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Multiple Meson Production in Nucleon-Antinucleon Annihilations*f
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A two-parameter model is proposed for treating complicated production problems in a relatively simple
way. It is assumed that the interaction may be characterized by a range of interaction and by a coupling
strength. After the model is developed, it is applied to the problem of pion production in S—X annihilations.
The two parameters are fixed by the experimental data for the multiplicity and energy spectra. It is found
that all the data can be satisfied if one chooses the radius of interaction to be one pion Compton wavelength.
Under certain restrictions the model reduces to the Fermi model.

eii'ective core radius of 2/3tt, they are able to 6t the
total and absorptive cross sections as well as the pion
multiplicity fairly well. However, it is de.cult to
understand the available energy-spectra data on this
basis. Thus if we assume that all the pions emitted are
in S states, relative to the barycentric system of the
S—X system, we have M~)0, where k is the wave
number and R is the radius of interaction. Accordingly,
we should expect for the maximum contribution, kE 2
or k~400 Mev/c. " On this basis we would obtain a
momentum spectra peaked around 400 Mev/c. Al-

though this is in agreement with an average value of
Es/5, it is rather large with respect to the experimental
value, viz. , k 300 Mev/c. Koba and Takeda point
out that interactions in the annihilation region can
change the energy spectra and that their actual numer-
ical value for the e6ective core radius is not to be taken
seriously, but one wonders whether any reasonable
effective core radius, producing half of the pions, will
lead to the correct spectra. This is particularly true if
the cross-section data are still to be satisfied.

The approach of Ball and Chew, although along the
same lines, eliminates this problem. They treat only
the problem of cross sections and assume that the
"cores" annihilate in the sense that an ingoing-wave
boundary condition is present to represent the large
probability of annihilation if the particles come close
together. On this basis they are able to obtain the
low-energy experimental data for the cross sections.
Further, the results of their calculations, as expected
in the considered energy range, are very insensitive to
the location of this boundary.

Considering the success of Ball and Chew, it is not
unreasonable to hope that the pion multiplicity can
also be treated without attaching special characteristics
to the nuclear core and pion cloud. However, attempts
along this line of reasoning, e.g., by the Fermi model
and modifications to it," " have not led to favorable

I. INTRODUCTION

INCE the discovery of the antiproton in 1955,' a
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~

~ ~

~

~ ~

large amount of experimental work has been
devoted to its interaction with nucleons. ' ' The results
of these investigations present two conspicuous fea-
tures: (a) cross sections that are large compared to
similar 1V E inter—actions, and (b) multiplicities that
appear large in light of calculations based on the Fermi
model' if a radius of interaction is chosen to agree with
current ideas of nuclear structure, i.e. , 1/tt. r

Recently, several authors " have attempted to
understand one or both of these features on the basis of
phenomenological models that preserve our present
understanding of the nucleon structure, and of these,
two have been moderately successful, viz. , those of
Koba and Takeda' and of Ball and Chew. '

The model of Koba and Takeda attempts to describe
both of the salient features by means of two distinct
interactions. It is assumed that the actual E—E
annihilation occurs between the cores, producing pions,
and in such a short time that the pion clouds are

unaffected. The resulting "unattached. " clouds then

disperse, producing additional pions. By assigning an
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results. Present results show, nevertheless, that a
similar approach will reproduce the experimental data
if one includes (a) the approximate energy dependence
of the matrix elements, which are neglected in the
Fermi model, and (b) the results of the calculation of
Ball and Chew with respect to the partial waves
involved in annihilation. The present model cannot be
considered a statistical model in the Fermi sense, but
under certain restrictions reduces to it.

II. THE INTERACTION MODEL

A. Formulation of the Proposed Model

In this section we will develop a model, the inter-
action model, for treating complicated production
problems in a relatively simple way. As the essential
physical approximation, we assume that the primary
features of a given process are produced by an inter-
action confined to a small volume in coordinate space
and further characterized by a parameter giving the
coupling strength. In order to implement this approxi-
mation, we begin by writing the scattering amplitude
in the coordinate representation. The resulting integral
equation is rewritten in terms of some complete set of
states, these states being chosen for their convenience
in describing the process. The coeKcients of these
states, the partial-wave scattering amplitudes, are
coordinate integrals over the interaction operator, and
we introduce the above approximation by restricting
the limits of the integrals to a small volume of space.
Of course, these contributions must be such that the
appropriate quantum numbers are conserved. This
physical approximation is closely related to that in
the Fermi mode1, and in fact we shall show that under
certain restrictions the interaction model reduces,
essentially, to the Fermi model.

We begin by constructing the state to describe a
given system of particles. Proceeding in the usual way,
we describe physical one-particle states by a complete
orthonormal set of one-particle state vectors in a
Hilbert subspace. The subspace describing a state of n

particles of diBerent types, i.e., nucleons, pions, etc., is
given by the direct product of e one-particle subspaces
corresponding to the appropriate type of particle. The
total Hilbert space is given by the sum of all such
subspaces. We may choose as the basis set for the one-

particle state vectors the coordinate eigenvectors, and
the m-particle subspace basis set for particle types

, j, is therefore

Of course, depending on the nature of the particles, we

must symmetrize the state vectors appropriately.
In the following, we shall confine ourselves to nucleons

and pions for which we will use
I r) and

I g&, respectively.

which gives
~
—iEpt

(&o—Ho) I4&= ~lk&,

and we apply the usual scattering formalism. We thus
have the formal solution,

I

14'& =
I 4'o)+ go(~o)~ I4'»

where
I go& and go(Eo) are defined by the equations,

(&o—Ho) lgo)=o,
and

(Eo—Hp) go (Eo)= I

(2)

(3)

and I is the identity operator. As seen from Eq. (3),
the state vector Igo) represents a free-particle state of
nucleons and pions with a total energy Eo, and from
Eq. (4), go(Eo) is the free many-particle Green's
operator for the parameter Eo.

For definiteness, we can take l@o) to represent a
state of N' nucleons and p' pions for which we have

Eo E(Fg)+ ~ +E($„——)+W(s.y)+ +W(s.„).
Thus the probability amplitude for finding a state of n
nucleons and p pions is given by the scalar product of
Ig& with the subspace describing the system of e
nucleons and p pions. If we use the coordinate basis
set for this projection, then we find, from Eq. (2),

r~ r~ ~
~ „=r].''' y On'y'

+(r~. (, I go(&o)~ la), (3)

A system of nucleons and pions is thus given as

I& &=K Z 2 Zo..(, ",.;s,".,s.)
g~p p~p f'g ~ ~ ~ fg ~ ~ ~

xl., '.;4 "4), (l)

where f„„(r&~ r„;f& $„)represents the probability
amplitude for finding N nucleons and p pions at their
respective positions, rq, , r„;$q, , $„.If IXn)
represents a system of noninteracting particles, then,
of course, we have tP „(r& $„)=P(r~) g (r„)Q($~)
g(P~), where iP(r,) and p(P;) represent the appropriate
one-particle wave functions for describing nucleons and
pions, respectively.

In the Schrodinger picture, the time development of
such a system of particles is given by the Schrodinger
equation,

(Ho+~) lf&=o(~/~&) I|t&,

where IP) is the state vector for the system and Ho is
the Hamiltonian operator for a system of noninteracting
nucleons and pions. The interaction operator, V,
contains all of the interaction and can include the
creation and destruction of particles.

If we consider this as a stationary-state scattering
problem in which there is a continuous incoming and
outgoing Aux of particles, we have
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or In the present development we shall propose an
approximate method of calculating f() i .)t~). Re-
writing Eq. (8), we have

xg. (», g. ;», " q, ', z,)(», "q, IVI'&,

which is an integral equation to determine jp&.
If we confine ourselves to the problem of particle

production in collisions and annihilations, then Eq. (5)
becomes

4'(»i »,4 4)=

Xgo(»i. . 5, ;»1 '4 +0)(»i' 4'IVII& (6)

%e now introduce a complete set of states in terms of
the identity operator; these states are energy eigen-
functions with additional quantum numbers chosen for
their convenience in treating a particular problem.
Representing these states by v and p for the nucleons
and pions, respectively, from Eq. (6) and using

E le;&=~, l ~;&,

we have

a(., ~.)=z("
~o—~~—

xg d~», '" d't, '(» n, ji'»""e.'&(»i'" 4'IVI+&I'.

4 (» ~.) = "d'»i' d'4'4. &i)*(»i')" 4.(.)*(4')

«"' ~,'IVI~& (10)

This is an overlap integral in the usual fashion if we
interpret (»i' $~'I Vjf& as an initial state. We will
adopt this viewpoint in the sense that (»i' .$„'IVjg&
speci6es the conserved dynamical variables, remember-
ing that the eGect of the interaction operator must also
be included. In order to calculate P() i ))~) we
approximate the effect of (»,' (~'I Vjg& by assuming
that the essential features of the problem are given by
considering only the contributions from a small volume
of the coordinate space. We will always consider
ourselves to be working in the barycentric system, and
then we will take

~.'I~I~&=G -G. ~("'
=Gg "G 'Ce(E —» ') 8(E.—p ')

X I'(»i' $„')S(1V)I(E7r), (11)

where G~ and G are of the nature of dimensionless
coupling constants, C is a constant determined by our
interpretation of the initial state, i.e.,

where"
Xi)'(Eo—%— —u,)f(vi g„), (7)

p(vi g,)= d'»i' A', '() i nnl»i' 4'&

x(.'".g„IVI'&. (8)

Qf course, p(v, g„)is just the scattered wave ampli-
tude in terms of another complete set. From Eq. (7)
we have, for the total probability,

&-~=K ~(&o—@— —~~) I4(» "~n)I' (9)

'5 Although not explicitly written out, such integrals are always
considered to include sums over the various spin spaces.

To be precise, we must, of course, define the t reen's
function properly, but we will take the point of view
that the primary eGect is to impose energy conservation.
That is, we know

T,i,= 271i8(E, Ei)—T,i, and —T,t
= (Q, Vf), ).

Additional factors will occur, but in the actual calcu-
lations we will work only with ratios for which we may
assume that these factors balance out. Thus we replace
the Green's function by a delta function (Kronecker
or Dirac, depending on spectra) and write

4("" 4)=Z» 4"

I'(»i', ' ',$i'), S(iV), and I(JVm) are angular,
mechanical spin, and isotopic spin functions, respec-
tively. We take G~, G, and E as characterizing the
interaction leading to a given final state, P() i g„).
In order to distinguish this approximation from the
form in Eq. (10), we will write

S(vi ))„)=G~"G " d'»i' . d'p 'p„(,)*(»,').

X4,~.)*(4')+(» '" 4'). (»)

Although we represent the effect of the interaction
by the factors G~ and G and we interpret +(»i' . P~').
as an initial state, 4(»i' $„')can possibly have other
properties that are related to the interaction. From a
6eld-theoretic viewpoint, we would expect V itself to
be composed of particle fields combined to produce
current terms. It is not unreasonable thus to expect
S()i. .))„)to have additional energy dependence. In
general, this is unknown, and is suppressed in Eq. (13).
However, since pions are involved in the process, pion
field operators should occur in V. We can at least include
the normalization of this field and write, instead of
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Eq. (13),

S( )/ )=G "G "d' ' d'$„'P, ,*( ')

+(~'" 4')
Xp„()*($ ') (14)

(2(u)R 2(d~R) '*

where we include the factor R for dimensional reasons.
Instead of Eq. (9) we have

Thus, we can write

) —(~+@)/2

S(K) ~ k„)=G/)/"G "i R—'
i)

(4~R3) "+& j)(R')R) j ~(P+)
y(~+a) /2

P =G/)'"G '" Z &(&o—R— —~„)
Pry p f) (+0 +1 ' ' ' CO~)

~
S(V1' ' ' )b) ~

. (15)
V, g

In the above, %(r)'. . (~') has been taken to be a
step function in the radial coordinates, but this is not
necessary and other forms could be chosen. However,
if this model is at all meaningful, the results should be
practically independent of such variations. In the
present case involving nucleons and pions, we should
expect from other considerations. e.g., Fermi model or
static model, that R should be at most of the order of a
pion Compton wavelength. If the nucleons are con-
sidered nonrelativistic, then the free-particle wave
functions do not have violent changes for r (R, and we
would not expect the results obtained by using a step
function to vary appreciably from those resulting from
another choice.

B. Relation to the Fermi Model

Before considering the problem of E—X annihila-
tions, we shall show that, with additional restrictions,
the interaction model essentially reduces to the Fermi
model. ' Consider the case where the complete set
consists of plane waves. Then from Eq (13), we write

we have

//Bmo pRi )(PR) 3'

KBw0 (-",xR') "+&
P„„~Gg'"G'&p—b(EO —Z)—. . —(u )

K, k
)

and the matrix element is independent of the mo-
menta. Passing to a continuous spectrum and setting
GN =G = 1, we obtain Fermi's result,

(3mR3) "+" /.
P.n I I

I d'—&—i . d'&n ~ (&0. P) —.—~,),
E(2~)3J

(4~R8) n+y3 n+y j,2 ())t,R) j,2 (p+)
X ~ ~ ~ (16)

V"+)' (E(R)' (k~R)',

with the condition that the momentum values must be
such that momentum is conserved.

Now let us impose the condition that the kinetic
energy available to the particles is small so that EQ((1
and k,R«1 for all i. Using the relation,

S„„(K),,K„;k), ,k,) =G/) "& & "d'r, ' d'$„.
J

exp( —iKg r)') exp( —ik, („')
v'l' v'I'

We neglect the possible mechanical and isotopic spin
dependence of 0& (r)' $~') and take an isotropic
angular distribution. Then from Kq. (11) we have

~( ' ~.')=«(R ') e(R ~—.'),
where C, determined from Kq. (12), is

G—(4~Ra) —(nay) /2

Typical integrals are of the form

i i(PR)
~(&)= d'/ exp( —Q. e)e(R—/) =4~R'

PR

where j)(pR) is the usual spherical Bessel function.

with the additional constraint that momentum be
conserved. Of course, one could certainly take the point
of view that in the Fermi model only the product
—,mG'R' is important. Thus if kR«1, then a two-
parameter model, the interaction model, reduces to a
one-parameter model, the Fermi model.

If we had made the reduction in terms of angular
momenta, the result would not have been as clear, but
since we take kR«1, it follows that only S waves will
contribute, and thus the matrix element is independent
of the momenta.

As pointed out in the introduction, in the case of
Ã —X annihilation, the Fermi model yields a surpris-
ingly large value for the interaction radius to give the
correct pion multiplicity. The above remarks show that
this is not surprising, for in i7—X annihilation, if we
chose R 1//(, we would have kR 1 to 7, and the
restriction M«1 would certainly not be satis6ed.
However, it is still possible to use a very crude approxi-
mation in the case of plane waves to arrive at a rough
idea of the interaction radius. We notice from Eq. (16)
that we are summing (or integrating) over a product of
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similar functions. One should expect that the main
contribution to the sum should occur when these
functions are all near their maximum values, i.e.,
kE 2. Thus we consider the average value of k in a
given process, k, and estimate E. In X—X annihila-
tions, we can write

&p = (k'+ p,')1=Ep/M,

where M is the experimental multiplicity. Considering
the relevant quantities, this gives R 0.7/)M. This
number does not include the effects of momentum
conservation or of the wave-function symmetrization,
and a somewhat better estimate leads to R 0.9/p.

III. APPLICATION TO NUCLEON-ANTINUCLEON
ANNIHILATION

A. Analysis in Terms of Angular Momenta

In this section we will treat the problem of multiple
meson production in X—g annihilations. In order to
accomplish this, it is convenient to use as our complete
set of states those which are eigenfunctions of the
energy and angular momenta. Ball and Chew' have
shown that only certain partial waves in the X—E
system annihilate to produce mesons, thus we wish to
impose the condition that the meson system form only
these angular momentum states. This is most easily
done by using angular-momentum eigenfunctions.

%e are interested in the scattered-wave amplitudes
for a system of p pions (we shall consider IC-particle
production later), and from Eq. (14) we have

S(» &,) =G "~ d'P» d'g, 4„(»)*(l»)

X4 „(»*(P,)
(2(p»R .2(pP) '*

Since we wish to use a complete set of angular mo-
mentum states, we take

(2k/) &

~„(~;)=I I j; (k;~,)I'«;""8;,~;)x ('),( D

which becomes, in the limit D —+ ~,
(2)"

k»'dk»" 4'~4
p~

x&(~p—»— ~~)Is'(» n.)I' (19)

Thus, in order to determine the probability for a state
of p pions, it is necessary to determine the S'(»)» . &)„).
However, before proceeding to that calculation, we
must first recognize that the pions are bosons and
symmetrize the wave functions. We accomplish this
approximately in the usual way by just including the
normalization factor. Using Eqs. (17) and (18), we find

�

err, (~, ~) &:
I8(g» "g„)=G:~

II j»(') (k'4) F«')""'*(8',4')x»""*(i)

+ $ ~ ~ ~ $( )
X (20)

(2M»R' ' ' 20&Q)

where X, is the number of times a particular state,
(klmP), occurs. This approximation has the effect of
neglecting possible cross terms in

t
S'

~

', but again since
we will always work with ratios we may assume that
this eGect is small.

Now consider 4($» $~). From Eq. (11) we have

ek»" P„)='CS(R—P»)" S(R—g,)
X F($» $„)I(vr), (11')

where F($» $„)gives the angular dependence and is
thus a superposition of angular momentum states.
Thus, let us write,

l'(4 4)= &&~ l'~ 4» hn) (21)

If we wish, we may also write

For the probability we have, from Eqs. (15) and (18),

I'„=P S(Zp —~»— —~,)IS(q» q,)l',
gg ~ ~ o gy

where x»s(" (i) is an isotopic-spin wave function, and D
is the radius of the normalization volume. Thus we
write

FJ (6 4) = 2' 4~ j(»)"i'(n).
j(1) ~ ~ ~ j(u)

Xl'~"J(»)" ~(n)(b "4)~ (22)

S(»»),)
)2k' 2k 'q'* (.

j»(*)(k~6)
I D&

~u;
x I'«')""'*(~' &t ')x»""*(i)

(2(p»R 2&p+) &

f 2k»p ~ ~ 2k p) 1.
I
S'(» "&„).

DI'

(17)

(18)

where I'q, (»)...,(» ($» („)is an eigenfunction of
J', M, j(1), , j(p) and p~ signifies sums" over
possible angular momenta leading to an angular mo-
mentum J. We can form I'J j(1) j{y) in the usual
way as

F»(») ~ ~ ~(n)(h 4)= Z (I~' j(1) j (P)
P (1) IJ»(u)

Xl j(1)" j(p),p(1) ") (p))

X 1' (»)"'"(4)" I' (»"'"'(4) (23)
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X (P &iz &z «» &(»".
J,M

X(J,M;/i l„Ii) /p; mi mi))

X ( P /) I(z)g I(z)
I I(z)

X(II; 1 1I1 1 Pi P))) (24)

where we have set

F&(i)" &(»(ki' 'k~)

G.
4'dS j ')(k't')&)(& —5') I (»)

( L(2p);E)l ~ )

Thus, from Eqs. (19) and (24), we find

2l I.
P =C'I —

I k,'dk, k 'dk b(F.p ~, ——~ )—u p u

J,M I,I(z) l(1) ~ ~ .l(y)
I
gqMI'

Equations (21), (22), and (23) allow us to express the
amount of various partial waves in the X—N system
contributing to the annihilation, the possible values of
the pion angular momenta, and their m-value contri-
butions. %e write the isotopic spin part in an analogous

way and obtain, after the angular and isotopic-spin
integration,

l rr, (&, .) ~
'

S'(q, q,) =CI
I F«»...«»(k, k„)

! )

from Eq. (26) we have

P„=(6/prR')" kiPdki k~'dk„/)(Ep —(pi — ~ —(p„)p

, II,P..)XZ' 2' IFi&i) ~ ~ .«»(ki "4)I', (2&)
J,r l(» ~ ~ ~ l(y) p!

where P'~, r means the sum over the states (J,I)
leading to annihilations.

This can be cast into a more convenient form
by considering summations of the l (1) . .l(p) on
Fi&»...)&»(ki k„)in Eq. (27). Since the integrals are
independent (except for the energy delta function) and
we integrate over all the momenta, we see that Ii is
invariant under such permutations. Thus for a partic-
ular selection of the l~, , /„,which we shall call the
set (/i /„), F gives the same contribution. Since
there are p!/P„(N„!)possible permutations, we have

IF«»" «»(ki' ' 'kn) I'

IF(«»- ~ «»! (ki "kn) I'-"II,P, !)

and thus arrive at

P„=(6/prP)" kipdki. .k„'dk„/')(Fp ppi . —(—p„)—

XZ E IF«(i)" &(»)(ki'''kn)l' (2g)
J,I eets

X
I
~~ &(i) ~ ~ ~ &( ) I

'
I
/'r"'

I

'
I
I/"" , - .i I

'

IIp(&p!)
x ' "

IFi(,)...i(„)(k," k,)l', (26)

B. Calculation of the Probabilities

In order to calculate the probabilities, it is con-
venient to investigate the properties of the quantities
F(«»...«»!(ki ~ k„).From the previous section we
know

where we have used the relation,

(J)M; /i. ./~I li l„mi m„)
Sl (1) ~ ~ ~ Ol(p)

X(J',M', /i l lli. l„mi m„)=Age 4g)(r .

~~~(~)" i(n) ~
= EiPdb

(2(p8 ' 2(pP)~ ~p

4'd4 j&(»(kib)

At large distances we take the E—X system to be a
plane wave; thus only M=O values will contribute.
Further, since we consider an averaging over the IV

states, we consider the A and 8 terms to be independent
of the various variables and set them equal to one.
Finally, we impose the results of the calculations of
Ball and Chew and take cJ and by to be one or zero
corresponding to whether a given I(I I(l state, (J,I), —
will or will not annihilate. The initial charge state, of
course, determines I,. Because of the normalization of
the angular functions, we take C'= (R'/3) ", and thus

x~ .(k.l,)e(~—4)" 0(~—4), (»')

and thus we have products of integrals of the form

~ksR

~ d~; ji&;)(k;~)~(~-~;)= I p ~i&')(—p;)dp'
4 p ~p.

I(.i(;) (k;Z)
(29)

The quantities E'«,&(k;I('.) have been plotted in Fig. 1
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independent of s, and we impose the condition

IO— f
ds Hg exp

p,B G~

However, we notice

I At(»; ltR)d»=At(pR). (33)
pB

dz Ht expl —(z—zt')'/ats]
")ca

f
dz H& exp( —z'/ats) =triHta~,

(kR)

FIG. 1. Zt(kR) vs M for l=0, 1, and 2.

for /=0, 1, 2. From Eqs. (28) and (29), we can write

P„=(6/tr) "RG '" d(krR). . .

X d(kg)6(EpR —torR — . tn„R)—
ICt (r)'(krR) ICt(~)'(k„R)xg'P'

&.»«t 2(ogR(krR)' 2(o,R(k,R)'

This becomes, " after introduction of the variable
»,2 k .2R2+psR2

and thus, from Eq. (33), we obtain

1 A, (pR)
a, (pR) =

g~ Ht(pR)

where A&(pR) is determined by measuring the area
under the curves in Fig. 2 with a planimeter, and we
take

Ht(pR)=max(At(z; pR)),

which occurs for z=zt'. Thus Ht(pR), zt'(pR), and
a&(&R) are determined, and A &(z; pR) is represented by
Gaussian forms. To show that this approximation is
not a bad one, we have plotted the appropriate Gaussian
for /=0 and /=3 in Fig. 2(a) as dashed curves.

0.06—

0.05—

P,= (6/tr) "G '& P' P~ ~ dz,
J,r sets

0.04—

" O.O3-
(a)

where

X) d»„Il(EpR —zr — —»,)
pR

XAt&r&(»r ', pR) ' ' 'Att ) (»; pR), (30)

0.O2—
I
I
I

o.ot —11

A, (,)(»;; pR)=
%(')'L(z"—p'R') 'j

2E»,'—psR'j-:
(31) 0.06—

0.05

j)sQ

In Figs. 2(a) and 2(b) we have plotted A t(»; pR) for
R=1/p and R=1/2p, respectively, for various values
of l.

Although it is possible to perform the integrations in
Eq. (30) explicitly, it is more convenient to approximate
the functions A«,&(z;; pR) by Gaussians. Thus, let us
take

0.04—

CU

0.03
~1

h4

0.02—

O.OI—

(b)

A t(»; ltR) =Ht exp{—L(»—z,')/at/'}, (32) I

0 I 2 3 4 5 6 7 8 9 IO

where Ht (pR), zt'(pR), and ut (pR) are constants

"Again, since we will work with ratios, we have dropped a
factor of R.

Fro. 2. (a) At(s, 1) vs s for l=0, 1, 2, and 3 (solid curve) with
comparison to Gaussian approximation for L=O and 3 {dashed
curve). (b) At(s, —,') vs s for l =0, 1, and 2.
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From Eqs. (30) and (32) we thus write

-P.=(6/~)"(G ')'2'2'1(E&)uR'/r" 4)~ (34)
J,I sets

TAsz.E II. Table of selection rules. '

where

&(EoR, 11R; /&. /„)

dgI ~ ~ ~

p QO

ds„3(EoR—sr — ~ —s„)
"/z

S
eveIl P

D
odd' S

P
D

lS 1

18P10

81S 1

3P 0

8S 1

18P10 81Pll
8D 0

18S11
1'P10 8'Pl'
8D 0

1 P2
38D20 11D20

3P 1

18D20 1D20

8'D8'

8D 1

Xg H~~;& exp

This integral can be well approximated (see Appendix)
and gives

I(EoR,pR; /r /„)=
A~(r) (~R) A~(n) (~R)

Xexp—
EEp—sg —. .—s 2-

u

ar'+ +a ' (a '+ +a ')1

TAsLz I. Parameters for the Gaussian approximation.

Ag(1)

0.0939
0.0706
0.0520
0.0403
0.0320
0.0258
0.0225
0.0210
0.0205
0.0205

A )(1/2)

0.1030
0.0746
0.0550
0.0420
0.0325
0.0258
0.0225
0.0210
0.0205
0.0205

R= 1/II,

H((1)

0.0533
0.0277
0.0170
0.0130
0.0090
0.0063
0.0046
0.0037
0.0035
0.0035

R = 1/2p
ai(1/2)
0.0533
0.0277
0.0170
0.0130
0.0090
0.0063
0.0046
0.0037
0.0035
0.0035

a((1)

0.992
1.438
1.725
1.750
2.007
2.310
2.753
3.205
3.302
3.302

a((1/2)

1.085
1.513
1.812
1.901
2.029
2.310
2.753
3.205
3.302
3.302

1.82
3.10
4.62
5.80
7.07
8.20
9.40

10.50
11.70
12.90

s/'(1/2)

1.60
3.05
4.60
5.80
7.07
8.20
9.40

10.50
11.70
12.90

Table I lists the appropriate quantities for R= 1/p and
1/2p.

The value of I(EoR,IJR; /r /~) was calculated on
the IBM-650 computer for various values of / for
R=1/(3p), 1/(2p), 3/(4y), and 1/p. Further, these
calculations were done for an incident antiproton with
a laboratory kinetic energy of 200 Mev, and all following
results are for this energy.

To arrive at the probabilities, we must impose the
various conservation laws. For a given J and I of the
system, only certain sets of / values are allowed, these
l values being determined by the selection rules. The

& The notation employed for 18L+2' is as follows: S is the spin state;
I, the isotopic spin state; L, the orbital angular momentum; T, the trans-
mission coefFicient; J, the total angular momentum.

& For m =2, the diagonal terms are removed.
& For m =3, 33P0 does not contribute.

TAsLz III. Probabilities for finding a certain number, p, of pions.

P„,R = 1/(2p) P„, R3/(4p) P~, R=1/p

2
3
4
5
6
7
8
9

10

0.024
0.151
0,260
0.220
0.174
0.091
0.046
0.018
0.008

0.016
0.221
0.213
0.208
0.179
0.100
0.046
0.014
0.004

0.014
0.236
0.190
0.235
0.144
0.104
0.055
0.017
0.005

"Charles Goebel, Phys. Rev. 103, 258 (1956).' T. D. Lee and C. N. Yang, Nuovo cimento 3, 749 (1956)."J.Lepore and R. N. Stuart, Phys. Rev. 94, 1724 (1954);
see also Richard H. Milburn, Revs. Modern Phys. 27, 1 (1955).

selection rules have been discussed by many authors' '8

and are given in Table II. Further, as pointed out
earlier, Ball and Chew have shown that not all combi-
nations and values of J and I will contribute to the
annihilation. In Table II only those states with a
transmission codBcient of one will contribute. Using
the results from the IBM 650 and the selection rules
as modified by Ball and Chew, we can now calculate
the probabilities. How the states are selected will
depend on the initial /It —X state. The following results
are for the case of p —p annihilations. The probabilities
are given in Table III for the cases when R=1/(2p),
3/(4p), and 1/p, where G is adjusted to give a multi-
plicity of 4.90.

At this point no mention of momentum conservation
has been made, but the quantities in Table III include
it in an approximate way. Fermi has calculated the
statistical weight for e outgoing particles without
momentum conservation, and Lepore and Stuart have
calculated the same quantity with momentum conser-
vation. " Call these S F and S„Ls, respectively. By
including momentum conservation, the possible final
states are restricted, and this, of course, leads to a
reduction of the statistical weight. Although the
statistical weights have little meaning in themselves,
their ratio, S„Ls/S„F,should give the fractional reduc-
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I I I I I We find
22=1)

E2' ——2.45,

E.24= 4.26,

E2' ——6.19,

E '=8.72,

E27=11.31,
R28 14 09

E '= 17.14,

E 'o=20 28

I I I

0 2 4 6
I I I I I I

8 I0 I2 I4 !6 !8 20

G
2

F1G. 3. Multiplicity vs G' for constant R values.

tion of the statistical weight in an absolute sense.
Since the probabilities are proportional to the statistical
weights, this ratio should give a good approximate
evaluation of the reduction of the probability ratios.
Even though the Fermi model is not as general as the
present model, the fractional reduction produced should
be compatible with the spirit of the present calculation.

In order to calculate this fractional reduction, it is
convenient to use the explicit formulas of Lepore and
Stuart which apply only to extremely relativistic
particles. Of course, in the case of annihilation, all of
the pions are not relativistic, but on the other hand,
the eGect is most pronounced for small numbers of
pions, in which case the particles are at least relativistic.
Further for larger multiplicities, the probabilities are
small and do not greatly inQuence the value of the
multiplicity. The explicit formulas are

and

gn —lan —1

S„F=
m'"(3e —1)!

0" '(4e—4)!E'" '

x'"—'2'"—4(2e—1)!(2e—2)!(3n —4)!

According to the previous remarks, we write,

SnLspwpwo )
SnF

where Pnw and P„"'represent the probability for
finding e particles with and without including mo-
mentum conservation, respectively. It is convenient to
work with

C. Multiplicity

As seen in Sec. IIIB, the probabilities depend on two
parameters, E. and G, which in Table III have been
adjusted to give a multiplicity of 4.9. In order for the
model to have any physical meaning, it should satisfy
at least two sets of data. In the case of p —p annihila-
tion, these two sets are taken to be the pion multiplicity
and energy spectra.

The total pion multiplicity, M, is given as

N Pn
3E(G,E)= P e

n=2 p2

where E is the maximum number of pions that can be
produced compatible with the energy, Eo. In Fig. 3,
the results of the calculations are given by plotting the
multiplicity against 62 for curves of constant E.

Since only charged annihilation events are measured
experimentally, it is of interest to give probabilities for
various numbers of prongs and for the charged, 3E+,
and uncharged, M', multiplicity as well as the total
multiplicity. In Table IV we give the results for the
case when &=4.9 with I|!=1/p and 1/(2p), where G is
adjusted appropriately. Table IV A gives the proba-
bility of finding a given number of prongs resulting
from an annihilation with a certain total number of
final particles, e. Table IV B gives the same probability
weighted to give the probability of finding a certain
total number of final particles. At the bottom of
Table IVB, we find the probabilities for finding a
particular number of prongs. The probabilities given
for various numbers of prongs are in agreement with
the present experimental results, although the two-
prong annihilation events seem to be somewhat high.
The fractions of charged particles resulting from a
particular mode are given in Table IV C. These
fractions lead to the final result,
for Z= 1/(2p),

M+= 3.24, 3P= 1.66,

and for R= 1/p,

where

pwpwo
2

—E"
)p woP2"

SnLS S2F
g n

SnF S2LS

3E+=3.21, 3P= 1.69.

This is in agreement with the present experimental
results. Given the total number of charged particles
resulting from a group of annihilations, Table IV D
gives the fraction contributed by annihilations resulting
in e final particles. These are to be compared with the
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TABLE IV. Probabilities for various prong multiplicities.

Table IV A.' Probabilities for given numbers of prongs for a total of rs Anal particles.

0 2 6 8 10

2
3
4
5
6
7
8
9

10

0.167
0.100
0.033
0.014
0.005
0.002

0
0
0

0.833
0.900
0.567
0.338
0.176
0.086
0.10

0
0

0
0

0.400
0.648
0.635
0.503
0.10
0.05

0

0
0
0
0

0.184
0.410
0.700
0.500
0.20

0
0
0
0
0
0

0.10
0.450
0.60

0
0
0
0
0
0
0
0

0.20

Table IV B. Probability

0 2

for given numbers of prongs

2=1/(2p)
4 6 8

for a total of e particles, weighted according to the probabilities of n.

2=1/p,
10 10

2
3

5
6
7
8
9

10
Total

0.004 0.020
0.015 0.136
0.009 0.147
0.003 0.074
0.001 0.031

0 0.008
0 0.005
0 0
0 0

0.032 0.421

0 0 0
0 0 0

0.104 0 0
0.143 0 0
0.110 0.032 0
0.046 0.037 0
0.005 0.032 0.005
0.001 0.009 0.008

0 0.001 0.005
0.409 0.111 0.018

0
0
0
0
0
0
0
0

0.001
0.001

0.002 0.012 0 0 0 0
0.024 0.212 0 0 0 0
0.006 0.108 0.076 0 0 0
0.003 0.079 0.152 0 0 0
0.001 0.025 0.091 0.026 0 0

0 0.009 0.052 0.043 0 0
0 0.006 0.006 0.037 0.006 0
0 0 0.001 0.009 0.007 0
0 0 0 0.001 0.003 0.001

0.036 0.451 0.378 0.116 0.016 0.001

Table IV C. Fractions of charged particles from particular modes.

R = t/(2p)
2 4 6 8 10 2 4

R=1/p
6 8 10

2
3

5
6
7
8
9

10
Total

0.020 0
0.091 0
0.074 0.104
0.030 0.115
0.010 0.073
0.002 0.026
0.001 0.003

0 0
0 0

0.228 0.321

0 0
0 0
0 0
0 0

0.032 0
0.032 0
0.024 0.005
0.006 0.008
0.001 0.004
0.095 0.017

0
0
0
0
0
0
0
0

0.001
0.001

0.012 0
0.141 0
0.054 0.076
0.032 0.122
0.008 0.060
0.003 0.030
0.002 0.003

0 0
0 0

0.252 0.291

0 0
0 0
0 0
0 0

0.026 0
0.037 0
0.028 0
0.006 0.007

0 0
0.097 0.015

Table IV D. Fractions of
with given values e

charged particles contributed by modes
of total numbers of Gnal particles.

&=&/(2) ) R= 1/p

spectra can also be described, and leads to definite
values of G and R.

The energy distribution of the pions is
2
3
4
5
6
7
8
9

10

0.030
0.138
0.269
0.219
0.174
0.091
0.050
0.021
0,009

0.018
0.216
0.198
0.236
0.144
0.107
0.060
0.020
0

probabilities given in Sec. IIIB, where a small diGerence
is observed.

D. Energy Spectra

We have seen in Sec. IIIC that it is possible to 6t
the experimental data for the pion multiplicity by an
appropriate choice of both G and R. In this section we
shall show that the data available on the energy

, a I am indebted to B. Desai, Lawrence Radiation Laboratory, University
of California, Berkeley, for supplying these numbers. Those for rs =8, 9,
and 10 are estimates.

P,(EOR,pR; sg) ds) ——(6/s) &G '& P'
J,I l(1) ~ ~ ~ l(y) g g 1

)&2)())(sg, pR)I(EOR sg,IJR; lm ~ l„)ds—g. (35)

We have seen from Fig. 2 that A «n (s&, pR) is effectively
zero except in a given region; thus as an approximation
we take

I(EOR—s,) pR) l, . l~)~I(EOR s~') pR; lm l„)—
This allows us to calculate these quantities on the IBM-
650 computer in exactly the same way as was done for
the actual probabilities. In this case we obtain the
energy spectra as a superposition of the energy depend-
ences of the various angular momentum functions. The
coeScients are determined primarily by the values of
the I(EOR—s)', pR; lm l~) and by the fact that we
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Bx lO
l j ) J l

2x lO&

R-"~, G=6,0
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T~(Mev)

FIG. 4. Energy spectra as functions of the barycentric pion
kinetic energy for 8=1/p, , 3/(4p), 1/(2y), with G values chosen
to give a multiplicity of 4.9.

P (Ep/2fk, —,'; kp) dkp

1=—
t 7.59A p(; —',)/2. 29A (;—',)

2p
+0.27A s (kp; —,')+0.01A p (kp; —',)$dkp,

P(3Ep/4fj, s4; kp)dkp

3=—L5.58A p (kp; —,')14.16A, (kp; —,')+2.14A, (kp; —,')
4p,

+0.69A p (kp; —,s)+0.11A4 (kp; ss) gdkp,
and

1
P (Ep/p 1; kp)dkp =—$4.41Ap(kp; 1)+5.23A r (kp; 1)

p

+3.22A s(kp; 1)+1.09Ap(kp; 1)+0.17A4(kp; 1)]dkp,

which are normalized asf P(EpR, fkR; kp)dkd= 1.
These distributions are to be compared with the

recent experimental data of Horwitz et al. ,
' Agnew

et al. ,
"and Chamberlain et a/. ' in Fig. 5. Although the

experimental data have a range in incident energy of
from 0 to 500 Mev, the fractional change in the total
energy in the barycentric system is small, and it is

0 N. Horwitz, D. Miller, J. Murray, and R. Tripp, Phys. Rev.
115, 472 (1959)."L. E. Agnew, Jr., T. ElioG, W. B. Fowler, R. L. Lander,
W. M. Powell, E. Segre, H. M. Steiner, H. S. White, C. Wiegand,
and T. Ypsilantis, Phys. Rev. 118, 1371 (1960).

The resulting kinetic-energy distributions, P(EpR,
fkR; kp), are plotted in Fig. 4 for R=1/(2y), 3/(4ktk),
and 1/p. The calculations become quite tedious for
R)3/(4p) and the curve for R=1/fk is estimated by
assuming that the increase in higher angular momen-
tum states is linear. Although this is not correct, the
curve for R= 1/p, should not be too different from that
calculated explicitly. For the total spectra, the actual
contributions are

reasonable to compare our calculations with their data.
It should be pointed out that the data presented are
the charged-pion spectra, while the curves in Fig. 4 are
for both charged and uncharged pions. However, as
mentioned in Sec. IIIC, the probabilities for charged
and uncharged pions do not differ appreciably, and thus,
within the framework of the present model, we can
expect their spectra to be essentially the same. The
data of Chamberlain e) al. include only 4- and 6-prong
events, but the effect of the 2-prong events should be
small, just raising slightly the intermediate section of
the histogram (300 to 600 Mev). The comparison shows
that the results of the choice R=1/p give a good
representation of the data, particularly for those of
Chamberlain et a/. , where the statistics are best.

It is interesting to note, however, that the character-
istic feature of the lower energy data is found in the
height of the distribution at the most probable kinetic
energy 175 Mev. If this has statistical significance, it
can possibly be related to the selection rules in the
angular momentum states. It has been pointed out that
for annihilations at rest the predominant angular
momentum states contributing are S or P."Thus we
should expect a relative increase in S- and P-state
pions which will have the effect in the theoretical
curves of raising the maximum while reducing the
intermediate and tail regions.

IV. CONCLUSIONS

As pointed out in the introduction, the nucleon-
antinucleon interaction shows two primary effects, viz. ,
an "anomalously" large total cross section and pion
multiplicity. However, the data on the total and elastic
cross sections can be understood, as shown by the work
of Ball and Chew, ' in much the same way as the
nucleon-nucleon interaction in the energy range where
the use of the V(KB approximation is justiled. The
present paper shows that it is also possible to under-
stand the data available concerning the pion multi-
plicity as well as the data concerning the energy spectra
of the emitted pions, while still maintaining that the
interaction takes place in a volume characterized by a
radius of one pion Compton wavelength. This is
accomplished by making two physical assumptions.
The 6rst of these is that only those partial waves with
a transmission coeKcient of one, as obtained from the
results of the calculations of Ball and Chew, will

contribute to the production of pions. This has the
effect of restricting the number of possible initial states
as seen in Table II. The other consists of including,
in an approximate way, the momentum dependence of
the matrix elements involved in the annihilation
reaction. This momentum dependence strongly inQu-

ences the probability of 6nding a particular number of
pions with assigned values of the angular momentum,

"T.B.Day, G. A, Snow, and J. Sucher, Phys. Rev. Letters 3,
61 |',1959).
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and thus is the essential feature in obtaining the
theoretical energy spectra.

In connection with these remarks it is of some
interest to estimate the relative importance of these two
physical characteristics, viz. , the matrix element is
momentum-dependent, and only certain partial waves
are annihilated. If we ignore the momentum depend-
ence, then in accordance with the remarks in Sec. II
we have a one-parameter model with an eRective
volume of 0(R,G) =G'( fz R'). However, using the
curves in Fig. 3, we see that this eRective volume
varies; in fact, to produce a multiplicity of 4.9, we have
for 0(R,G)

0(1/p, 6) =60o, 0(1/2t1, ,12)= 1.30o,

0(3/4ti, ,g) =4.20p, 0(1/3p, ,19)=0.40p,

where Qp= ~sz (1/tt)'. lt seems reasonable to assume that
these differences are primarily due to the restrictions

I I I I I

0 IOQ 200 500 400 500 600 700 800 900 l000 IIOO l250
T&(Mev)

Fro. S. (a) Spectral data of Horwitz et pt."; 6 events at an
average incident energy of 50 Mev and 75 events at rest. (b}
Spectral data of Agnew et al.21; 100 events at an average incident
energy of 80 Mev and 30 events at rest. (c) Four- and six-prong
spectral data of Chamberlain et al. ', 450 events at an average
incident energy of 450 Mev and essentially no events at rest.

on the annihilating partial waves, since the momentum
dependence has been removed. However, using the
Fermi model to give a multiplicity of approximately
five, we must have 0 1000. Because we have taken
into account approximately the eRect of the partial
waves, it appears that the discrepancy between 10QO

and the figures given above is due to the inclusion of
the momentum dependence of the matrix element.
Therefore, we see that for R 1/tt the two physical
characteristics both produce about the same eRect, i.e.,
to reduce the effective volume, but for R~&3/(4tt) the
restrictions on the annihilating partial waves become
the predominant feature.

There remain two problems in meson-producing
annihilations which should be investigated. Recently,
measurements have been made on the angular corre-
lation of the pions; in particular, the angles between
the emitted pions have been measured in two charge
combinations. " On the basis of momentum conser-
vation, it is possible to obtain the angular distribution
of these angles, neglecting the charges. In the pairing
by unlike charges one finds approximate agreement
with the theoretical curves, but for the like charges a
marked disagreement appears. It has been suggested
that this phenomena may be the result of a final-state
pion-pion interaction, but it has also been pointed out
that the eRect of the Bose statistics should not be
overlooked. This question is being investigated in order
to determine whether or not there is evidence for a m

—v
interaction. Our calculations do not include such an
eRect, but one should expect that even a 6nal-state
interaction would not change the results in Sec. III in
an essential way since the correlation functions given
by Kalogeropoulos'4 are not very diRerent for the two
charge combinations.

The second problem to be investigated is that of
strange-particle production. The present experimental
data show that approximately 5% of the annihilations
involve E particles, this factor depending slightly on
the incident energy. Although the interaction model
can treat E-particle production, the results would not
be de6nitive and have not been treated in this paper.
At present, essentially no information is available
concerning the energy spectra of pions produced with
E particles in annihilation. Thus we have only one
piece of data to Q.t two parameters. If it were possible
to relate the coupling strength, t, to the various
coupling constants in field theory, then it would be
possible to estimate the eRect on the basis of present
data. For example, if one were to assume some relation
between the 6 values and the field-theory coupling
constants, and that the form of the x—E and E—Ã
interactions were the same, then G~ would be approxi-

"G. Goldhaber, W. B. Fowler, S. Goldhaber, T. F. Hoang,
T. E. Kalogeropoulos, and W. M. Powell, Phys. Rev. Letters 3,
181 (1959).

~Theordore Kalogeropoulos, thesis, University of California
Radiation Laboratory Report UCRL-8677, March 6, 1959
(unpublished).
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mately known, and the radius for E-particle production
would then be chosen to agree with the experimental
data.

As indicated in Sec. II, the present model can be
used to treat any production problem, and it may be of
some interest to examine the data available on pion
production in X—E collisions. It is known that the
Fermi model does not give remarkably good agreement
with the experimental data, and it is to be hoped that

the same parameters would satisfy the X—E data as
have satisfied the E g—data.
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We wish to evaluate

I=I(EoR,yR;/1 . i„)=

We begin by noticing
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which is the desired result.


