2\chi)$. By 3 (ii), this corresponds to a time

$$
t_{\rm crit} = R \ln(\csc 2\chi + \cot 2\chi),
$$

which, by (20), is equivalent to

$$
t_{\rm crit} = R \ln[\alpha^{-1} R^{-1} \{(1 + \alpha^2 R^2)^{\frac{1}{2}} + 1\}].
$$
 (22)

The subscript denotes that this is a critical time for photons sent from the origin-particle $(r=0)$ to intercept an accelerating particle that was released there from rest at $t=0$. Photons emitted earlier intercept the receding particle, while photons emitted later do not This result too was obtained analytically in paper I.

PH YSICAL REVIEW VOLUME 120, NUM BER ³ NOVEM BER 1, 1960

Absence of Bound States in a Gravitational Field*

ASHER PERES Department of Physics, Israel Institute of Technology, Haifa, Israel (Received June 30, 1960)

The Klein-Gordon and Dirac equations for a particle in the gravitational field of a point mass are investigated. It is shown that the geometrical properties of the Schwarzschild metric prevent the normalization of any bound-state solutions.

~ALLAWAY' has recently investigated the general \blacktriangleright relativistic Klein-Gordon and Dirac equations for an attractive center of mass M and charge e , in the case $M \leq e$ ²

The opposite case, $M > e$, displays wholly different features: Equation (C2) shows that the metric is singular at $r = M \pm (M^2 - e^2)^{\frac{1}{2}}$. We shall take here $e = 0$, since this does not essentially differ from $0 < e < M$.

The Klein-Gordon equation (C4) is singular at $r=2M$. The indicial equation at this point shows that the solutions behave there as $(r-2M)^{\pm 2iEM}$. Since the current density is

$$
J^k = i(-g)^{\frac{1}{2}} g^{kn} (\bar{\psi}\psi_{n} - \bar{\psi}_{n}\psi)/2m
$$

then it follows from (C1) that $\int J^0 dr d\theta d\phi$ diverges at $r = 2M$.

In the case of the Dirac equation, one has'

$$
J^0 = \bar{\psi}(-g)^{\frac{1}{2}} \gamma^0 \psi \sim (-g)^{\frac{1}{2}} (F^2 + G^2) / r^2 g_{00}.
$$

Expansion of (C7) about $r=2M$ shows that the leading terms are

$$
(r-2M)F'+2MEG=0 \quad \text{and} \quad (r-2M)G'-2MEF=0.
$$

It follows that F and G behave as $(r-2M)^{\pm 2iEM}$, so that here also the wave function is not normalizable.

Thus, there are no bound states in the gravitational field of a point mass.

^{*}This work was partly supported by the U. S. Air Force, through the European Office of the Air Research and Development
Command.

Command. ¹ J. Callaway, Phys. Rev. 112, 290 (1958), hereafter referred to as C. There is a misprint in Eq. (C7); see D. Brill and J. A. Wheeler, Revs. Modern Phys. 29, 465 (1957). ² Natural units are used: $c = G = \hbar = 1$