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THE ELECTROMAGNETIC VECTORS.

BY H. BATEMA¹

$ z. An electromagnetic field in the ether is usually specified by the
values at each point and at each instant of two vectors E and H, but a
more general specification is obtained by using the two vectors

LQ=II ——(v XZ),
C

where v is an arbitrary velocity representing at each point and at each
instant the velocity of an imaginary recording instrument and c is the
velocity of light.

These vectors are of fundamental importance in electromagnetic theory
for F is usually supposed to represent the force which the field would
exert on a minute unit electric charge moving with velocity v and Q
may be supposed to represent the force which the field would exert on a
minute unit magnetic charge if such a thing could exist and move with
velocity v.

On account of the importance of these vectors I and Q it will be
worth while to get a clear conception of the way in which they vary
when the field remains constant and v varies,

Let lines OZ, OH, be drawn to represent the instantaneous values of
8 and H at any point in magnitude and direction and let circles of radii
H and Z and center 0 be drawn in planes at right angles to OH and OB
respectively. If v is less than c the vector F is represented in magnitude
and direction by the line FZ where F is some point within the first circle
while Q is represented by QII where Q is some point within the second
circle. When v is greater than c the same construction may be used but
the points Ii and Q may now lie outside their respective circles.

It is clear from this construction that F is a minimum when F is parallel
to II and that Q is a minimum when Q is parallel to Z.

When E and H are perpendicular and E is greater than H the point
F. lies in the plane of the first circle and outside the circle, consequently
when v is less than c the direction of F lies within a certain angle bounded
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by two straight lines in the directions of s& and —s2 where s& and s&

are the two real unit vectors s which satisfy the relations'

Z + (s X H) = ks Z s = k.

The vector Q can under the same conditions take any direction in a plane
perpendicular to B.

In the case of the field of a moving electric pole one of the two vectors
s is in the direction of the radius from the effective position of the pole,
that is the point from which a disturbance travelling with velocity c
must start in order to reach the point of observation 0 at time t.

When the electric pole moves with uniform velocity along a straight
line the second vector s is in the direction of the radius to that position
of the pole which can be reached by a disturbance starting from 0 at
time t.

In the general case when E and H are not necessarily perpendicular,
the directions of F and Q for v ( c are confined to certain quadric cones.
If Z is greater than H the angle of Q's cone is greater than that of F's.
These two cones have the same focal lines which are in the direction of
the two real unit vectors' s which satisfy the equations (2).

Relative to one of these vectors s the field vectors Z and H may be
resolved into longitudinal components Z s and H. s parallel to s and
transverse components represented by the vectors Z —(Z s)s and
H —(H s)s perpendicular to s. These latter components are per-

pendicular to one another and equal in magnitude as may be seen from
the relations

(Z H) = (Z s)(H s)

E' —(Z s)' = H' —(H s)'
(3)

(e)

which are easily derived from (2).
We may also divide up the energy in the field as follows:

Longitudinal electric energy i~ (Z s)',
Longitudinal magnetic energy i~ (H s)',
Transverse electric energy i~E' ——,'(Z s)',
Transverse magnetic energy —,'H' —

2 (H s)'.
It is clear from equation (4) that the transverse electric energy is

equal to the transverse magnetic energy and that the Lagrangian function
i~(B' —H') may be supposed to arise entirely from the longitudinal part

' They also satisfy the relations embodied in the vector equation

a —(& y z) = s(s a).
' These vectors have been introduced for different purposes on previous occasions. Proc.

London Math. Soc., Ser. 2, Vol. 8, xgxo, p. 469; Vol. xo, xgxx, pp. 7, 96; Mess. of Math. ,

Vol. x4, x9x 5, p. x x2 ~
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of the field. It should be noticed that the longitudinal part of the 6eld
is conjugate' to the transverse part; in other words the invariants (for
transformations of the theory of relativity) E' —H' and (E H) for the
total 6eld are the sums of the corresponding invariants for the longitudinal
and transverse parts. It should also be noticed that the energy in the
total field is the sum of the energies of the longitudinal and transverse
parts, consequently all the principal characteristics of the two component
6elds are additive.

The transverse 6eld evidently has the characteristics of a pure radiant
field or self conjugate field and in the case of an electric pole which at one
instant has no velocity but a finite acceleration the transverse field rela-
tive to the vector s, which is in the direction of the radius vector from the
pole, is the so-called wave of acceleration while the longitudinal field is

the electrostatic field. When the electric pole has a 6nite velocity this
description fails for the longitudinal field is the electric field represented

by the radial component of the electric vector, while part of the trans-
verse field depends on the velocity.

It is interesting to notice that the resolution of the energy into longi-

tudinal and transverse energies is the same as far as the magnitudes are
concerned whichever vector of type s is used. It should also be noticed
that the total longitudinal energy

I:(E's)2 + x(H's)2 = ~[(E2 H2)2 + 4(E'H)2]1 2 (s)
is an invariant and is proportional in fact to Cunningham's principal
stress. The longitudinal 6eld disappears entirely when

E' —H' = o and (E H) = o

that is, in the case of a pure radiant field or self-conjugate 6eld. The
two vectors of type s then coincide in direction with Poynting's vector.

It should be noticed that v = cs is a special velocity for which both
Ji and Q are parallel to v. The different possible directions of a velocity
v such that F is parallel to v are of some interest and may be found as
follows:

When F is parallel to v the vector v && E is perpendicular to F and is

therefore perpendicular to v g H. This means that the direction of v

lies on a quadric cone which is the locus of a line OL for which the planes

EOL and HOL are perpendicular. This cone has the lines OE, OH in

one of its principal planes and has its circular sections perpendicular to
them. It is clear that this cone is also the locus of directions for which

Q can be parallel to v. If v and w have the same direction and v is a
' For the definition of conjugate fields see Bull. Amer. Math. Soc„Vol. aI, March, I9I5.

P &99
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velocity for which F is parallel to v while w is a velocity for which Q is
parallel to m, v and m are connected by the relation vm = c', consequently
they cannot both be less than c and they cannot be equal unless they are
both equal to c.

As OI moves round the cone the velocity v takes all values between 0
and ~ twice over and so for any velocity there are generally two direc-
tions for which either Ii or Q is in the direction of v. Two generators of
this cone are, of course, in the direction of the two real unit vectors s
which satisfy equations (2). The directions of v for which Ii is per-
pendicular to v evidently lie in a plane perpendicular to Z, similarly the
directions of v for which Q is perpendicular to v lie in a plane perpendicular
to H.

The directions of v for which F and Q are in the same direction are of
some interest as these velocities v are possible velocities of the ether in
the theory of E. Cunningham. ' The directions are confined to two planes,
one of which contains the two real unit vectors of type s and Poynting's
vector while the other contains the two imaginary vectors of type s
and Poynting's vector. These planes are in fact the two real planes
through the real and imaginary focal lines of the two cones' already
mentioned which limit the directions of Ii and Q respectively for v ( c.
As we have remarked elsewhere, ' the extremity of a line OU representing
the vector v lies on one of two straight lines which are polar lines with
regard to a sphere center 0 and radius c, these lines intersect at right
angles the line through 0 in the direction of Poynting's vector.

The lines IiZ representing the corresponding vectors Ii are such that Ii

lies on one of two straight l~es parallel to Poynting's vector. These
lines may be obtained by drawing through Z two planes parallel to the
two planes previously mentioned and finding where these planes meet the
plane through 0 perpendicular to II. There is a similar construction
for the corresponding vectors Q.

When Q is perpendicular to t we have an equation

(c' —v')(Z H) = —(v E)(v H),
for v which indicates that the extremity of a line OU representing this
velocity lies on a quadric surface having the cone swept out by OI as
asymptotic. cone. The region for which v is less than c is bounded by
the two planes through 0 perpendicular to B and H and consequently

by the two diametral circular sections of the quadric. If we are given the
direction of Ii the corresponding value of v for which Q is perpendicular

' For this remark see S. B.McLaren, Phil. Mag. , a6, xgx3, p. 636.
~ These cones are supposed to have their vertices at O.
' Phil. Mag. , 34, xgx7, p. 4og; Mass. of Math. , x4, xyxS, p. xxo.
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to F is uniquely determined except in the case when 0V is in the plane
containing OH and the line through 0 in the direction of Poynting's
vector. The correspondence between the points F and Q when F is

perpendicular to Q is a one to one quadratic transformation. The point
at infinity in the direction of Poynting's vector and the points in which
the plane OEII meets the circle are the singular points in each plane.
This completes the description of the geometrical properties of an electro-
magnetic field which is supposed to be explored by a crowd of imaginary
observers moving in an arbitrary manner.

We have been acting on the assumption that F and Q are the quanti-
ties that are observed directly and that Z and 11are secondary quantities
which may be derived from them. The quantities Z and H are usually
regarded as the primary quantities on account of the simplicity of the
field equations which they satisfy but it should be noticed that the
electromagnetic laws can also be expressed directly in terms of F and Q.
This is a known result but it may be worth while to recall it at this point.

) 2. In the year r9o8 two very ™portantpapers on electromagnetic
theory were published. One of these was Minkowski's paper on the
electrodynamical equations for moving bodies, ' a paper which soon
influenced mathematical thought very considerably and received world
wide attention. The other paper was by Mr. Richard Hargreaves, of
Southport, England, and was entitled "Integral forms and their connec-
tion with physical equations. " This paper which is perhaps the more
important of the two, contains two new presentations of the principles
of electromagnetism in terms of space-time integrals. This at once
places the time coordinate on the same level as the other coordinates and

suggests the idea of space-time vectors just as in Minkowski's work.
The chief importance of Mr. Hargreaves' work lies, however, in the fact
that it throws light at once upon the nature of the solutions of the electro-
magnetic equations and that the principles are presented in a form which
is independent of the choice of the space and time coordinates. The
last circumstance enables one to obtain the transformations of the theory
of relativity in a simple and natural manner and makes it easy to obtain
the invariants by a simple application of the methods of the absolute
calculus of Ricci and Levi Civita. a The first two theorems which are
usually written in the form

~ H. Minkowski, Gott. Nachr. , I908.
~ R. Hargreaves, Cambr. Phil. Trans. , Vol. 2x, x9o8, p. xo7. Some interesting develop-

ments and applications of Hargreaves' theorems have been made in an enthusiastic way by
M. de Donder in Belgium, Bull. de 1'Acad. roy. de Belgique (Classe des Sciences), I9o9, p. 66;
x9II, P. 3; I9I2, P. 3.

' H. Bateman, Proc. London Math. Soc., Vol. 8, x9xo, p. 223.
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ff [E,d(y, s) + Eg(z, x) + E,d(x, y) —cH,d(x, t)

—cH„d(y, t) —cH,d(s, t)]

= ffj [pd(x, y, s) —pw, d(y, s, t) —pw„d(s, x, t) —pw, d(x, y, t)]

O (H,d(y, z) + H„d(z, x) + H,d(x, y) + cE,d(x, t)

+ cE„d(y, t) + cE,d(z, t)] = o

indicate the invariance of the electromagnetic equations under conditions
in which the integrands in the integrals are invariants. Now the first
integral certainly vanishes when the moving surface of integration is
made up of moving lines of electric force' and this indicates the invariance
of moving lines of electric force under the transformations of the theory
of relativity. This theorem is true for all transformations of coordinates
when the ideas of general relativity are adopted and the vectors in the
second of the two equations are not assumed to be the same as in the first.

A moving line of electric force thus assumes the form of a definite

physical entity when we adopt the view that invariants are symbols for
physical entities which are independent of the measuring apparatus or
method of observation.

We have already shown that Mr. Hargreaves' theorems can be pre-
sented in a form in which ordinary surface and volume integrals are used'

and as this gives the desired expression of the electromagnetic laws in

terms of the vectors F and Q the results will be quoted here in vector
notation.

Let us assume that throughout a certain region of space a time is
associated with each point in space by means of a relation of type
t = f(x, y, z), where f is a uniform function. This time may be supposed
to be the time at which an observation is made at the point in question.
We shall suppose, moreover, that the velocity of the observer or observing
instrument is determined by the equation

V = G26,

then with the notation of $ t, we have the two theorems

I
F„do = p t ——(v w) dr,

G2

Q„do =o,

where do. denotes an element of surface, dr an element of volume, the
suffix n denotes that the normal component of the vector is taken, p

~ Phil. Mag. , Vol. 34, IQI4, p. 405.
' See last reference but one.
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denotes the, -volume density of electricity and pm the convection current.
In these theorems the surface integrals are supposed to be taken over a
closed surface and the volume integral over the volume enclosed by this
surface. In the ether of course the volume integral disappears and we
have

The equation (8) may be regarded as a generalization of Gauss' theorem
and may be assumed to hold whether the behavior of the quantities
involved permits an application of the ordinary form of Green's theorem
or not. ' Calling F„do. the flux across the element of surface do. the
theorem may be interpreted to mean that the flux across a closed surface
is equal to the charge inside. This, of course, is in a generalized sense,
for it must be remembered that quantities are measured at different
points of space at different times. Since the flux across a surface made

up of moving lines of electric force is zero we may conclude that the
flux across a cross section of a tube made up of moving lines of electric
force is constant along the tube provided there is no electricity within
the tube between the two sections under consideration at the times
specified by the law of observation t = f(x, y, s). We must generally
assume that observations are made throughout a region of space by ~'
observers. This is necessary for instance if the observations are to be
simultaneous but in some cases it is convenient to assume that sets of
observations are made by ao' observers travelling along specified paths.
In particular, if the observers are supposed to travel along straight
lines with the velocity of light the velocity v may represent the velocity
of the observer and the time t = f(x, y, s) the time at which he reaches
the point (x, y, s).

Let us take the case in which v is at each point in the direction of one
of the unit vectors s in an electromagnetic field and that sets of observa-
tions are made by imaginary observers who travel along straight lines

with the velocity of light. The vectors F and Q then represent the
longitudinal part of the field and the electromagnetic laws give us the
properties of this part of the field alone. Thus if the field is that of a
moving electric pole and the observers are supposed to start from a
particular position of this pole and travel away from it with the velocity
of light our theorems enable us to study the properties of the field which
is left when the transverse wave is subtracted from the total field. In
other words our observers do not record the effects of the transverse
wave because they travel with it at the speed of light.

~ In this way we may avoid the difhculty that occurs on p. ax of my book "Electrical and
Optical Wave Motion. " The above theorems are more general than the electromagnetic
equations.
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Mr. Hargreaves' second set of theorems indicate the w@y in which

space time integrals change when a small variation is made of the region
of integration; they give for instance the rate of change of the Aux across
a closed surface when the surface is in motion. ' Let us suppose that the
change of times and region of integration are made by moving the observer
at each point (x, y, s) to some consecutive point (x + bx, y + by, s + bs)

at a velocity Iwhich is a function of x, y, s, t and let the new time of obser-
vation be the time at which each observer arrives at his new position.

We shall quote Hargreaves' theorem for the case of a volume integral
which in our notation is written in the form

I
p x ——(v w) dr.

C2

p and m are supposed here to satisfy the equation of continuity

Bp—+ div pm = o,
Bt

so that the integral may be regarded as representing the total amount
of electricity within a closed moving surface when the observations are
made at times specified by the law " = f(x, y, s), and w represents the
velocity of the electricity, p its density. The rate of change of this
volume integral is now represented by an integral of type

f I"„'d~

over the boundary of the closed surface where

P = Z'+ —(v X Il')
C

and E' and II' are defined by the equations

Z' = p(u —w), II' = —p[w X u].

This result is of interest because it indicates that if we start with the idea
of a Huid electricity moving according to the law of continuity we can,
by a process analogous to differentiation, derive from it a field of two
vectors E' and H' which are expressible directly in terms of the quantities

p and pm which specify the'How of electricity in the original field. The
quantities p' and p'm' which are connected with E' and H' by the equa-
tions

div E = p,
BE

c rot H' = ——+ p'm',
Bt

This provides us with the generalized forms of two theorems given by H. A. Lorentz,
Encyklopadie der Math. Wiss. , Bd. V., g I3, I903, p. II9 and J. Larmor, Proc. Int. Congr. of
Math. , Cambridge, I9I2, Vol. I.
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are different from p and pm because the total amount of electricity within
a closed surface in the field E', H' represents the rate of change of the
amount of electricity within this closed surface in the original field.
Strictly we ought not to use the same word electricity in the two cases
because the quantities p and p' are not of the same dimensions. To
avoid confusion we may call p' density of electricity and p density of
proto-electricity. It must be clearly understood that quantity of elec-

tricity represents the rate at which a quantity of proto-electricity
appears to change in magnitude when successive observations are made

by a crowd of imaginary observers moving in such a way that the velocity
of the observer at (x, y, s, 3) is N(x, y, s, t). This vector u may of course
be the same as the vector v but it is not necessary to assume that the
velocity of an observer is the same as that of his instrument of observa-
tion.

It should be noticed that in our derived field Z', H' we have

Z' JI' = o and E' & II'

where the inequality holds provided at least one of the veloctiies u, m

is less than c. To prove this inequality let us draw lines OU, OW to
represent the velocities u and m in magnitude and direction. The quan-

tity Z" is then represented by the square of the distance US' while H"
is represented by the square of the distance UR'multiplied by the square
of the perpendicular from 0 on UTV and divided by the square of c.
Clearly then Z' is greater than H' if the perpendicular is less than c
and this is certainly true if one of the quantities u, m is less than c.
If both u and m are greater than c it does not necessarily follow that E'
is not greater than H' for the line US' may still cut a sphere of radius

c in real points and so be at a distance from 0 less than c,
The idea that quantity of electricity represents a rate of change of a

quantity of proto-electricity may perhaps account for the existence of
two types of electricity, positive and negative, because even if a quantity
of proto-electricity is always represented by a positive number, its rate
of change may be either positive or negative.

This suggests that the plan of deriving electromagnetic fields from

proto fields of moving proto-electricity by a process analogous to dif-

ferentiation may be very useful. It should be remarked at the outset
that the type of differentiation considered above is only a particular case
of a more general type of differentiation in which two proto' fields which

differ slightly from one another are subtracted and a limiting process
carried out after all the small quantities obtained are divided by the
same small quantity.
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Of course in a proto 6eld we can consider two vector functions B and
II which are connected with p and pm by the electromagnetic laws and
it seems likely that fields which satisfy the electromagnetic equations
and do not possess the characteristics of the types of electromagnetic
fields with which we are familiar may be really proto fields. The fields

whose singularities consist of moving curves are a case in point for
when two such fields are superposed so that the singular curves overlap
it is possible to obtain a cancelling of singularities with the result that
in the total 6eld there are only point singularities. In other words line

charges in the proto field may give rise to isolated electric charges in the
derived field. In the original form of Sir Joseph Thomson's theory of
moving Faraday tubes the analysis indicates that a Faraday tube always
consists of the same particles of electricity. ' This result may seem

strange to most scientists but the explanation is that a field of Thomson' s
type is probably a proto field and that really a Faraday tube always
consists of the same particles of proto-electricity while when an electro-
magnetic 6eld is derived from this proto 6eld by a process analogous to
differentiation the electric charges appear only at the ends of the tube.
The foregoing remarks indicate that the interpretation of the electric
and magnetic vectors in terms of proto-electricity may be simpler than
any interpretation in terms of the electricity of their own 6eld and this
we shall now endeavor to show. It may be remarked that the dynamical
laws of motion for proto-electricity are unknown, it is possible that they
are of the 6rst order instead of the second and that the accelerations in
the Newtonian laws arise in the process of differentiation by which an
electromagnetic field is derived from a proto field.

$ 3. To begin with it will be convenient to assume that a proto-electric
charge can be either positive or negative. The negative charges can be
eliminated eventually, by adding positive constants to all the charges,
but this may not be necessary.

Let us suppose that a positive charge e and a negative charge —e

separate at a point 0 and travel along straight lines with the velocity of
light and let the points A and B respectively represent their positions
at some time t. If T denotes the time which has elapsed from the
moment of separation up to this instant, we have

OA = OB = cT.

Now consider two imaginary observers, one of whom travels with the
point 2 while the other travels with the point B. Let the unit vectors
s& and s2 specify the directions of motion of A and B. If we imagine

~ See H. Bateman, Phil. Mag. , Vol. 34, I9I7, p. 405.
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a field of two vectors 8 and II to exist at the two moving points A and
B and nowhere else, A may be supposed to record the vectors

Fi ——Z+ (si X H),

Qi ——H —(si X Z),

while B records the vectors

Fs ——Z + (sn X H),

q, =II —(s, XZ).
Now a natural vector for A to record is ecTS~ and a natural vector for B
to record is —ecTS&, we shall therefore consider the consequences of
assuming that

8 + (si X H) = —ecTsi, H —(si X E) = o,

Z+(s2XH) = ecTss, H —(s2XE) =o. (io)

These equations are quite consistent with one another and they indicate
that si and s2 are the two vectors of type s defined by equations (2) for
the two points where the fie1d exists. Solving these equations we get

$2 syZ=ecT
I —Sy's2

Sy XS2II = ecT I —sy's2

The electric vector is thus in the direction of the line AB but is not
simply proportional to the length of this line for there is an additional

factor depending on the angle between the vectors s~ and s2. The mag-

netic vector H is perpendicular to both these vectors and to Z.
It should be noticed that

g2 ~2 e2C2 T2 Z'Sy = —ecT, 8 s2 ——ecT,

2
g2 e2C2T2

I —Sy'S2

I + si'$2II = ecT
I —Sy'S2

Z X II = e'c'T' Sl + S2

I —Sy'S2

If the Row of energy is supposed to be indicated by Poynting's vector a
. puzzhng result is obtained for since the field exists only at the two moving

points A and B it is difficult to understand how energy can get away
from these points, which it would do if the Row were in the direction of
the vector s~ + s2. The probable explanation of this paradox is that the

flow is modified owing to the presence of the charges and the work which

is done on them by the field. We are interested in the behavior of the

total energy and so the concealed energy which is equivalent to the work

done must be taken into account and its influence on the total Row must

also be considered.



47O H. BATEMA¹ t
SECONb
SERIES.

We shall consequently take the total energy at A to be a multiple of ~

s(&' + H') + 2(& »)' = &'

and the flow of energy to be represented by the same multiple of

c(Z X H) + cZ(Z. si) = cZ's,

Similarly the total energy at B will be assumed to be a multiple of

—',(&' + H') + 2(Z s,)' = Z'

and the flow of energy the same multiple of

c(Z X H) + cZ(Z si) = cE'si.

This makes the flow of energy take place in the directions of motion of
A. and I3 which seems right. The lack of symmetry with respect to
Z and H arises on account of the fact that (H si) and (H si) are both zero.

Let us now use our expressions for Z and H to build up an electro-
magnetic field in the ether. Instead of supposing that the separation of
charges takes place at only one point at one instant we shall suppose
that a separation is continually taking place in the neighborhood of a
moving point S whose coordinates at time r are &(r), n(r), I'(r). We
shall suppose that in the process of separation which takes place during
the interval of time from 7. to v + dr concentrated charges of magnitudes
f'(r)dr and —f'(r)dr are fired out in the directions specified by the unit
vectors s& and s2 respectively and that diR'use charges which will just
balance the concentrated charges are shot out in all directions in such a
way that each compensating diffuse charge is distributed uniformly
throughout the shell bounded by the two spheres of radii c(t —r) and
c(t —r —dr) whose centers are the positions of S at times r and r + dr
respectively. The density of the charge compensating f'(r)dr is easily
seen to be

4~re
where

= 5'( ) I& —5( )1+ n'( ) ly —n( )j + I'( ) Is —0( )1 —c'(~ — ),
r = c($ —r).

On account of its displacement this charge provides us with the field

f'(r) s —si
I

4m. I I —ST Si

f'(r) si X s
4mv I —S ~ Sq

where rs denotes the vector whose components are x —$(r), y —is(r),
s —f(r), respectively. It should be noticed that the density of the' The term 2(E-s&)' represents the potential energy gained on account of work done against
the force.
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disuse charge is used here in place of e and so Z~, Hi are in a sense

densities of the corresponding quantities when e is used. The density
of the diffuse charge compensating —f'(r)dr is likewise

—f (r)
4gfv

and this provides us with the field

f'(r) s —s22=-
4mv I —s ~ s2

f'(r) sm X s2=-
4m'v I —S ~ $2

Superposing the two fields the densities of the two diffuse distributions

of charge cancel out but we are left with an electromagnetic field specified

by the vectors

f (r) s —sg s —$2

4mv I —S ~ Sq I —S ~ S2

f (r) sl X s s2 X s
I —S'Sj I —S S2

(r2)

In these expressions it must be remembered that z is defined in terms of

x, y, s and t by means of the equation

[x —$(r)]2 + [y —q(r)]2 + [s —] (r)]' = &'(t —r)'

If we introduce the auxiliary quantities

I —s'sj,p=log

it is easy to see that

r&t.

and that

I i~ BP" BcxE =-I «——~~—
c ( Bt Bt

I BE
rotH = ——,

c Bt'

I BH
rot E

c Bt'

H=«Xvp,

dlv Z = 0

divH = 0.

(~s)

This means that our field vectors satisfy Maxwell's equations and

that these equations are a consequence of our assumption that proto-

electric charges travel along straight lines with the velocity of light and

our additional hypothesis for the specification of the electric and mag-

netic vectors. ' This hypothesis is that the field vectors at the two moving

points A, 8 are the same at any instant, that the longitudinal components

'Another derivation of Maxwell's equations from elementary assumptions is given by

Leigh Page, Am. Jour. Sci., 38, zyz4, p. x6g. He uses the theory of relativity and the assump-

tion that each electric point charge is a center of uniformly diverging tubes of strain.
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of the electric vector are —ecT and + ecT respectively and that the
longitudinal components of the magnetic vector are zero. By longi-
tudinal components we mean components parallel to s~ and s2. Another

way of looking at the matter is to regard the coefficients of ecT in formula'

(ir) as direction ratios of the moving line AB. Since each vector has
three components there are six direction ratios.

The field specified by the formula. (n) is a simple generalization of
the one described by Heaviside' in t9oi. If the function f (r) varies
continuously the concentrated charges form two moving curves along
which the above expressions for E and H are infinite but it is not certain
that these expressions are valid for these moving curves. Since the field

contains line charges it should, perhaps, be regarded as a proto field from
which an ordinary electromagnetic 6eld may be derived by a process
analogous to differentiation. An appropriate process is described fully
in a paper which will appear shortly in the Proceedings of the London
Mathematical Society. In the simple case when the line charges are
stationary except for motion along the line the process is simply a
differentiation with regard to one coordinate s, for we may write

r r —8
n = t —— P = log — r' = x' + y' + s'.c' r+8'

The resulting 6eld is the electrostatic 6eld of an electric pole at the origin.
It should be noticed that a field of type (tz) from which the field of a

moving electric pole may be obtained by a process analogous to dif-

ferentiation is a pure radiant 6eld in which the vectors Z and H satisfy
the conditions

(BH) =o, E.' —H'=o.
As this 6eld is of an elementary nature the character of the energy
ought to be determined and this is a matter which we shall now discuss.

$ 4. I think most authorities agree that the fiow of energy in an
ordinary electromagnetic field may be represented by means of Poyn-
ting's vector' S = cZ && H and that the volume density of electro-
magnetic energy is W = z2(Z' + H').

If no electricity is present so that no work is being done at the point
under consideration the question arises as to whether the transfer of
energy can be represented as a motion of all the energy in a single
direction.

The fact that the equation of continuity
8S"——+divS=o

85
' O. Heaviside, The Electrician, Nov. 29, Igox. Electromagnetic Theory, Vol. III., p. I22.
For a recent discussion of the matter see a paper by G. H. Livens, Phil. Mag. , 34, I9?7,

P. 385.
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is satisfied suggests that it is sometimes possible to adopt this view, and
as the velocity of motion

—(Z'H' —(Z H)'}'"

is never greater than c, the velocity of light, this way of looking at the
matter seems at first quite reasonable. It is of some interest, however,
to compare this velocity with Cunningham's velocity of the ether, ' which

we shall denote by the symbol N.

Let us consider the hypothesis that the energy in a field can be regarded
as energy of motion of a single entity or a group of entities having prac-
tically the same motion when the velocity of flow is a possible velocity
of the ether.

Taking first the simple case in which Z H = o, the velocity I is

governed by one of the equations H = I X E, cZ + u p H = o but
the component of u perpendicular to S is indeterminate. Ef now n is
in the direction of S, u is equal to either c H/E or c Z/H and it is clear
that I is equal to the velocity of flow of the energy only in the case when
F' = H'.

A similar result is obtained when we do not make the initial assumption
8 H = o; for in this case the velocity I is governed by the equation'

eh=I&&e,
where

h = XH + pZ, e = )Z —pH,

and X and p are chosen so that e h = o. Since e X & = P'+y')(& X &)
it appears that when u is in the direction of 5, I e = o and we have

c2fg2 —@2'
Now

and
s2 + Q2 —(g2 + ~2) (Q2 + +2)

s2$2 —(g2 + ~2)2 I+2~2 (Q

hence u is equal to the velocity with which the energy Bows only when
e' = h' and then it follows that E' = H' and E H = o.

Thus it is only in a simple radiant field for which the above equations
are satisfied that the energy may be supposed to flow with the same speed
as the ether. I have adopted the view elsewhere' that the energy in

such a field is entirely kinetic energy or energy of motion but this view

is rather unorthodox and may perhaps be questioned. The point at
issue depends on the definition of the different kinds of energy and also

' Proc. Roy. Soc. London, 83, x909, p. xxo. The Principle of Relativity, Ch. XV.
2 See H. Bateman, Mess. of Math. , x4, xgxS, p. xxx.
' Proc. National Academy of Sciences, May, x9x8.
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on the question whether the usual identification of magnetic energy with
kinetic energy is valid for all types of field. Perhaps it is advisable to
distinguish between kinetic energy and energy of motion, as is done for
instance by Page, ' and to use the term kinetic energy only when energy
can be expressed in the form T = ~mu' where u is a velocity and m the
transverse mass. According to this view the kinetic energy in the electro-
magnetic 6eld of a moving electron can be represented by —',H' per unit
volume, this being the usual expression adopted by Larmor and others.
This view seems to be strengthened by the form of the Lagrangian
function in the principle of least action but it may not be right to adopt
the expression —,H' for the kinetic energy per unit volume in the ideal
case of a magnetic particle for we may expect from symmetry that ~B'
is the correct expression. Since, moreover, a simple radiant field cannot
generally be derived by superposition from the 6elds of electric poles
moving with velocities less than c we cannot conclude from the above
that the kinetic energy per unit volume is in this case represented by
—,'H', although there may be some other way of arriving at this result.
At any rate it does not seem right to assume that ~~H2 per unit volume
completely represents the apparent energy of motion' in the 6eld, for it
seems reasonable to adopt the view that there is no apparent energy of
motion when the field is static and there is no flow of energy. Assuming
that a field in the ether is static when there is no flow of energy a static
6eld may be characterized by either Z = o or H = o, the general require-
ment being that Z should be parallel to H. When a field is static it is
possible for Cunningham's velocity u to be zero and conversely if u can
be zero the field is static.

According to the above view there is no apparent energy of motion
either in an electrostatic field or a static magnetic field but in both cases
there is concealed energy of motion if we adopt the ideas of Thomson and
Hertz. This concealed energy of motion may perhaps be brought into
evidence by building up the static fields from simple radiant fields of the
type for whicch= H' and 8 H = o, for in each field of this type there
is certainly energy of motion.

In what follows we shall adopt the hypothesis that the energy in a
simple radiant 6eld is entirely energy of motion. In justification of this
we may, perhaps, reason as follows, but the argument is not very con-
clusive.

In the case when cH = I & Z and n is parallel to 8 the kinetic energy
' Am. Jour. of Science, 4o, Aug. , I9IS.
2 This term is used because according to the views of Sir Joseph Thomson —The Applica-

tions of Dynamics to Physics and Chemistry, I888, p. Is—all energy is ultimately kinetic
energy or energy of motion.
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siH' and the momentum (r/c')5 can be accounted for by assuming that
a particle with transverse mass m = Z'/c'moves with velocity I = c H/Z
in the direction of S. Now in the case of a moving electron the energy
which it has acquired in virtue of its motion may be expressed in terms
of the velocity I and transverse mass m by means of the formula'

mc'[x —lt —P't[r + —,
' lt —P'] (i4)

where P = I/c. If this formula is supposed to be applicable in the case
of a particle whose transverse mass remains finite when I = c the expres-
sion for the energy of motion becomes nzc' and this is equal to E' in the
case of the electromagnetic field. The view that the energy is entirely
energy of motion when E' = H'and E H = o is thus in accordance with
the above expression. Of course if the transverse mass is finite. when

I = c the particle must be supposed to have no energy when it is at rest.
So far no general expression for the energy of motion in terms of the

field vectors has been obtained which wi11 satisfy the condition that the
total energy of motion in a moving electron's field is equal to the expres-
sion (i4).

In a general electromagnetic field it is probably not permissible to
regard the momentum and kinetic energy in an electromagnetic field

as arising from the motion of a mass in the direction of Poynting's
vector. 'To elucidate matters a little let us consider the result of super-

posing two fields (—Z, —H) and (8 + dZ, H+ dII) which differ very
slightly and which are both simple radiant fields. Let the unit vectors
s and s + ds indicate the direction of Poynting's vector S in the two
fields, then on account of the assumed property of the fields we have the
relations

E+s XH = o, dE+s XdH+ds XH = o,
s'E =0 sH=o.

Since s ds = o we may write ds = AE + BH and so

ds XH=AEXH=)s;
this means that the vector s satisfies equations of type

dE + s X dH = ks, s dE = k,

and so is one of the unit vectors (of the type considered in i r) for the
resultant field (dE, dH).

The energy -,'(dZ)'+ —2i(dH)' in the resultant field is generally very
much less than the sum of the energies

-,'Z' + i2IP, -,'(Z + dZ)' + —,'(II + dH)'
~ See for instance, L. Page, Amer. Jour. Sci., Vol. XL., Aug. , xyz5, p. zxy. It should be

mentioned that in the derivation of the formula there is an assumption with regard to the
size of the electron when at rest as compared with its size when in motion.
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in the component fields, so that there is a loss of energy of amount
Z(Z + dZ) + H(H + dH) due to interference. This energy may per-
haps be regarded as concealed energy of motion. The question now

arises how two fields in which energy flows practically in the direction
of the unit vector s can give a resultant field in which energy flows in a
direction different from s. The answer is that the flow at right angles to
s in the resultant field arises from the motion of a very large amount of
energy with a very small component velocity perpendicular to s.

This may be the explanation of the perplexing fact that in the field

of a moving electron the direction of Poynting's vector is quite different
from that of the radius from the effective position of the electron. In-
deed the field of a moving electron can be built up from simple radiant
fields in each of which the flow of energy to a point is actually or very
nearly along the radius just mentioned and it is just because the total
amount of energy in these radiant fields is vastly greater than the energy
usually attributed to the electron's field that the slight deviations in the
paths from the mean radius can give rise to an appreciable transverse
flow.

In our opinion then there is a colossal amount of concealed energy of
motion in the field of an electron or positive nucleus of an atom. Whether
this energy will ever become available or not we are quite unable to say.
Of course it must be remembered that our theory of the structure of an
electric field is based on the idea that the electric charge of an electron
is continually being renewed by electric separation (i. e. , the breaking up
of minute doublets) and that the charge remains constant because a
steady state has been reached. At present there is no way of deciding
between this theory and the usual theory that an electron always consists
of the same particles of electricity, but in support of the new theory it
may be claimed that it gives a simple geometrical reason for the shape
of the lines of electric force of a moving electric pole' and provides a
possible explanation of gravitation as an effect due to an extremely slight
fluctuation of the charges on electrons and positive nuclei in what may
be slight deviations from the steady state of renewal of these charges.

The chief reason for pursuing a theory of this kind is the hope that it
may throw some light on the nature of force and the real meaning of
the dynamical equations of motion. It is very probable that the equa-
tions of motion are fundamentally of a geometrical nature' implying

An idea somewhat similar to this is adopted by the late S. B. McLaren in his theory of
gravitation, Phil. Mag. , Vol. a6, zgzg, p. 636.

g Mess. of Math. , Vol. 47, rgz8, p. x. 6r..
3 An attempt to express the fundamental laws of physical phenomena by geometrical con-

siderations has been made recently by H. A. Lorentz, Amst. Proc. , x9, pp. x34r-x36y; 2o,
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the existence of certain incidences and correspondences with perhaps a
minimum principle thrown in. While the general problem still bafRes
us some useful information may perhaps be gained by considering cases
in which we can actually find an equivalent of the energy lost when work
is done.

We shall commence by considering an electromagnetic field in which
the usual equations

BZcrotFI = —+ pv,
8$

dlv Z = pq

aa
crotch = ——+0m,8t

dlv II = —0',

are satisfied and as usual 0. = o, O.m = o. We shall assume, however,
that p and pv have the forms

I 8$
p = pv = cgf. (i6)

The usual form of the energy equation is, moreover, obtained from
the relation

8
p(s E) +—['(E'+ H-')] + div [c(E && II)] = o,

where the first term represents the rate at which work is being done by
the field on the electric charges present.

Now

cdiv (pE) = —P —+ p(s E),
8$
Bt

hence the energy equation may be written in the form

8—[', (E' + H' -+ P)] + div [c(E && H) + cd] = o,

and the career of the energy which has been transformed into work is
not lost sight of if we assume that the total amount of energy per unit
volume is —', (E' 1 H'+ P) and that the total flow of energy is speci-
fied by the vector

c(E X H) + c&E.

The lack of symmetry with respect to Z and H can be avoided if we write

I Bg
0'

c BI,
05'J = egg~

pp. 2—34., zgz7. Further interesting geometrical developments may enter in the study of the
growth of simple correspondences between different parts of the field figure and in estimating
the closeness of fiit of an imperfect correspondence.
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and add the term —(ow H) to the left-hand side of (ty) for then

Bx.
c div (xH) = x—+ o (w H),

Bt

and the energy equation may be written in the form

—[-'(Z' + H' + P + y')] + div [c(Z X II) + cga —cxH] = o.

Similarly the usual momentum equations of type

BX, BXy BX, I BXt,+—"+ '+-—
Bx By Bs c Bt

I I= p Z, + —(v„H, —v,H„) —o H, ——(w„Z, —w,Z„)c c
in which

X, = Z,' + H, ' —-,'(Z' + H'),

Xy = Z,Zy + II,H„,

may be written in the form

X. = Z*Z. + HH.
X) ——Z,II„—Z„II,

where

BX,'- BXy' BX,' I BX]'
Bx By B8 c BE

—0)

&' = & + '(P+ x'), -
Xy' = X„—/II, —XB„

X,' = X, + /II' + XZ„,

X]' ——Xg + PEg —xII..
If we write

M = II+iE, —ip = P+ix,
the fundamental equations may be written in the form

BM
c rot 3f = —i =+ CVQ

B$

I BP
dlv M + = 0)c Bt

(i&)

and an interesting class of solutions is obtained by adding the additional
equation' 3P = @'.

In this case we may write

sy —s2 + z(sg X ss)3I=@ I —(sr '$2)

where s& and s2 are unit vectors which are easily seen to satisfy equations

(2) of f r. Assuming that these are real and writing i for the x-com-

' Cf. H. Bateman, Mess. of Math. , 47, zyz8, p. x6x.
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ponent of s2, X for the vector with components X, X„X„and Z for
the quantity

4'+ x'
2

I —(sy sg)
we have

2(&' + H'+ 8 + x') = &
gZ —yH + Z X H = Xsi,

gZ —XH —Z )& H = —XS2,

X = —IQsg,

Xg Ale

This means that the career of the energy transformed into work is not
lost sight of if we suppose that an amount of energy X flows with the
velocity of light in the direction of the unit vector s~ and that momentum
—XS2 flows with the velocity of light in the same direction. This
momentum may perhaps be supposed to arise from the motion of par-
ticles in directions differing very slightly from the direction s&, a condition„

which suggests the existence of two or more superposed fields which

differ very slightly in properties. If a field of the present type is supposed
to arise from the breaking up of minute electric and magnetic doublets
and a rectilinear motion of their constituents with the velocity of light
the dynamical equations of motion may simply imply that certain

groups of particles travel along without losing any of their energy or
momentum. In the general case, however, it is more probable that the
dynamical laws tell us what happens when old groups of particles are
broken up and new' ones formed. It should be mentioned that a more

general type of field has been found in which the career of the energy
transformed into work at an ordinary point of space is not lost sight of.
In this case we take

pv = cg(x + cXsy)
I BGL

p = ———+),

OZV = CgP + Cysts,
I BP

0 = — +P)c Bt

where s~ is one of the unit vectors connected with the field by equations

(2) of $ x. If now n and p are defined by the equations

n = (sg Z), p = —(sg H),

we have as before with a and P in place of P and x
8(x

(pv Z) = c div (nZ) + n —,
Bt '

BP
(ere H) = c div (pH) —p —,

at '
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whatever X and p, may be, but these must be chosen, of course, so that
the equations of continuity

Bp

85
—+ div (pv) = o,

are satisfied. The energy in the field is now

T 1(+2 + ~2 + ~2 + P2) —&(Q2 + ~2) + 1[(+2 jTj2)R + 4(+.If)2]1/2

and the How of energy

S = c[(Z X II) + Z(si Z) + H(si H)] = cTsi.

On the other hand we have

. Xg ——[Z,(si Z) + FI,(si H) —(E X H),] = —T(s2)„

where s2 is the second unit vector connected with the field. We also
have X = —Tsi(s2)„hence a total amount of energy T flows with the
velocity of light in the direction of si and a total momentum —(r/c) Ts&

Hows with the velocity of light in the same direction. It is probable
that this type of field also arises from the breaking up of electric and
magnetic doublets and the rectilinear motion of their constituents with
the velocity of light. The above argument probably breaks down at
points where the breaking up of the doublets occurs.

Returning to the previous type of field we note that equations (18)
may be satisfied by writing

I BF
M = ——+i rot I'+ &C,c Bt

I 84
p = —divF ———,

c Bt'

where C and the components of I' are solutions of the wave equation.
If x = o so that there is no real magnetism we have simply a field in
which the volume density of electricity is proportional to the rate pf
change of a function P and the convection current is also derivable
from I]t by differentiation. Let us call p the electric storage. It is im-
portant now to notice that there mciy be a finite constant value of rP and no
electromagnetic field, for if in the above equations we write

I 80
C = ——

c Bt'
we have clearly M = o and

I 820
q20

c28P '
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It is only necessary then to choose 8 to be a solution of the equation

I 8'8
p'8 ———= constant,

g2 QP

in order to ensure that C and the components of I' may be solutions of
the wave-equation. The quantity p is then constant and so therefore
is P while there is no electromagnetic field.

This result indicates that in any field of type (t8) we can regard the
electric storage P as a positive quantity.

Electric storage is in some respects analogous to quantity of proto-
electricity but the function P is an absolute invariant under the trans-
formations of the theory of relativity. It seems more reasonable to
regard quantity of proto-electricity as the rate of change of electric
storage; the existence of both positive and negative charges of proto-
electricity then seems quite natural.

SUMMARv.

z. An electromagnetic field is studied geometrically in relation to a
moving observer and various vectors are located with the aid of the two

cones which at each point limit the directions of the forces acting on

electric and magnetic charges moving with velocities less than that of

light.
2. The electromagnetic laws are expressed directly in terms of the

forces on unit electric and magnetic charges in motion and some deduc-

tions relating to lines of force are made from Hargreaves' theorems for
space time integrals. One of Hargreaves' theorems suggests that quan-

tity of electricity may represent a rate of change of another entity—
quantity of proto-electricity, and electromagnetic fields are regarded as
derivable from proto-electromagnetic fields containing line charges by a
method analogous to differentiation.

3. Field vectors satisfying Maxwell's equations are constructed from

the assumption that an aggregate of particles travel along. straight lines

with the velocity, and from a further hypothesis regarding the nature
of the vectors.

4. A critical discussion is given on the nature of the energy in an elec-

tromagnetic field and the nature of its Row. A theory is developed which

indicates that there is a colossal amount of concealed energy in the
field of a moving electron.

Some examples are given which indicate what becomes of the energy
which is apparently lost or transformed when work is done by an electro-

magnetic field on the electric charges within it.
THROOP COLLEGE, PASADENA.


