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LAW OF MOTION OF A DROPLET MOVING WITH VARIABLE
VELOCITY IN AIR.

BY RAYMOND B. ABBOTT.

HE object of this research was to find the law of motion of a droplet
moving with variable velocity in a viscous medium, air; and also

to find whether the method could be used to determine accurately the
value of the electric charge given to the droplet, while falling between

charged condenser plates.
Stokes' law' has been hitherto supposed to hold only for uniform

motion in a straight line. Its limitation is given by Rayleigh' to be
such that the radius r shou1d be small compared to p/pV, where p is the
coefficient of viscosity of air, p is the density of air, and V is the velocity
of the droplet. Many of the speeds observed in the experiments herein

described are well within this limitation, but the motion is neither
uniform nor in a straight line; for the droplet falls through a horizontal
electric field, the charge on condenser plates alternating sixty times per
second and varying according to the sine law. The droplet therefore
oscillates with a horizontal motion while it falls.

The method used was a modified form of the one suggested by E. P.
Lewis and used, by W. A. Shewhart. The original idea, evidently, was

inspired by the work of Millikan on the "Elementary Electrical Charge. "4

In general, the present method is to photograph the path of the particle
as it falls through a periodically changing electric field and to find the
law of motion from the form of the curve.

Shewhart showed conclusively that the amplitude of oscillation of
the droplet is here proportional to the maximum electric force upon it.
But the increase of wave-length which he found, where the field intensity
was increased, can be explained by the fact that convection currents are
set up in the air where more intense ionization takes place from the sharp

edges of the condenser plates, as they were arranged.
He assumed that the path of the droplet was approximately a sine

curve but did not find its exact form. In the present work enlargements
' G. G. Stokes, Mathematical and Physical Papers, Vol. III., p. 59.
2 Phil. Magazine, Vol. 36, p. 36S, z893.
' PHYS. REV. , May, zgz7.
4 PHYs. REv. , August, zgz3.
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of direct photographs of path were made, and the form of the curve was
compared with an accurately constructed sine curve. Also, data were
obtained showing the angle of lag of the droplet behind the field intensity.
Further, the law of motion of spheres of small density and known mass,
falling in air, was experimentally determined. Shewhart s apparatus
was used, with a feature added, which showed on the photograph the
exact position of the droplet at some known value of the field intensity.

Two methods were used for doing this; first, a synchronous motor
with a narrow vane attached to the shaft cut off the beam of light'
when the field intensity was zero in value. This showed as a short
break in the photographed path of the droplet (see Fig. 2). A disk of
insulating material provided with a metallic ring and two contact makers
I8o degrees apart, placed on the shaft of the motor, provided a means
for finding the position of the shaft for zero electromotive force of the
power circuit. Two brushes connected in series to the power circuit
and a voltmeter, shunted with a condenser, provided a circuit which
was closed whenever one of the contact makers on the disk hit a brush.
By rotating the brushes a position could be found for any desired value
of the field intensity.

The apparatus for the second method consisted of a spark gap con-
nected across a large condenser which was charged by the power circuit.
The spark occurred twice during each cycle and illuminated the falling
droplet, causing a dark spot on the photographed path of the particle.
The time of the spark with reference to the zero value of the electro-
motive force was measured by noting the position of the vane on the
shaft of the synchronous motor when the spark occurred. This was
done in a dark room where the rotating vane could be seen only when
the spark illuminated it. With the apparatus used, the spark occurred
approximately five degrees after the zero value of the field intensity
divas reached (see Fig. 3).

HORIZONTAL AND VERTICAL COMPONENTS OF AIR RESISTANCE.

Fig. I shows a direct enlargement of the photographed path of a droplet.
The points of a sine curve, mathematically constructed upon it, show that
the path is a sine curve. The electromotive force which charges the two
condenser plates follows the sine law very closely. This is known from

oscillographic analyses made in the departments of physics and electrical
engineering. The spot of light shows where the droplet is located with
reference to the electromotive force of the condenser plates.

One can now definitely express displacement, velocity and acceleration
' See Shewhart, PHvs. REv. , May, IgI8, p. 4z7. .
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in the horizontal direction in terms of the sine law and an unknown

function f(y) representing the air resistance; and from the equation of
motion, the form of the function f(y) can be ascertained. This will' be
the first step taken in our effort to discover the law of air resistance in

this case.
Accelerated motion of a body in a viscous medium is opposed by two

kinds of resistance. There is a viscous or frictional resistance, and also

an inertia resistance due to an apparent increase in the mass of the moving

body, known as a "fictitious mass. " The viscous resistance always

opposes motion, at constant or at variable speed, while an inertia re-

sistance opposes only a change of speed.
Let the maximum force on the droplet due to the charge (¹) and the

field intensity I be
A = (¹)X.

Let the angle corresponding to the distance fallen by the droplet be x,
and the angle of lead of the electromotive force ahead of the droplet
be p, then, since the electromotive force follows the sine law, the electric
force on the droplet will be

F(y) = A sin (x + y).

The angle (x + y) must increase at a constant rate in order to satisfy
the conditions governing the generation of the electromotive force at
the dynamo. Two cases are open for investigation, involving the varia-

tion of the angle x of the droplet. The angle x either increases at a
constant rate and 7 is constant, or x may vary in such a manner that the

average increase in its value for each quarter cycle is the same for every

quarter; then 7 must vary in such a manner as will make (x + p)
increase at a constant rate at all times. The first case will now be

considered, in which y and dx/dt are constant.
Since the path of the droplet is known from Fig. (x) to be a sine curve,

the following quantities can be expressed in terms of the sine law:

Displacement y = a sin x

Angular velocity &o = dx/Ct

Horizontal velocity V„=ace cos x

Horizontal acceleration p„=—ace' sin x.

If f(y) represents the expression for the resisting force parallel to V,

and M the mass of the droplet, the completed equation of motion parallel

to the Y axis is

A sin (x + y) —f(y) = M( —a&o2 sin x).
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Solve for f(y), expand sin (x+ y) and collect coefficients of sin x
and cos x; the result is

f(y) = (A cosy+ 11Iuco') sinx+ (A sin&) cosx.

Let a = (A cos y + 3fa&v'), p = (A sin y) and c = In'+ p', tan j
= cx/P.

The function f(y) written in terms of these constants is:

(6) f(y) = c cos (x —j).
The equation of motion is, therefore,

(7) A sin (x + y) —c cos (x —j) = M( —aoP sin x).

Equation (5) or (6) may be written f(y) = nsinx+ pcosx which

expresses both kinds of resistance, due to viscosity and inertia; for o. sin x
is in phase with the acceleration, and a cos x is in phase with the velocity.
Further, P cos x must contain all of the viscous resistance; for the latter
must be at its maximum value when the velocity is at its maximum value,
but cx sin x is zero at this time.

In regard to the absolute value of p, the value of cos y may be such

for every droplet that a~'3II + A cos p = o, that is, y greater than

~/z and 3f —(A cos y) = o. If n does not equal zero, it contains a
6ctitious mass term, which for air, may be small enough to neglect.
The fictitious mass of a sphere moving in a perfect fluid is discussed in

Lamb s Hydrodynamics. ' It is shown that the increase in the inertia
of the sphere is one half the mass of the fluid displaced. In the case
here considered the fluid is air which is not a perfect fluid, but the relation

gives an idea of the magnitude of the term which appears as an addi-

tional inertia. The theoretical value would be approximately one half

the ratio of the density of air to the density of water multiplied by the
mass of the water droplet.

~ OOI I9Fictitious mass = 3I = .ooo6M,
2

The inertia resistance expressed in terms of the acceleration is

coP CY

a. sinx = —nsinx = —(ceo'sinx) = p2p„,
GCO @co

where p„is the horizontal acceleration, and

CL

P2 =
ace'

'

This gives P2 as the fictitious mass term, referred to above.
' Lamb, p. I30.
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The viscous resisting force, expressed in terms of the velocity, is

t GCO p
P cosx =

i Pcosx = (G4t cosx) = PyVg.( @co GG7

This indicates that the resisting force is proportional to the velocity;
and this is what one would expect, because most of the velocities en-

countered here are within the range of Stokes' law. With these condi-
tions in mind, one can write the equation of motion in the horizontal
direction in a different form from (p):

(8) A sin (x + y) —p„neo cos x = (M + p2)( —cop sin x);
and in general,

(9) F(y) —p„U„=(M + p2)p„.

It will now be assumed that a similar form of equation holds for motion
in the vertical direction; for experimental results have been found to
verify the validity of the assumption.

V, = vertical velocity at time t,

V,' = terminal velocity,

ns = mass of droplet minus mass of air displaced,

nz' = mass of air displaced plus a possible fictitious mass,

m+ m' = total mass moving.

The equation of motion is

(ro) mg —p, V, = (m+

The droplets arrived at terminal
taken, so that (P, V,') = mg.

, dU dV
m')

d
———(M + P2)

——.
velocities before the photographs were

dropping the prime.

P = mg/'V„

RESISTANCE TO MOTION IN THE PATH OF THE DROPLET.

The expression for the resistance of air, to motion in the path of the
droplet is

f(t) = f(x) cos 8 + f(y) sin 8 = f(x) U* + f(y) U',

where V& is the velocity in the path of the droplet, and 0 is the angle

between the tangent and the X axis, and hence

U,/V, = cos 8, V„/V& ——cos 8.
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But f(x) = P&V, and f(y) = P&U„if P, = P„=Pq. Therefore

f(t) = P~V~

The tangential equation of motion is

V . Vy
(mg) —*+ (A sin x) —" —p&V&

t t

Vy dV, V,= (M + Pq) (—ace' sin x) —+
Vt dt Ut

In general

(z6) F(t) —pgV( ——(M +p2) —d—

THEORETICAL AND EXPERIMENTAL VALUES OF THE ANGLE OF LAG

COMPARED.

A theoretical expression for the value of y, the angle of lag, can be
deduced, based upon the above assumptions. A verification of this
value by experimental results will be a strong argument in favor of these
developed relations.

It has been shown that pq = (2 sin y)/ace and

Ot+P2=-
aG0

(Mace'+ A cos y)

where y is greater than x/2. This gives

Piaa)
sin p

3f+P2
COS y = — — ace,

—PI

(M+ p2)(o
'

But Pq ——rrtg/V, where V, is the terminal velocity.

(i8)
—tPg

tgy =—
(M + p2) V,(u'

In the case of a droplet, neglect the fictitious mass P~ and the mass of the
air displaced m', so that m = 3f. Then

(~9) tan y = —g/U, (u,

a known value.
The value of U, is found from the relation X/T = V„where X is the

wave-length and 1is the known period of oscillation, the frequency of
the electromotive force being sixty cycles per second. The value of X

was found by measuring several successive wave-lengths with a pair of
fine-pointed dividers and a steel scale.



Vor. , XII.
No. g. LA TV OF MOTION OF A DROPLET. 387

The angle p was found by measuring y& at the point on the path of
the droplet where the photograph indicated the particle to be at the
moment of zero field intensity. If the value of y& at this point be divided

by the amplitude a, sin xl is found, since a sin x~ = y~.

The value of (x& + y) is zero or x at the point where the 6eld intensity
is zero.

A sin (x~ + y) = o for x + y = o or nx.

Since cos y is negative and sin y is positive, therefore x is greater
than y, which is greater than er/z.

Therefore
+1+ 7

7I X] e

Enlargements of the photographs were provided in order to make
these measurements, for which a micrometer microscope was used.

In the case of the "spark gap" method of indicating the position of the
droplet, the spark occurred five degrees past the position of zero field

intensity on the sine curve. A correction of five degrees must be made
in this manner:

I 80 —(xy —$) .

TABr.H I.
8'ater Drop/ets.

rs Cm. X Cm. V Cm. /Sec.
~

y Observed. y Calculated. (Bl + Ps)/»z.

0.0837
0.2230
0.1305
0.1720
0.0977
0.0887
0.1555
0.0740
0.0337
0.0430
0.0357
0.0450

.3410

.1362

.1500

.1525

.2830

.1200

.2490

.4570
~4360
.3970
.550
.481

20.50
8.16
9.00
9.15

17.00
7.20

14.90
27.40
26.10
23.90
33.00
28.80

171' 12'
163' 12'
165' 30'
166' 30'
171' 57'
161' 20'
168' 38'
175' 42'
174' 5'
174' 7'
174' 56'
174' 0'

172' 45'
162' 18'
163' 54'
164 10'
171' 18'
160' 10'
170' 121
174' 36'
174' 18'
173' 48'
175' 30'
174' 53'

Average.

0.825
1.052
1.043
1.180
1.088
1.037
0.875
1.262
0.965
1.054
0.885
0.857

. . I 1.010

0.125
0.075

.346

.318
20.7
19.1

LycoPodinm.
I

172' 55'
171' 20'

172' 5O' 1.O2

172' 15', 0.89

The assumptions made, that j(4 is small enough to be neglected, and

that the constant P„=P = P&, are entirely justified by these results,
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within the limits of experimental error. This means that if Stokes'
constant (6wtir) holds for the vertical component velocity, it holds for
the horizontal and also tangential velocities. This law will be further

discussed below, after examining results for the ratio of the 6ctitious
mass to the real mass.

RATIO OF THE FICTITIOUS MASS TO THE REAL MASS.

We have

from which
A. cos 'r —A. Cos p s111 'r pz

pg+ M
ace~ ace &v sin y &v tg y

'

where
A sin7

pg =
@CO

But

(zo)
mg+ (p2+ M) =—

V, (o tg y'

For the absolute value of tangent y = —c,

(z x)
Pg+ 3f g

This ratio is expressed in terms of quantities which can be obtained
experimentally. According to all assumptions made, it should be close
to unity for the droplets considered. A glance at the tabulated results
of Table I. shows that this is true, and our knowledge of the relative
sizes of M and m reveals the smallness of p2. The ratio M/nt in terms of
densities, for comparative purposes, is

M/m = I .002

approximately for water.
The wide variation from the average value which occurs for some of

the droplets is because of the smallness of the amplitude a, and con-

sequently, because of the dif6culty in measuring the tangent of the angle
of lag p, accurately. The droplets with a lar'ge amplitude show more
consistent results.

If one takes the average value of (M + P~)/rrt as given in the table,
the ratio of P~/m can be found for a water droplet, where M/I = z.ooz

by equation (25).
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3II + p2 p2I.OO2 + = I.OI,
m m

P2/m = o.oo8 or Pi ——.oo8 m.

This agrees with the theoretical value calculated before.
Stokes' law is supposed to give the value of all the viscous resistance

which is proportional to the velocity. ' If such be the case, one may
write P& = 6~p,r and make little error; since the equations deduced from

the properties of the sine law show that all of the viscous resistance is
given in terms of the first power of the velocity. The experimental
results also verify this last conclusion. Since the resistance is propor-
tional to the velocity, and since most of the velocities fall within the
limitations of Stokes' law (as explained above) one feels justified in

making the above assumption (Pi ——6irpr) even for variable velocities.
The ratio of the charge (¹) to the mass nz can be found from these

experimental results without the aid of Stokes' law; but the numerical
value of pi, the charge (¹) and several other quantities, cannot be so
determined. If this law be used to get an independent relation between
the quantities involved, several unknown quantities may be evaluated
in known terms. The law is stated as follows:

The viscous resistance of air for small spheres is equal to 6mur U. The
coefficient P& is then equal to 6~pr, where p, is the coef6cient of viscosity
of air, and r is the radius of the sphere. The value of the mass is found

from the relation,
(22)

m = ~r'(o —p) inhere 0 is the density of the sphere and p the density
of air. This gives

(4/3) err'(0' —p) g'/ p = 6' pr

6pU3 9pUr' =
4(~ —P)g 2(~ —P)g

'

(&3)

(25)

2g 0 —p
3/2

volume = (4/3)m.
&g(~ —~)

9p. U.i' = (4/3)(~ —i) 2g(~ —u)

~ = (4t»-(„'."', )
'",

0'
M/m = ——.

0 p

' G. G. Stokes, Math. and Physical Papers, Vol. III., p. Sg.
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VALUE OF THE FICTITIOUS MASS p2.

For y greater than s./2
A. cos y—P2 ——3II—

Transform (A cos y)/ace',

A cosy sing A sing cosy.—= P)/&a tg y = mg/U, tg y.
CG) Sln p GG) 6) Sln p

Substitute

(26)

Let Q equal the volume of a small sphere of radius r, Q = (4/3)mr',

From (24) and (25)

From the value of tan 7 expressed in terms of known quantities,
it is easy to calculate the ratio of the charge (Ne) upon the droplet to
its weight mass m without Stokes' law. From (x), and (7b), the values
of 2 and P) are A = (¹)X, P„=P),

A sing
P1 =

Solve for A

But

P]PGO

sin co'

Pg
——mg/ U„

(¹)X =

(28)
(Ne) ga(d

(m) XU sin y
'

The value of sin y in terms of tg y is

(29)

~av
Sln p—

Iz + tg'7 l(V,~)' + g'

(Ne) ace
~(U*~)' + g'.

(m) X V
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The value of the charge upon the droplet can be calculated from

equations (29) and (25), for from (29)

and from (25)

(¹) =~ Vv'~ +g',

9p, V~ = (4/5)~(~ —P) 2g(~ —u)

the value of (¹) follows:

Calculations of (¹)/m, (¹) and X from the data for two droplets

give the following results:

a Cm. I V Cm. /Sec. WE. S. U. Ne/m. (cVe). N.

.13'05

.0977
9.00

17.00
21.
7.5

920
1870

7.98 X 10 4

42 X10 4

1033000
880000

This indicates that the droplets pick up an enormous number of ele-

mentary charges under the conditions of the experiment, so that the
method is valueless for the determination of e, the elementary charge.

MEASUREMENTS OF THE DENSITY OF LYCOPODIUM.

It was necessary to have the mean density of lycopodium for the
above calculations. This was found by a porosity method. A formula

for the minimum volume occupied by spheres is given in Reports of the
U. S. Geological Survey. ' The ratio of the volume occupied to the whole

volume is o.74o5. The powder is composed of small seeds which are
fairly regular in size, and are approximate spheres. A mass of 8.I2

grams was found to indicate I9.8 c.c. when settled in a graduate. This
indicated volume multiplied by the factor .74 gives I4.66 c.c. for the
actual volume occupied. This gives an average density of o.55 gms. /c. c.

In John Zeleny's work on the "Fall of Small Spheres in Air, " ' the

density of lycopodium was found by a volumenometer method, which

gave I.I75 gms. /c. c. He found that Stokes' law was not obeyed by the

powder unless this value was about twice too large. It is very interesting

to find that the porosity method gives a corrected value for the density
consistent with the assumption that the lycopodium powder was following

Stokes' law in Zeleny's experiment.
' U. S. Geological Survey, Annual Reports, Vol. x9, 2, p. 3oz.
' Zeleny, PHvs. REv. , May, L9IO.
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RESISTANCE TO THE MOTION OF SPHERES OF SMALL DENSITY FALLING

IN AIR.

It was thought desirable to find by experiment, the law of air resistance
to the motion of spheres falling with velocities much greater than those
which are within the range of Stokes' law.

A light rubber balloon was used for the purpose. A chronograph and
chronometer measured the time, and electrical means for releasing and

stopping the sphere provided an accurate means for recording the time
of fall on the chronograph trace. The weight in air was found to the
nearest milligram. The size of the sphere was measured and the density
of the air was determined from its temperature and pressure.

The data obtained in this way are given in the following table.

TABLE II.
Data for a Light Sphere Infalling in Air.

V' = 243 cm. /sec.
m = S.x76 gms.
m' = 3.76'
Temperature 22 to 23 C.
p = mg/V' = 2x.7.

M = 8,94x gms.
r = 9.x cm.
6 = .ooxx9 gms. per c.c.

Time of Fall.

.0861 sec.

.1084

.125

.138

.182

.243

.246

.317

.350

.363

.381

.425

.451

Distance,

1.10 cm.
2.3
3.4
3.6
6.4

11.2
12.8
21.7
24.2
27.0
31.4
39.4
42.3

Time of Fall.

.469 sec.

.520

.602 '

.612

.710

.812

.910

.911
1.082
1.181
1.389
1.715
1.950

Distance.

47.0 cm.
56.8
72.0
73.5
93.0

120.1
139.3
141.0
173.5
195.0
240.5
217.8
373.0

From these results a space and time curve was plotted (Fig. 4). This
curve is not a parabola, as it would be if the resistance did not exist.
One must therefore find a new relation between time and distance fallen

through, which will conform to the time-space curve found by experiment.
A resistance proportional to the velocity gives the proper relation. The
solid curve (Fig. 4) shows the theoretical results according to this assump-
tion and the circles give the experimental values. The broken curve is
one for no air resistance. The terminal velocity reached by the sphere
was 243 cm. per ec. This is far in excess of any velocity reached by
the droplets.
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The mathematical development follows:
Vertical velocity at time t = V.
Terminal velocity = V'.
Mass of sphere minus mass of air displaced = m.
Mass of air displaced plus a possible fictitious mass = m'.
Total mass moving = m + m' = (M + Pa).
Acceleration due to weight without air resistance = g.

The equation of motion is exactly the same in form as the one deduced
for motion in the horizontal direction, based upon the properties of
the sine-curve path of a droplet. The equation is

(s&) , dV, dV,
mg —p, U = (m + m')

~
* ——(M+ p,)

The first integral is

(32)
mg

V = —I —e +"' for V =0S
p

1=0,

and the second integral is

X=—5+mg, t.
' —I

It is we11 to note that the value of the constant p, in this case is not
given by Stokes' formula 6 spr. Its value is p, = mg/U'. The terminal
velocity U' was 243 cm. /sec. , which gives

5.I76 X 980
p, = 2 I t7)

243
While 6 x'p, v = .03I3.

It is an easy matter to deduce a general relation between the variables
involved when light spheres are allowed to fall in the air. It is only
necessary to eliminate the exponential term in equations (32) and (3g).

From (3a)
p.V.m+ m~

mg
Substitute in (33)

mg mg , pV,X = —
&

——,(m y nz')
p, p,2 mg

Simplify

Let
mgU' =—
p.
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and

X = V't —TV,.

The initial conditions are x = o, t = o, V,. = o. V is the terminal

velocity, and T is some function of the time. This is true for velocities
where the resistance is proportional to the velocity. Fig. 4 shows this
is true for terminal velocities as large as 243 cm. per sec.

QOa

Q8Pg

Wd.

Fig. 4,

After U reaches terminal velocity U', TV' becomes a constant, which

can be called S, representing some distance to be subtracted from V't, or

X+ S = V't.

CONCLUSIONS.

The assumption that the vertical component of the velocity of a falling

droplet oscillating horizontally in an alternating field is constant through-
out the complete cycle, is verified within the limits of experimental error.
The resisting force due to air is proportional to the speed in the path of
the droplet.

No reason has been discovered why Stokes' constant 6m.pr does not
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apply to this case of accelerated motion, as well as to uniform motion in

a straight line.
The inertia of the droplet may be increased by a fictitious mass to a

slight degree, due to its motion in the air.
The droplets pick up a very large number of elementary charges, so

that the experiment is useless for finding the value of e.
For much larger speeds than are within the limits of Stokes' law, the

resisting force is proportional to the velocity.
In conclusion, I wish to thank Prof. E, P. Lewis under whose direction

the work has been carried on, for his many suggestions.
UNIVERSITY OF CALIFORNIA,

APril Is, I9I8.




