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in this curve at 2 =0.37 'K and a maximum at T—0.08
'K. The predicted minimum has recently been found
(at 7=0.32 'K) in the experiment of Baum, Brewer,
Daunt, and Edwards. 'e Note added ie proof. S—ee in
addition S. G. Sydoriak, R. L. Mills, and K. R. Grilly,
Phys. Rev. Letters 4, 495 (1960), and D. M. Lee, H. A.

Fairbank, and E. J. Walker, Bull. Am. Phys. Soc. 4,
239 (1959), whose experiments show this minimum at
0.330 'K and 0.32 'K, respectively. We also consider
the inQuence of an external magnetic field on the melting
curve and find that very high ftelds (=10' gauss) are
required for an appreciable e6ect.
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The paper comprises theoretical and experimental studies of
the lattice dynamics of alkali halides. A theory of the lattice
dynamics of ionic crystals is given based on replacement of a
polarizable ion by a model in which a rigid shell of electrons (taken
to have zero mass) can move with respect to the massive ionic core.
The dipolar approximation then makes the model exactly equiva-
lent to a Born-von Kd,re,n crystal in which there are two "atoms"
of di8ering charge at each lattice point, one of the "atoms" having
zero mass. The model has been specialized to the case of an alkali
halide in which only one atom is polarizable, and computations of
dispersion curves have been carried out for sodium iodide. We
have determined the dispersion v(q) relation of the lattice vibra-
tions in the symmetric L001j, L110j, and $111j directions of
sodium iodide at 1jO'K by the methods of neutron spectrometry.

The transverse acoustic, longitudinal acoustic, and transverse
optic branches were determined completely with a probable error
of about 3%. The dispersion relation for the longitudinal optic
(LO) branch was determined for the $001$ directions with less
accuracy. Frequencies of some important phonons with their
errors (units 10n cps) are: TA[0,0,1)1.22+0.04, LA)0,0,1]
1 82~0 06~ TAPs's~ iH1 52~0.05' LAHa'a'32 32~0 06' TOt Oi0'03
3.6v+0.1, TO/0, 0,1)3.8v&0.1, TOP„y,zs)3.5e+0.1. The agree-
ment between the experimental results and the calculations based
on the shell model, while not complete, is quite satisfactory. The
neutron groups corresponding to phonons of the LO branch were
anomalously energy broadened, especially for phonons of long
wavelength, suggesting a remarkably short lifetime for the
phonons of this branch.

I. INTRODUCTION

'HE lattice dynamics of a crystal is described by a
frequency, wave vector dispersion relation, inso-

far as it is harmonic. In the last few years it has become
possible to determine experimentally this dispersion
relation using x-ray diffraction and neutron spec-
trometry. The dispersion relation has been measured
fairly accurately for several metallic' 4 and semicon-
ducting 5 ~ crystals consisting of one kind of atom. The
only determinations for crystals having more than one
kind of atom have been by x-ray diGraction methods.
However, there is good reason to believe that neutron

*This paper was presented at the Washington, D. C., Meeting
of the American Physical Society, April 30-May 2, 1959 LBull.
Am. Phys. Soc. 4, 246 (1959)$.

f Visiting scientist from the Cavendish Laboratory, Cambridge,
England, now returned.

t E. H. Jacobsen, Phys. Rev. 97, 654 (1955). Earlier references
to x-ray work are given here.' C. B.Walker, Phys. Rev. 103, 547 (1956).' B.N. Brockhouse and A. T. Stewart, Revs. Modern Phys. 30,
236 (1958).Earlier references to neutron work are given here.

4 B.N. Brockhouse, T. Arase, G. Caglioti, M. Sakamoto, R. N.
Sinclair, and A. D. B.Woods, Bull. Am. Phys. Soc. 5, 39 (1960).

«B. N. Brockhouse and P. K. Iyengar, Phys. Rev. 111, st 4'?

(1958).
A. Ghose, H. Palevsky, D. J. Hughes, I. Pelah, and C. M.

Eisenhauer, Phys. Rev. 113,49 (1959).
s B.N. Brockhouse, Phys. Rev. Letters 2, 256 (1959).
s H. Cole, J. Appl. Phys. 24, 482 (1953).' D. Cribier, Ann. phys. 4, 333 (1959).

Eo—8'=&h v
—=&Ace,

Q—=ko-k'= 2sr'v-tl,
(1.1.1)

where Eo and ko are the energy and momentum of the
incident neutrons, and ~ is any vector of the reciprocal

IR. Weinstock, Phys. Rev. 65, 1 (1944).
n G. Placzek and L. Van Hove, Phys. Rev. 93, 1207 (1954).

measurements are much more accurate than are x-ray
measurements for crystals with more than one atom per
unit cell. Thus it seems desirable to study such crystals
by neutron spectrometry.

In the determination of the dispersion relation by
neutron spectrometry energy distributions of initially
monoenergetic neutrons are measured after scattering
by a single crystal in known orientation. The frequencies
v and wave vectors q of the vibrations are inferred from
conservation of energy and momentum between the
neutrons and single phonons. ' ""If the frequencies and
wave vectors of the phonons are well defined then sharp
groups (broadened of course by imperfect resolution)
are observed in the neutron energy distributions. The
center of a neutron group is taken to define the energy
(E') and wave vector (k') of those neutrons which had
interacted with a particular vibration. The frequency
and wave vector of the vibration are given by the con-
servation equations
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lattice. (For the cubic crystals we shall consider,
~= (1/a) (h, k,l) where h, 0, l are a set of Miller indices
and a is the cubic lattice constant. )

In addition to determining the t (q) relation, it is
important to assign observed phonons to the proper
branch of the dispersion relation (e.g. , longitudinal or
transverse, acoustical or optical). This can be done to
some extent from measured intensities of the observed
neutron groups and consideration of crystal symmetry,
but in general the intensities, and therefore the assign-
ments to branches, are sensitive to the details of the
interionic forces. Thus, it is very helpful to the conduct
of the experiments to have dispersion curves and
intensities computed from some reasonably realistic
model of the crystal. ' A calculated dispersion relation
also makes easier the initial steps in the determination of
the experimental relation by the method of successive
approximation. '

The simplest and best understood of the crystals con-
taining two or more diferent kinds of atoms are un-
questionably the alkali halides with the sodium chloride
structure. According to the Born theory of ionic crys-
tals, "the atoms are ions with unit (positive or negative)
charge, the binding being largely due to the Coulomb
interaction between the ions, and the crystal being
stabilized by short-range repulsive forces between near-
est neighbors. The positive and negative ions lie on two
interpenetrating face-centered cubic lattices, which to-
gether make up a simple cubic lattice if the diBerence
between the ions is ignored. The crystal has the full
symmetry of the face-centered cubic lattice, facilitating
both experiment and calculations.

The lattice dynamics of the NaCI structure has been
discussed by Lyddane and Herzfeld, " Iona, '4 Keller-
mann, "Born and Huang, "and very recently by Lund-
quist, Lundstrom, Tenerz, and Wailer. " Kellermann
computed the complete lattice dynamics for a system of
point ions interacting with Coulomb forces and with

central repulsive forces between nearest (unlike) neigh-

bors. Lyddane and Herzfeld in addition took into
account the fact that the ions themselves are polarized

by the electric fields accompanying the lattice vibra-
tions. However, they neglected the fact that the overlap
forces between ions depend on the state of polarization
of the ions, and conversely. Thus they obtained in-

correct results. This point has been discussed for the
special case of long waves (q ~ 0) by Born and Huang.

~ For a comprehensive elementary treatment see F. Seitz, The
3Ioderrs Theory of Solids (McGraw-Hill Book Company, New
York, 1940), Chap. II."R. H. Lyddane and K. F.Herzfeld, Phys. Rev. 54, 846 (1938).

'4 M. Iona, Jr., Phys. Rev. 60, 822 (1941)."E.W. Kellermann, PhiL Trans. Roy. Soc. (London) 238, 513
(1940)."M. Born and K. Huang, Dywaraica/ Theory of Crysta/ Lattsees
(Oxford University Press, New York, 1954).

'7 S. O. Lundqvist, V. Lundstrom, E. Tenerz, and I. Wailer,
Arkiv Fysik 15, 193 (1959). See also J. R. Hardy, Phil. Mag. 4,
1278 (1959).

In this paper we present (Sec. 2) a theory of the lattice
dynamics of ionic crystals which takes account of the
polarizability of the ions for vibrations of all wave-
lengths. The theory is based on a model of an ionic
crystal already used by Dick and Overhauser' and by
Hanlon and Lawson" in studies of the dielectric
properties of alkali halides, and by one of us" in a study
of the lattice vibrations of germanium. Calculations
from the model in its simplest form —Coulomb forces
between all ions, each having unit (positive or negative)
charge, and a short-range central repulsive force between
nearest neighbors only —give dispersion curves in good
but not complete agreement with the experimental
results on sodium iodide. In this simple form the number
of parameters is sufficiently small (three) that they are
entirely 6xed by the accurately measured elastic con-
stant c» and the high- and low-frequency dielectric con-
stants. By consideration of more complicated force
models we are to some extent able to 6x limits on the
ionic character of sodium iodide, and on the degree to
which noncentral 6rst neighbor forces, and second neigh-
bor forces, are important.

Sodium iodide was chosen for study for the following
reasons:

1. The ratio of the masses of the two constituent
atoms is large. Hence the optical and acoustical branches
are well separated in frequency, a fact convenient for the
experiments and desirable for study of the properties of
the two types of vibrations.

2. The polarizability of the sodium ions is negligibly
small compared with that of the iodine ions, resulting in
simplification of theoretical calculations.

3. Large single crystals are commercially available.
4. The neutron scattering properties are acceptable,

which is not the case for all alkali halides.

Both iodine and sodium have reasonably small capture,
the scattering by iodine is almost coherent, and the
scattering by sodium is about 50% coherent. Thus,
about 70% of the scattering by NaI is coherent. How-
ever, the 50% incoherent scattering by the sodium
atoms produces a troublesome background scattering at
energy transfers corresponding to the optical modes.
(Since in the optical modes the light element moves
farther, it causes most of the scattering. See Sec. 3.)
This is especially serious since it turns out that the
transverse optical mode has an almost constant fre-

quency, and therefore this component of the incoherent
scattering appears as a neutron group in the energy
distributions at all scattering angles and crystal orienta-
tions. This contaminant neutron group must be sub-
tracted quantitatively from all other groups represent-

'

ing phonons in this energy range.

'e B.J. Dick and A. W. Overhauser, Phys. Rev. 112, 90 (1958)."J.E. Hanlon and A. W. Lawson, Phys. Rev. 113,472 (1959}.
se W. Cochran, Phys. Rev. Letters 2, 495 (1959};Proc. Roy. Soc.

(London} A253, 260 (1959).
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Coulomb interactions between ions throughout the
crystal. The polarizability of the ions is neglected. The
force between nearest neighbors is taken to be a central
force, so that the energy per unit cell is given by

Z282

(a)

where e~ is the Madelung constant, 2rp the side of the
(cubic) unit cell and Ze the charge on the positive ion
(e=+4.803X10 "esu). Two parameters A and 8 are
defined in terms of the derivatives of the overlap
potential C (~& by

Fin. 1. (a) Values of l and of rc for near-neighbor atoms. (b)
Illustrates the notation used to define the gradients of short-range
potentials. The atoms shown are all in the ys plane.

~(&)
rp r =rp 2'v

e2A
(2.1.2)

Measurements are presented (Sec.4) of the dispersion
relation of sodium iodide at a temperature of 110'K in
the three directions of highest symmetry L001), L1117,
and L110j. The acoustical and transverse optical
branches behaved in the way exprected from theory. For
the longitudinal optical branch we obtained the un-
expected result that even at the low temperature of
110'K the neutron groups were not sharp, but energy
broadened. This result suggests (Sec. 5) that at tem-
peratures down to 110'K, at least, the longitudinal
optical phonons have rather short lifetimes. This eGect
is to be investigated in a separate publication.

2. LATTICE VIBRATION THEORY

In this section we present theoretical calculations of
the dispersion curves for two models; the point ion
model often considered before, and the so-called shell
model' ' in which the polarizability of the ions is
specifically taken into account. This model is specialized
to the case in which only one ion—for NaI the iodine
ion—is polarizable. Theoretical discussions of several
topics which are not directly applicable to the experi-

" mental work on sodium iodide are given in three ap-
pendixes. These topics include a discussion of the eGects
of ionic polarizability on elastic constants, the eGects of
introducing noncentral interactions and interactions
between second neighbors, and a discussion of the
properties of crystals in which both ions are polarizable.

2.1 Theory of Vibrations of a Lattice
of Point Ions

Since the present work is an extension of Keller-
mann's, "we begin with a brief summary of his treat-
ment of the problem, at the same time explaining our
own notation. We shall find Figs. 1(a) and 1(b) useful

in de6ning certain terms. In Kellermann's approxima-
tion the atoms are regarded as exerting short-range
"overlap" forces between nearest neighbors only, with

7

r =rp 28

where v=2rs' is the volume of the (trigonal) unit cell.
The appearance of e'/2v in these definitions is merely a
convention which makes A and 8 of a convenient order
of magnitude. Kellermann takes Z=1 throughout his
work. We use the superscript (R) to distinguish quanti-
ties associated with the repulsive interaction between
ions from those associated with Coulomb interaction,
for which we use the superscript (C). Kellermann shows
that for the static lattice to be in equilibrium,

8= ——,O,~Z2= —1.165Z'

and that the elastic constants are given by the ex-
pressions

p2 («)'
cia= A —2.56

4rp4 2rp'

e' (Ze)'
cis=- 8+1.28

4rp' 2rp'

(2.1.3)

c44 =0.696(Ze) '/2rs4,

and the compressibility P by

1 cii+2cis c
(2+28).

12rp4

In general a force constant between atoms of type z and
I(.
' in unit cells l and l' will be written as

4 (llew, l'~') =C,s (l~,l's')
BSHE/

=C 'n'(la lY)+s'C &o'(ls)lV).

C',„'"i(llr,l'~') will usually be zero unless the atoms are
nearest neighbors. If we take ~= 1 to denote the positive
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ion, and label the unit cells as shown in Fig. 1(a), it
follows from these definitions that

corresponding dimensionless functions of p, given by

C„&~'(01,02) =C»&~&(01,12) =etc.=e'B/2p, and (2.1.8)

and

C „&"& (01,02) =C „&~&(01,12) = etc. = epA/2n.

(2.1.4)

Other force constants such as C,„&~~(01,02) are identi-
cally zero.

In a lattice vibration, the displacement u(lK) of an
atom from its equilibrium position r(lK), due to a normal
mode of wave vector q(g= 2s/X) and circular frequency
co is given by

u(k) = U(K) expi(q r(k) —ppt). (2.1.5)

The direction of U specifies the polarization of the mode
(note that polarization frequently occurs with another
meaning). We now define quantities to which we shall
refer as cocci elts,

R,„(KK') = —P C,„&"'(k,l K')

and
&&exp(iq I r(l K') —r(k))},

(2.1.6)

(KK ) — P C (C) (lK PK )

In these expressions r~ denotes a lattice translation and,
for a sodium chloride type of structure, r(1)=0, r(2)
= (rp,0,0). These quantities were evaluated by Keller-
mann using the Kwald method, and have been tabulated
for 48 positions of q in the unique volume of the BriI-
louin zone. It is more convenient in this case to use

)&exp(iq pr(l'K') —r(k)$).

Their sum, which is similarly related to C „(k,l K'), is
given by

M~K(KK ) =R~p(KK )+Z C~p(KK ) .

The coei5cients R,„(KK') are fully determined by the
parameters A and 8, for example,

R„(12)= —(e'/p) fA cosy, rp

+B(cosy„rp+ cosy, rp)], (2.1.7)

when only nearest neighbors interact. From their
definition in terms of the electrostatic potential, it
follows that

BP ( 1
C,„(11)=—eP lim P'

~ ~
expiq ri,

away E (r—ri( i
and

C,„(12)=e' expiq Lr(2) —r(1)j
8' ( 1

X lim P ( ~
expiq ri' «» —'&» i gxcly (~r—rishi

(Ci), and (Cp), then tend to the same value at q=0.
The fact that (Ci) and (Ci)» tend to different values
as q

—+ 0, +8m./3 and —4n/3, respectively, for q along
L100j is well known. "'P

The equations of motion of the ions lead to the set of
equations

g )M,„(KK') m„pp'—b,„b„„jU„(K')=0, (2.1.9)

and the condition for the solubility of this set of equa-
tions then gives a determinantal relation for pp(q),

M—Ieuo'I =0, (2.1.10)

2.2 General Theory with Polarizable Ions

The connection between the polarization of ions and
the repulsive force between them has recently been
considered by Yamashita and Kurosawa, "by Dick and
Overhauser, "and by Hanlon and Lawson. ' These latter
authors" " have independently suggested a "shell
model" for an ion having a closed electron configuration.
Their models are somewhat diferent, particularly as to
the charge in the shell, which represents the outer
electrons. We have used this model with certain exten-
sions in an attempt to give an improved theory of the

2' J. Yamashita and J. Kurosama, J. Phys. Soc. Japan 10, 610
(1955).

where I is the unit matrix of order six, and the elements
of the matrix M are the coefficients M,„(KK'). For the
type of lattice we are considering, where every ion is on
a center of symmetry, M,„(12)=M„,(21), and, if only
nearest neighbors interact and the ions are not polariza-
ble, M,„(11)=M.„(22).

Kellermann's theory accounts quite well for the
measured elastic constants and the infrared absorption
frequency of sodium chloride, and leads to a frequency
distribution of the normal modes which explains quanti-
tatively the variation of 0& with temperature. The
theory is, however, inconsistent with the dielectric
properties of the alkali halides, since the polarizability
of the ions is neglected. Lyddane and HerzfelcP' had
shown, prior to Kellermann's work, that when this is
taken into account, there is wide disagreement between
the calculated and measured values of the infrared
absorption frequency, and indeed the lattice should be
unstable against certain vibration modes (see later).
They attributed this to their neglect of the fact that the
short-range interaction between ions is dependent on
the state of polarization of these ions, and vice versa.
The theory given in subsequent sections takes this
factor into account.
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lattice dynamics of ionic crystals. A simple version of
the theory which applies when only the negative ion is
polarizable is found to be in fairly good agreement with
our experimental results for sodium iodide. The general
treatment is applicable to any diatomic cubic crystal in
which the surroundings of each ion have tetrahedral
symmetry, " and therefore includes NaCl, CsCl, ZnS,
and isomorphous structures. The theory remains within
the framework of the Born-von Karman theory; in
particular both the harmonic and the adiabatic approxi-
mations are utilized. In the Born-von Karman theory
the energy perturbation in the lattice is written

C s =——,
' P P P eg„(/x, /'x')N. (/x) I„(/V), (2.2.1)

necessarily involving the same parameters A and 8 as
appear there.

The matrix M of Eq. (2.1.10) is of order six for a
cubic diatomic crystal. Use of a shell model with both
ions polarizable raises the order to twelve. Fortunately
however, when t1 is in one of the directions L100$, $110],
or L111$ the set of Eq. (2.1.9) can be reduced to three
separate sets, for in other words the determinant
(2.1.10) factorsj, each of which determines o&(q) for a
single mode, for which the polarization is 6xed by the
space-group symmetry of the crystal. For example,
with q along t 100$, U„=U, =O in Eq. (2.1.9) (for a
longitudinal mode) and Eq. (2.1.9) reduces to

aa' ll' ay r&s~'U(x) =P M (xx') U(x'), (2.2.3)

where for an alkali halide a assumes the values 1 and 2.
The equations of motion

m.g'X(/x) = Ns/r)N—,(/x),

then lead to Eqs. (2.1.9).The summation (2.2.1) is now
extended over four values of ~, ~=3 denoting the shell of
the positive ion, x=4 that of the negative ion while
indices 1 and 2 refer to the corresponding cores. The
charge in a particular unit x (core or shell) is taken as
X&e, X2e, F&e, Y&e, for a=1, 2, 3, and 4, respectively.
The charge on the positive ion is then Zie= (Xi+y i)e,
and on the negative ion, Zse = (Xs+Fs)e, while
Zi+Zs=O.

The force constants coupling a shell isotropically to
the core of the same atom are denoted by k& and k2 for
the positive and negative ions, respectively. The polariz-
ability of a free negative ion is then F's'e'/ks, we shall
find, however, that its value is reduced in the crystal.
Separate symbols for the short-range force constants are
introduced as follows:

C',„'s&(/3, /'4), between the shells,

C' „'n&(/1, /'2), between the cores,

4,„'~&(/1,/'4), core of positive to shell of negative ion,

C,„&"&(/3,/'2), shell of positive to core of negative ion.

Although it is not dictated by the physics of the
problem, we propose to assume that the two latter force
constants are equal. This makes the interaction between
two ions completely symmetrical and simplifies the
analysis, besides being physically not unreasonable.
There are coeKcients corresponding to the various force
constants fEq. (2.1.6)j.For example,

where in this case M(xx') =M, (xx'). A similar expres-
sion applies whenever the direction of U is axed by
symmetry, and, in general, M(xx') of Eq. (2.2.3) is a
linear combination of M (KK ), M „(KK ), etc. Symbols
such as M(xx'), R(xx') without the suffixes will always
denote such a linear combination. Explicit formulas, for
the three possible directions of g are given in Table I. It
follows that when q is in a symmetry direction the
matrix M is only of order four even when both ions are
polarizable.

Equations (2.2.3) must be invariant under a uniform
translation of the crystal, that is, there must be a solu-
tion with o&=0 corresponding to U(1)=U(2)= U(3)
=U(4). Hence (Q„M(x&r')),=a=0. Use of this fact
together with previous definitions gives

M(11)=ki+D(11)+F(11)+XisC(11),
M(12) =D(12)—XiXsC(12),

M(13)= —ki+XiFiC(11),
M(14) =F(14)—XiFsC(12),

M(22) =kg+D(22)+F(22)+Xs'C(11),
M (23)=F*(32)—XsFiCe(12),

M(24) =—ks+XsF'sC(11),

M(33) =ki+S(33)+F(33)+I'isC(11),

M(34) =S(34)—FiFsC(12),

M(44) =ks+S(44)+F(44)+I"ssC(11).

TABI.E I. Explicit expressions for the matrix elements M(xx')
for modes in the symmetry directions derived following
Kellermann. '

S (34) P 4, ts&(/3 /4 Mode (q) Polarization

Pexpiq Lr(/'2) —r(/1)$. (2.2.2)

In this definition use has been made of the fact that
r(/2) =r(/4) and r(/1) = r(/3). D,„(12) and F „(14)
=F,„(32) are similarly defined in terms of the appro-
priate force constants. S„(34)for example will be given
by an expression similar to Eq. (2.1.7), although not

L[
T[
L[
T[

Tm[

100
100
111)
111]
110]
110]
110]

[100]
[010]etc.

[TT2] etc.
[110]
L001j
[1T0]

See reference 15, pp. 540-542.

w..(«')

iV„(zx')+2M,„(gx')
M, ( ')—M,„( ')~"(«)+~.",(«)
M„(«')
M (KK ) 3f y(KK)—



I.A T 'I' I C E D Y N A M I C S 0 F A L K A L I H A L I 0 E C R Y S T A I. 8

Do =—D(11)=D(22) = —(D),=p,

So—=S(33)=S(44)= —(S),=o,

Fo—=F(11)=F(22) =F(33)=F(44) = (F)p=o.

(2.2.5)

Making use of the definitions of Ci and of Cp LEq.
(2.1.8)), Eqs. (2.23) written out in full become

tn&CPU(1) =Pkr+Dp+Fp+XP(e'/v)cr) U(1)

+LD+XtXs (e'/v) Cs) U(2)

+L
—ki+XiFi(e'/v) Ci)U(3)

+LF+XtFs(e'/v)cs) U(4),

presto'U(2) =LD '+XsXr(e'/v)cs*) U(1)

+Lks+Do+F o+X/(e'/v)Ci) U(2)

+LF*+XsFi (e'/v) Cp*)U(3)

yP —k,+X,F (e'/v)C )U(4),

pipppp'U(3) = L
—k,+FiXi(e'/v) Ci)U(1)

+$F+FiXs(e'/v)cp) U(2)

+t kl+Sp+Fp+ Yl (~/v)cr)U(3)

+PS+F,F,(./v) C,)U(4),

m4pp' U(4) =LF*+FsXi (e'/v) Cp*)U (1)

+5-kp+FsXs("/v)ci)U(2)
+p*+FsFt(ep/v)co*) U(3)

+Pks+So+Fo+ Ys'(e'/v)Ci) U(4).

(2.2.6)

We may now introduce the equivalent of the adiabatic
approximation by setting m~=m4=0, so that the shells

occupy positions of equilibrium at each instant. Using the
third and fourth equations one may then eliminate U(3)
and U(4) from the first and second equations, which
then in principle provide a solution of the problem.

It is, however, both convenient and illuminating to
express these equations first of all in terms of coordi-

The remaining coefBcients can be written down by using
the fact that the matrix whose elements are the jf'(xx') is
Hermitian. The following conditions then hold

{D(11)+D(12))p=o=0,

{S(33)+S(34)), p=0,

{F(11)+F(14)),p ——0,

{C(11)+C(12))po=0.

When only nearest neighbor atoms interact with short-
range forces, as will be assumed in most of this work,
D(11),S(33), etc., are constants, independent of pl, and
the notation may then be simplified by writing

D=—D(12),
S=S(13),
F=—F(14),

and

nates U(1), U(2), and W(1)= U(3) —U(1), W(2)
=U(4) —U(2). These quantities are related to the
dipole moments p(/1) and p(/2) by the equations

p(/1) =eFiW'(1) expiLq r(l1)—oi/),

and similarly for p(l2). We comment on the significance
of this later. On adding together the first and third of
Eqs. (2.2.6), and the second and fourth, and introducing
W(1) and W(2), we obtain

mtpp'U(1) = tgo+ Zts (e'/v) Ci)U(1)

+LJt!+Zrzp(e'/v)cs) U(2)

+LTo+Zr Yi (e'/v) Ci)W (1)
+ PT+Z, Y,y/. )C,)W(2),

m»PU(2) =Le*+Z,Z (es/v)C, *)U(1)

+D4+Z, (~/v)C, )U(2)

+ LT~+Zs Fi(e'/v) Cs*)W(1)

+LTp+Zp Ys(e /v)Ci)W(2), (2.2.7)

0=LTo+ YiZ, (e'/v) Ct) U(1)

+LT+Y,z, (e%)cs)U(2)

+LTo+ ki+ F,'(e'/v) Ci)W'(1)

+LS+YiYp(e'/v)cs) W(2),

0= ET*+Fpzs (e'/v) Cs*)U(1)

+/To+ Fszs(e'/v) Ci) U (2)

+LS*+Fs Fi(e'/v) Cp*)W(1)

+LTo+ks+ Fs'(e'/v) Ci)W(2),

where E=D+S+2F, and

T=S+F. (2.2.8)

PP K. B. Tolpygo, J. Exptl. Theoret. Phys. (U.S.S.R.) 20, 497
(1950).

~' V. S. Mashkevich and K. B.Tolpygo, J.Exptl. Theoret. Phys.
(U.S.S.R.) 32, 520 (1957) Ltranslstion: Soviet Phys. —JETP 5,
435 (1957)j.

Jt will be noticed that Eqs. (2.2.7) are somewhat mo re
symmetrical than Eqs. (2.2.6) from which they were
derived. Equations (2.2.7) could, in fact, have been
derived in another way, which consists in expressing
the energy perturbation t C» of Eq. (2.2.1)) as a
quadratic function of the nuclear displacements u(/x)
and the atomic dipole moments p(/x). Tolpygo~ and
Mashkevich and Tolpygo" have given a wave-mechani-
cal justification for this procedure, using the tight-
binding approximation. Their analysis was not taken in
a direction that would lead to Eqs. (2.2.7), however, and
their expression for the energy perturbation does not
include terms which correspond to the coefFicient S in
Eqs. (2.2.7). A theory resembling that of Mashkevich
and Tolpygo in some respects has also been proposed by
Yamashita and Kurosawa. si Equations (2.2.7) may be
derived in a purely phenomenological way by Postl/ating
an expression for the energy perturbation C» of the form
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Cp ———-,'Q Q C,„'"'(L~,LY)u, (L~)u„(LY)
la~ l'a'y

u. (L~)p„(LY) p (L~)u„(LY)-
+C„„&r&(L~,LV) +

F„e F„e

1
+ 4 & '(L~)LY)p, (L~)p„(LY)

applicable to sodium iodide, being the situation when
only the negative ion is polarizable. In this case k&= 00,
k2= k, and V2= Y. Since the short-range interaction can
be described in terms of two coefFicients, involving force
constants between the positive ion and the shell of the
negative ion, and between the positive ion and the core
of the negative ion, we may set F=0 and retain only 5
and D. When each ion is on a center of symmetry, as in
an alkali halide, we have A (12)=A (21)=A*(12). The
polarizability of the negative ion is given by

F'e'

k+Sp
~

~ ~ ~fP, (—L~)+Z„eu, (L~)]E (L~)
~

. (2 2 9) where (2.3.1)
4zo. &

—1

3v v+2

It is then found that

A(11)=Ep-
f(k+Sp)

2SVC2
Cg- +-(Cio—Coo)

(k+Sp)Z v

Z e

SSp
A(12) =A(21) =R—

f(k+Sp)
(2.3.2)

Y(CiS—CpSp)—Cp+
Z2e2

m„u, (L~) = ,
——0=

Bu.(L~) Bp.(La) (k+Sp)Z

Here E(kc) is the effective field at r(hc) and n„ is the
polarizability that an atom of type A: would have in
the absence of short-range interaction between the
dipoles (that is, when C,„ie& =0).The actual polarizabil-
ity of the atom in the crystal is not quite the same as
n, . Further discussion of this point will be found in
Appendix 3. The constants F~ are now to be regarded
simply as normalizing factors;when they are equal they
could be incorporated in the "generalized force con-
stants" C,„&~) and C „&~& to give an expression com-
pletely symmetrical in u and in p, the coordinates and
dipole moments. Use of the expression (2.2.9) with the
equations of motion given by Mashkevich and Tolpygo"

leads eventually to Eqs. (2.2.7).
However derived, Eqs. (2.2.7) provide in principle a

solution of the problem, for on elimination of W(1) and
W(2) we obtain two equations which may be written

mb)'U(1) =A (11)U(1)+A (12)U(2),

mood U(2) =A*(12)U(1)+A (22) U(2),
(2.2.10)

leading to the characteristic equation

So'
A(22) =Rp-

f(k+Sp)

Z'e'1 2Sp Y
+ Ci 1+

fv I (k+So)Z

Here f is simply a convenient abbreviation for
1+(n/v)Ci. If k —+ ao these results become

A (11)—m&coo A (12)

A (22)—m2pi'
=0, (2.2.11)

A(11)=A(22) =Eo+Z'e'Ci/v,

A (12)=A (21)=R—ZoePCp/v

as the condition for solubility. If the analysis is extended
to include short-range interaction between other than
nearest neighbors, the form of Eq. (2.2.7) is unchanged,
except that coefficients such as Ro are not constants, but
must be replaced by E(11) and E(22) which are func-
tions of q.

2.3 Negative Ion Polarizable

The general result obtained for the elements A (11),
etc. , of Eq. (2.2.11) by eliminating W(1) and W'(2) from
Eqs. (2.2.7), is very cumbersome, and we shall consider
only certain special cases in detail, the erst, which is

d = —SoY/(k+So) (2.3.3)

This quantity is positive, since Y is negative. It is a
measure of the polarizability of the negative ion under

which are just the expressions for the point ion model
and are identical with those results of Kellermann which
apply when q is in a symmetry direction. In particular
the coeKcient R, which from Eq. (2.2.8) appears here
as D+S, is seen to be identical with the coeKcient E
defined in Sec. 2.1. In other words D+S, as might be
expected, is the coefficient of the interaction of the ions
when they behave as rigid units. Returning to Kqs.
(2.3.2) we introduce a parameter
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S2e2d'
(11)=Rp-

S020.

g2 S Z2n
+—Z'Ci+2ZCod —+ (Cio—Coo)

So v (o)1,' ) Rp'+ (8)r/3v) (Z'e)'/(1+8v. n/3v)
(2.3.8)

p Ro' —(4)r/3v) (Z'e)'/(1 —4)rn/3v)Se2d'
(2.3.4)A(12) =R-

Son If we now define

the action of the short-range forces. Equations (2.3.2) Rp'=Rp —e'd'/n and replaces the ionic charge Ze by an
may then be written "effective charge" Z'e= (Z—d) e. In this last respect our

result agrees with that of Born and Huang. '
It is of some interest to show that these equations are

f consistent with the general" equation pp/o= (o)r,'/o)r') p=o.

Returning to Eq. (2.3.5) and introducing Rp' and Z' we
obtain

( 4)ru) ' p+2

3v)

so that

tr 8v n) ' p+2
and

3v&
7

36

e'- ( S)-
+——z~c,ydz

vf E Sp)

8d 8
A (22) =Rp — +—LZCi (Z—2d)).

n vf

We note that S is involved only in the sum R=D+S, .
and in the ratio S/Sp, from which it follows that the
experimental results will not enable us to determine D
and S separately, that is, we cannot deduce what
proportion of the overlap force acts through the shell.
If we assume that this force acts entirely through the
shell, then D=O and an experimental determination of
the values of Eo=So, d and 0. will give values for I' and k.

When I/= 0 we have S=—Sp D = —Dp LEqs. (2.2.5))
and Ci=Co. It follows that A(11)=A(22)= —A(12),
when )/=0. There is then a solution of Eq. (2.2.11),

e'd' e' Ci(Z —d)'-
(t)o) )o=o=Ro— +—,(2.3.5)

n v 1+nCi/V

where the reduced mass )M=mimo/(mi+mo). The fre-
quency of the transverse optic mode, co&, may be ob-
tained by setting Ci= —4)r/3 and that of the longi-
tudinal mode, o)r„by setting C&=+Sv/3. From Eq.
(2.3.1) we have, however, that

1+(8~/3v)(nynr) 1—4 n/3v
(2.3.10)

(o)p'3 o p 1—(4)r/3v) (n+nr) 1+8)rn/3v

If we now consider the state of equilibrium of a system
of cores and shells in an electric Geld, applied in such a
way that there is no depolarizing Geld, we Gnd that the
ratio of polarization P to effective field E is

P 1 (I"e)' (Z'e)' n+o.r

8 v i+So Rp' v
(2.3.11)

If the applied 6eld is of such high frequency that the
cores do not move, the term o,g does not appear. This
enables us to identify a and nl, respectively, as the
electronic polarizability of the negative ion, and the
ionic polarizability of the contents of one unit cell. The
electronic polarizability is related to the high-frequency
dielectric constant e by

4n-e e—1

3'v p+2
(2.3.12)

whrle the static dielectric constant eo is similarly related
to the total polarizability, that is

4r(n+nr) po 1—
3v op+2

(2.3.13)

e)r = (Z'e)'/Ro' ——(Z d)'e'—/(Ro e'd'/—n)) (2.3 9)

this result becomes

e2d2) 4~e2(Z d)2(o+2) When these results are used to eliminate n and nr from

(t)o)ro), o=
~

R,—
~

— (2 3 6) Eq. (2.3.10), the equation reduces to o)i,'/o)r =op/p.
n ] 9v When both ions are polarizable the derivation is more

cumbersome, but the same Gnal result is obtained.

8)reo (Z—d) o (p+2)
I+ (2.3./)

%hen the positive and the negative ions are relatively
displaced, as rigid units, by an amount u, the overlap
force acting on each is (Do+Sp)u=Rpu. From Eqs.
(2.3.6) and (2.3./) we see that use of a shell model for
the negative ion replaces Eo by an "effective coeKcient"

2.4 Calculations of Dispersion Curves

YVe have computed dispersion curves for NaI in the
three symmetric directions $100), L111),and L110), on
the basis of the two models previously discussed —the
point ion model, and the shell model with one ion only

2' R. H. Lyddane, R. G. Sachs, and E.Teller, Phys. Rev. 59, 673
(1941).
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PIG. 2. The dispersion relations
for sodium iodide in the $001),
$110), and (111) directions. The
points were determined by experi-
ment at 110'K. Some points in the
[001) direction are not inde-
pendent'of corresponding points
in the D10) direction. Such points
have been joined by a thin hori-
zontal line. The solid curves have
been calculated from the shell
model and the dashed curves from
the point ion model. These curves
coincide for the transverse branches
in the D11) direction. The slopes
of the heavy solid lines indicate the
appropriate velocities of sound as
calculated from the elastic con-
stants. The thick vertical bars
represent the uncertainties in
(vTo)q-o and (vLo)r-0 deduced
from existing knowledge of cop, e,
and 6p.

polarizable, and forces acting through the shell. The
calculated curves are shown in Fig. 2 together with
experimental points to be discussed later. In the calcula-
tions on the point ion model the single disposable
parameter was Axed by means of' the elastic constant
c~~. In the calculations on the shell model the three dis-
posaMe parameters, selected to be Eo=So, d, and a/t,
were 6xed by means of c~~ and the high- and low-fre-

quency dielectric constants, e and ep, by using Eqs.
(2.1.3), (2.3.12), and (2.3.13). (In addition the experi-
mental value of the lattice constant 2rs was used. ) The
values used are shown in Table II. The value taken for
cI~ when the computations were carried out was slightly
smaller than the best value now obtainable, based on the
measurements of Dalven and Garland. "The dielectric
constants were taken from a compilation by Born and
Huang. " In Table III the elastic constants, dielectric
constants, and infrared absorption frequency, ((or),=s,'s

as measured and as computed on the shell model, are
compared. The differences in the values of (a&r),=s are
compatible with the changes with temperature found

experimentally for NaC1 and KC1.'

As a matter of interest we also computed the disper-
sion curves in the L100j direction for the case in which
field polarizability is included, but distortion polariza-
bility is not taken into account. The results (Fig. 3)
show the instability already mentioned in Sec. 2.1, that
is, some of the acoustic frequencies become imaginary.

Ak' E;
0' p~

47r kp X;+1
g

2

~
—2W (3.1.1)

For phonon annihilation (neutron gain of energy)
X;=)exp(hv/%AT) —1$ ' is used; for phonon creation

TABLE III. Comparison of experimental elastic and dielectric
constants, and infrared frequencies, with those calculated on the
shell model. The elastic constants are in units oi 10"dyne/cm'.

3. NEUTRON SGATTERING THEORY

3.1 Coherent Scattering

The differential cross section per primitive unit cell
for scattering by phonons of the jth branch into one
neutron group satisfying Eq. (1.1.1) can be written as' 'r

TABLE II. Values of constants used in calculations
on the shell model for NaI.

rp=3.21 A
v=2rp'=66. 0 A3

Jto S0= (es/v) {2+28)=——3.22 X104 dyne/cm
d =—SpF/(k+Sp) =0.31

a/v = P'e'/(k+Ss) v =0.093
Prom these are found

k=25.5X104 dyne/cm
~
F (

=2.76 electrons in shell
and

cp(R.T.}
eo (110'K)
cur(110'K)
our(R. T.)

Experimental

0 359a
0 075'
0.0768'
2.91
6.60
6.18 {est.)

~ ~ ~

2.20X10"

Calculated

0.3504b
0.0758
0.0758
2.91b

~ ~ ~

6.f.sb
2.31X10'3

the "egective charge" Z(1 —d) =0.69

ss R. Dalven and C. W. Garland, J.Chem. Phys. 30, 346 (1959).
s' M. Hass, Bull. Am. Phys. Soc. 4, 142 (1959).

Extrapolated to 110 K from data of Dalven and Garland (reference 24)
measured in range 180'K to 300 K.

& Values used to fix disposable constants.

s7 I. Wailer and P. O. Froman, Aviv Fysik 4, 183 (1952).
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(neutron loss of energy) E;+1 is used. The geometrical
factor

J,=1+(eh/2E') Lk' gra, d, v,], (3.1.2)

(4"&)' bs' I:br/bs~Uf(2)/Uf(1)]s
g'(tl, ~) =— (3.1.3)

m, m, /m, +EU, (2)/U, (1)]
'

where e=+1, —1 for neutron energy loss or gain,
respectively, sums over the number of normal modes
contributing to one neutron group. In the notation of
Sec. 2 the structure factor g; for inelastic scattering
(with q in the symmetry direction) is given by

222

220

III,
8'

,Ill
'B

222

220

where b~ and b2 are the bound coherent scattering ampli-
tudes of the two types of atoms, ez~ and m2 are the
masses of the two atoms, and g; is a unit vector in the
direction of polarization of the waves. The plus sign is
used for even ~ points and the minus sign for odd. )The
Debye-Wailer factor e '~ has been assumed to be the
same for the two types of atoms. If the two atoms have
different Debye-Wailer factors the ratio b&e ~'/bse ~'
appears in the bracket in Eq. (3.1.3) instead of br/bs and
e '~' appears in Eq. (3.1.1).]

The reciprocal lattice is body-centered cubic. Figure
4 shows the (110) plane of the reciprocal lattice, each
point being surrounded by its zone. The structure
factor Eq. (3.1.3) repeats over the larger unit shown by
bold lines. The structure factor has been computed for
the symmetric directions in sodium iodide, using the
two models of Sec. 2. The values taken for the scattering
amplitudes were" b~=0.35 for sodium, and b2=0.52 for

7----

6

5
C3
43
cn

M

0

(001)

Fro. 3. The dispersion relations for the L0011 direction calcu-
lated from the model of Lyddane and Herzfeld in which the
polarization depends only on the electric field and not on the
distortion of the ions. The parameters used in this calculation were
the same as those used for the shell and point ion models except
that d=0.

28 Eegtron Cross Sectiorls, compiled by D. J. Hughes and R. B.
Schwartz, Brookhaven National Laboratory Report BNL-325
(Superintendent of Documents, U. S. Government Printing Once,
Washington, D. C., 1958), 2nd ed.

io
P22 222

iodine. The quantities g, are plotted in Fig. 5 in units
of (bs( 0)'/msv.

3.2 Incoherent Scattering

It can happen that there is an ambiguity in the
scattering amplitude (b,) at a particular lattice site (~)
because of the occurrence of diGerent neutron-nuclear
spin states, or that there are ambiguities in the scatter-
ing amplitude, atomic mass (m„), or wave amplitude
U(s) at the site because of the presence of different
isotopes on the site. Fluctuations in the masses and
wave amplitudes due to isotopes cannot be taken into
account accurately, because they give rise to eGects on
the normal modes themselves of the same order as the
eGects on neutron scattering. The ambiguity in the
scattering amplitude can be taken into account, how-
ever, and gives rise to an incoherent scattering.

The incoherent cross section of the atoms on sites of
type rc is defined in the usual way as

o;„,(s) =4s ((b')—(b)'). (3.2.1)

In general the incoherent scattering can be calculated in
terms of these cross sections for a crystal with more than
one atom per unit cell, only if the frequencies, @ed zouave

amphtldes of all the normal modes are known, a formi-
dable requirement. In this paper however, we are
interested largely in computing the incoherent scatter-
ing due to the very Oat transverse optical modes, which
appears in the energy distributions as a neutron group,
and which can be confused with the coherent scattering.

For the particular case of sodium iodide the ratio of
the masses of iodine to sodium ms/mr=5. 5. The calcula-
tions of Sec. 2 showed that, for all the optical branches
in the symmetry directions, the. ratio of the wave ampli-
tudes U(2)/U(1)(mr/ms=0. 18. In the optical modes
therefore essentially only the light atoms move. Since

Fro. 4. (110)plane of the reciprocal lattice of NaI, each lattice
point surrounded by its zone. The rectangular figure BABEBABEB
is the unit over which the structure factor repeats.
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the sodium atoms are on a cubic lattice, the theorems of
Placzek and Van Hove" on the incoherent scattering by
a'monatomic cubic lattice apply. The ratio of incoherent
to coherent scattering for the transverse optical modes is
therefore

o.;„,(kp ~ k') 2 Q'o;„,(Na)

...(k, ~ k') 3 (0 g)'~...(Na)
(3.2.2)

0
0

FIG. 5. Calculated structure factors, g', for (a) the point ion
model, and (b) the shell model, in units of bp(g Q)'/nspv for the
three symmetric directions in the Brillouin zone. The capital
letters refer to the positions in the reciprocal lattice shown in
Fig. 4.

using two different neutron spectrometers. All measure-
ments were made with the (110) plane of the crystal
horizontal.

The crystal was a 3.8-cm cube supplied by the
Harshaw Chemical Company. Its faces were cut parallel
to the {100)planes. The full widths at half maximum of
the rocking curves of the (222) planes as measured in
the parallel position against a (220) plane of a silicon
crystal were about 14' deg.

The measurements were made with the crystal
mounted in a metal cryostat. The specimen was cooled
from above and was surrounded by a radiation shield in
contact with liquid nitrogen. The temperature of the
crystal was 110'K.

Some of the results were obtained at the Chalk River
EEX reactor using a time of Right spectrometer" in
which a pulsed beam of monochromatic neutrons was
produced by Bragg reflection from (220) planes of an
aluminum crystal spinning about its $111) axis. The
wavelength was 1.54 A. Some of these neutrons were
then scattered by the sodium iodide crystal into one of
the three counters shown in Fig. 6. The times of Right
of neutrons which entered the counters were measured
directly from the time they left the spinning crystal to
the time the count was recorded. The spectrometer was
calibrated by subtracting the observed time of Right for
neutrons which entered a counter mounted in the speci-
men position from the time of Right observed for the
elastic peak when vanadium was in the specimen posi-
tion. The values obtained by this method were checked
against absolute measurements of appropriate lengths
and angles, the agreement being within the experi-
mental error in either calibration. The full width at half
maximum of the vanadium peak represented a wave-
length spread of about 0.045 A.

One of the features of this spectrometer was the use
of three counters spaced 1.2 degrees apart. In the
method of successive approximations (see below) one
counter will not always yield a phonon in the desired
direction, but the probability of obtaining such a

(We have used the facts that there are two TO modes
per sodium atom and that

~
J~ =1 for the flat TO

modes. ) All other quantities are the same for coherent
and incoherent scattering. This is slightly an over-
estimate in the case of NaI since scattering by the iodine
does make a small contribution and is nearly all coher-
ent. The cross sections for sodium are": O.„h=1.55 b,
0;„,= 1.85 b. For the most favorable polarization
therefore

~BEAM FROM REACTOR

~QUARTZ Fll.TER

~COLLIMATOR

~SPINNING CRYSTAL (8000 R.P M )

LS EO MONOCHROMATlC SEA M

o.;„,(kp -+ k')/o, .h(kp -+ k') =0.8.

4. THE EXPERIMENT METIIQS ——

COUNTERS

I

I:I
I

4.1 Experimental Methods

The experiment consisted in measuring the energy
distributions of initially monoenergetic neutrons which
were scattered from a single crystal of sodium iodide,

TlhllE OF FLIGHT SPECTROMETER

Fxo. 6. Schematic layout of rotating crystal time
of flight spectrometer.

~ B. ¹ Brockhouse, Bull. Am. Phys. Soc. 3, 233 (1958).
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FIG.. 7. Typical neutron distributions obtained with the time of
Right spectrometer for a single setting of the sodium iodide crystal.
The corresponding positions in the (110) plane of the reciprocal
lattice are aho shown.

phonon is increased when three counters are used. More
generally, interpolation between the three counters will

yield phonons in the required direction.
Typical patterns observed for the three counters for

a single specimen setting are shown in Fig. 7. The main
peak is elastic and arises from incoherent elastic scatter-
ing by the sodium atoms. The other peaks represent
phonons. Only the strong peaks at energy gain (smaller
channel number) were well enough deined to be con-
sidered useful, although the others are also shown on
the accompanying reciprocal lattice diagram. The bars
along the direction of k' represent the full width of the
peaks at half maximum.

Most of the results were obtained using a multiple
axis crystal spectrometer at the Chalk River EAU
reactor. Monochromatic beams with wavelength of
1.35 A, 1.91 A and 2.22 A were used. The wavelength of
1.35 A was used chieQy for the determination of the
optic modes with the neutrons losing energy in the
scattering process. The beams with wavelengths of
1.91 A and 2.22 A were used at both energy loss and
gain, principally for the acoustic modes. Usually the
(111) plane of an aluminum crystal was used in the
analyzing spectrometer but, under conditions of highest
resolution, the (200) plane of the crystal was used. Some
typical neutron groups are shown in Fig. 8 along with
corresponding positions in the reciprocal lattice. At a
wavelength of 2.22.A the full width at half maximum of
the vanadium peak was 0.06 A when the (200) plane
was used in the analyzing crystal.

Two methods were used to advantage in determining
the dispersion relations for the various branches. In
some cases it was possible to arrange conditions so that
the scattered wave vector, k', lay along one of the three
symmetry directions and went through a reciprocal
lattice point. This situation has the advantage that the
direction of the observed phonon is always in the
desired symmetry direction. The technique has the
disadvantage that it is rarely possible to observe
phonons of only one polarization and, hence, the ob-
served neutron group often contains contributions from
both longitudinal and transverse phonons if these are
close in energy. For this reason the method of successive
approximations was used in most of the determinations.
In this method the probable energy and wave number of
a desired phonon are calculated from elastic constants,
theoretical models or previous results and the spec-
trometer set up to observe this phonon. The position in
the reciprocal lattice was generally chosen so that only
the phonon of the desired polarization had sufficient
intensity to be observed Lsee the g'Q term in Kq.
(3.13)$. In general some neutron group represent-
ing a phonon is observed which may or may not have
exactly the calculated energy and, hence, may not be in
the desired direction. If it is not, then it is used as the
basis of a calculation which is more likely to yield a
phonon in this direction and, if necessary, the process

. . can be repeated until the observed neutron group
represents a phonon with the desired wave number and
in the symmetry direction.

Both of these approaches were used successfully in
conjunction with knowledge of the experimerital elastic
constants, theoretical dispersion curves (Sec. 2) and the
structure factors calculated from these theoretical dis-
persion curves (Sec. 3). Care was taken to avoid posi-
tions in reciprocal space where mixtures of two phonons
could not be resolved and where solutions of Eqs. (1.1.1)
could be obtained over a range of values of k', the
scattered wave vector.

4.2 The Acoustic Modes

Using the techniques outlined in the previous section
it was, in general, quite straightforward to delineate the
acoustic branches, although the high-frequency parts of
the longitudinal branches, which were weak, and the
complete longitudinal branch for the $110j direction
offered rather more than normal difhculty. In the $110]
direction it is difficult to resolve the transverse and
longitudinal acoustic branches since they are not well

separated in frequency. The position in the reciprocal
lattice was therefore chosen so that g Q=O for the
transverse mode. In order to satisfy this condition the
angle between k' and the L110$ direction was always
large, and phonons which were more than two or three
degrees oG direction often had frequencies considerably
diferent from- those which were exactly in the right
direction
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F&G. 8. Typical neutron groups observed with the crystal spectrometer together with their positions in the reciprocal lattice.
The ordinate gives the number of observed counts.

TABLE IV. Frequencies at selected values of q taken from smooth
curves through the experimental points.

Designation

TA(0,0,1)
TA(0,'0'„)-
LA(0,0,1)
LA(0,0,—,')

TA(-;,'g,'0)
LA(—',,-'„0)
TO(0,0,0)
TO(0,0,1)
Tp(1 1 1)
LO(0,0,0)
Lp (0,0,1)

Frequency in 10~ cps

1.22~0.04
0.98&0.03
1.82&0.06
2.00+0.06
1.52w0.05
1.08W0.04
2.32a0.06
1.73+0.05
1.40a0.05
2.16&0.06
3.6p &0.1
3.8p &0.1
3.5p +0.1
5.0 &0.5
3.91 &0.1

In the early stages of the experiment, before the shell
model for ionic crystals had been fully developed, con-
siderable di%culty was encountered in the measurement
of longitudinal acoustic phonons near the zone boundary
in the L001] direction. According to the point ion model
such a phonon should give an intense neutron group
between even indexed points LFig. 5(a)$ but very little
intensity was, in fact, observed, A strong neutron group,
corresponding to this LA phonon was, however, ob-
served between odd indexed points. When the structure
factors were calculated from the shell model, it was

found that just such behavior —low intensity between
even points, high intensity between odd points —was
predicted LFig. S(b)j.

The measurements of the dispersion relations for all
modes are shown in Fig. 2. Values of the frequencies at
selected points are shown in Table IV. The optic modes
will be discussed later. Figure 2 also includes curves
which have been calculated from two theoretical models—the point ion model and the shell model of Sec. 2. The
straight lines in Fig. 2 represent the appropriate
velocities of sound calculated from the elastic constants
measured by Dalven and Garland. "Their results have
been extrapolated to 110'K (from 180'K) using as a
guide the temperature dependence of the elastic con-
stants of other alkali halides. "It can be seen that for
long wavelengths (q-+0) the slope of the neutron
curves agree well with the velocities calculated from
these elastic constants.

An interesting feature of these curves is the dip in the
longitudinal branch in the L001) direction as the zone
boundary is approached. This eGect is predicted by the
shell model but not by the point ion model.

The individual errors for the points are not shown on
these curves. The absolute error in any one determina-
tion is dificult to estimate properly. "It is felt that the
scatter in the points is a good indication of the size of the

~ M. H. Norwood and C. V. Briscoe, Phys. Rev. 112, 45 (1958).
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errors. Each of the acoustic branches is probably de6ned
to an accuracy of about 3% (the error in the energy
determinations of single phonons is often less than this).

4.3 The Optic Modes

The measurements of the frequencies of the optic
modes is complicated by the effects of the large in-
coherent scattering cross section of sodium. Not only is
there a large elastic peak arising from this incoherent
scattering but also the thermal vibrations give rise to
inelastic incoherent scattering. If there are not many
modes with the same frequency then the incoherent
contribution to the neutron group representing a
phonon is not great. However, if a branch of the dis-
persion relations is nearly Rat for a11 directions of q then
many modes will contribute to the incoherent inelastic
scattering for this frequency. As a result there will be a
peak in the scattered neutron distribution which is inde-
pendent of polarization and wave number and depends
only on the momentum transfer,

~ Q ~, and other factors,
such as temperature, which are constant in a given series
of experiments. This can also be expressed by saying
that the scattered incoherent inelastic intensity de-
pends on g(v), the fraction of normal modes between v

and v+dv, a well-known result. " [This intensity, how-
ever, does not depend only on g(v); see discussion in
Sec. 3.2.]

Such a peak is indeed observed at positions in
reciprocal space where, by reason of the polarization and
structure factors, coherent scattering with an energy

change corresponding to the transverse optic modes
would be forbidden. This incoherent neutron group
contaminates the peaks representing desired phonons
in the optic branches and must be subtracted from them
before the details of these branches can be determined.

Figure 9 shows a series of neutron groups correspond-
ing to phonons in the [110]and [001) directions. The
positions of these neutron groups in Q space (after the
incoherent contribution was subtracted) is shown on the
reciprocal lattice diagram in Fig. 10. It can be seen that
in the [110) direction only transverse phonons could
be excited (the angle between Q=ks —k' and tl being
nearly 90') and that. in the [001] direction longi-
tudinally polarized phonons were favored. As q becomes
smaller in the [001) direction the structure factor for
the longitudinal phonons decreases rapidly between
even indexed points in reciprocal space and increases
correspondingly between odd indexed points (Fig. 5).
For this reason the line which was being followed in
reciprocal space was changed between group e and
group f. All of these peaks contain a contribution from
the incoherent inelastic scattering described above
which must be subtracted quantitatively if the results
are to be meaningful.

The behavior of this inelastic incoherent scattering
was accordingly determined. As far as one could tell the
shape of the peak was the same for all values of

~
Q

~
and

thus the peak height was the only parameter necessary
to determine this incoherent intensity once the energy
(or the spectrometer angle) distribution had been deter-
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Fro. 10. The (110) plane of the reciprocal lattice showing the
position in reciprocal space of the phonons represented by the
neutron groups in Fig. 9. Group u was actually observed at the
same q but not the same Q as shown here.

mined from a single curve. The points on this curve had
only to be multiplied by the appropriate peak intensity
before subtracting it, point by point, from the neutron
groups in Fig. 9.The result of this subtraction procedure
is shown in Fig. 11.

In Sec. (3.2) it was shown that the ratio of the in-
coherent intensity to the coherent intensity should be
about 0.8 for the case of most favorable polarization.
This ratio has been computed for twelve observed trans-
verse optic phonons with the result that

I;, h/I„h=0. 8S+0.1.

The assumptions made in deducing the theoretical value
for this ratio were such as to make 0.8 an upper limit
so that the observed value of 0.85&0.1 is probably
significantly higher than the exact theoretical value.
Such a behavior is, however, to be expected since part
of the contribution to the inelastic incoherent peak is
from multiple scattering: inelastic incoherent or coher-
ent scattering from a transverse optic mode plus elastic
incoherent scattering.

Figures 2 and 11 show the behavior of the optic
branches. Along the transverse optic branch in the
t 110) direction the frequency increases slightly with

increasing q. However, neither the width nor the
intensity of the neutron distribution changes signi6-
cantly as q is increased to the point where the $110)
transverse branch joins the t 001) longitudinal branch
at the $001) zone boundary. As q decreases for the
longitudinal optic branch in the $001) direction the
peak height begins to decrease and the width to increase
until what were once well-defined neutron groups indi-
cating phonons become broad distributions which are
dificult to interpret (Sec. 5). Further observations are
obscured by a transverse optic phonon whose intensity
is increasing because of increasingly favorable polariza-
tion and structure factors. This contributes appreciably
to the broadened distribution which supposedly repre-
sents the desired longitudinal optic phonon. On the
assumption that the center of this distribution repre-
sents such a phonon, the energy and wave number have
been calculated and are shown in Fig. 2 along with the
other branches.

Because of the difhculties in obtaining these results,
the other longitudinal optic branches were not studied
in detail at this time although some indications of
phonons in these branches near the zone boundaries in
the t 110)and L111)directions have been observed. Two
points in the $110) direction were obtained by the
methods outlined above and are included in Fig. 2. In
the observations of the longitudinal phonons in the
L001) direction and of the transverse phonons in the
$110) direction there is considerable intensity at large
energy transfers (groups c and f, Fig. 11). The corre-
sponding positions in reciprocal space have a large q in
the L111) direction. The wings of the curves (for
example group h) are much less intense when the corre-
sponding energy transfers take place at other positions
in reciprocal space. This result probably indicates that
the frequency of the longitudinal optic branch in the
L111)direction increases with increasing q, as predicted
by the shell model.

The transverse optic branches were, in general, well
defined and were almost Qat in all directions. At q= 0 the
measured transverse optic frequency of 3.6)&10" cps
(at 110'K) agrees satisfactorily with the infrared ab-
sorption frequency of 3.5)&10" cps measured at room
temperature. "The errors in the determination of the
energy of the phonons in these branches are also
believed to be about 3%.

S. DISCUSSION

There is generally good agreement between the
measured dispersion relations of Fig. 2 and the disper-
sion relations calculated on the simple version of the
shel1 model —Coulomb forces between ions of unit
charge with the iodine atoms polarizable, and centra)
repulsive forces between first neighbors only, . acting
through the iodine shell. The root-mean-square devia-
tion between theory and experiment is about 7%. In

I' R. B.Barnes, Z. Physiic 75, 723 (1932).
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assessing this agreement it should be recalled that tto

free parameters were used to fit the neutron data, the
parameters of the model being Axed by the elastic
constant c» and by the high- and low-frequency
dielectric constants. We consider that the agreement
verifies that the general picture is correct.

There are, however, real discrepancies existing be-
tween theory and experiment, especially in the LA mode
near the zone boundary in the L1111 direction (the
point —',, —,', —,'). It would be of interest to try to assign
physical origins to these discrepancies and thus to see
in what ways the simple model could be improved.

One signi6cant fact is that on the acoustic branches
the experimental points in every case lie between the
curves for the point ion model and the shell model,
although they are closer to the latter. Thus these
branches seem to be overcorrected for the effects of
polarizability. On the simple model this could only be
improved at the price of no longer sting the dielectric
constants and violating the theorem (strongly based on
macroscopic theory) that the ratio of the longitudinal
and transverse optic frequencies at q=0 is equal to
(es/e) I. Some modifications to the model itself are there-
fore indicated.

A possible modification is suggested by the dis-
crepancy in the mode LA(-,', -'„—,'). The iodine ions in NaI
are much larger (ionic radius 2.20 A) than the sodium
ions (1.00 A)" and it is quite likely that there is a small
direct interaction between nearest neighbor iodine ions.
In the mode LA(—,',s,—',) only the iodine ions move, near

"See R. W. G. WyckoB, Crystal Stroctlres (lnterscience
Publishers, Inc., New York, 1948), Vol. I, Chep. Dl, p. Ig.

(like) neighbors against each other. The sodium ions
remain 6xed as a consequence of symmetry. It is there-
fore reasonable that this frequency should be raised by
a small iodine-iodine interaction.

If, however, we simply introduce second neighbor
force constants between iodine ions (Appendix A2) to
reconcile theory and experiment for LA(-', ,—,',—,') then
the agreement is made worse at other points and other
small changes are necessary. One such change is the
introduction of noncentral forces between erst neigh-
bors. Such noncentral forces are thought to be small,
however, since the Cauchy relation c»=c44 is approxi-
mately satisfied for NaI at 110'K. This argument
cannot be considered sufhcient, however, 'since the un-
certainty in the experimental value of c~2 is of the order
of 15%'4 and also deviations from the Cauchy relation
up to 20% are observed at other temperatures. It is
therefore probable that both iodine-iodine interactions
and noncentral forces between 6rst neighbors should be
included in any more realistic model of sodium iodide.
Wee have not yet made a complete investigation of the
effects of introducing these secondary interactions or of

varying the ionic charge Ze but further work is being

done on the alkali halides and we hope to make such an
investigation in the near future. For the present it
appears, from inspection of the equations (Appendix

A2) and the results, that these subsidiary interactions

are probably less than 10%of the central first neighbor

interaction and that the ionic charge, Ze, is probably
greater than 0.95e. (It should be noted that the deini-
tion of ionic charge involved here is such that when

8=1 there is no covalent bonding. It is not the same
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as the "effective charge" discussed in Sec. 2 and else-
where, which refers to the effect of distortion polariza-
bility on the optic frequencies at q=0.)

As was stated in Sec. 4, considerable difhculty was
encountered in measuring the LO vibrations. We made
several attempts, at 110'K and also at room tempera-
ture, under conditions for which we thought sharp
neutron groups should be obtained. In every case a
quasi-continuous distribution of scattered neutrons was
observed. In the particular case of the experiments
shown in Figs. 10 and 11 there is a geometrical reason
for some broadening of the neutron groups. In Fig. 10 if
k' is shortened, tl is shortened and v increased; if k' is
lengthened, q is lengthened and v decreased. But in the
LO dispersion curve v decreases as q increases, and vice
versa. Thus there is a range of values of k' which satisfy
Eqs. (1.1.1) and a br'oad neutron group is expected.
Nevertheless, we are convinced that the broadening is
too great to be accounted for by this mechanism.
Furthermore we have made several measurements under
the opposite conditions, without observing any neutron
groups except very broad ones. We therefore believe the
broadening of the LO modes to be real, and probably to
arise from interaction between the modes. The energy
broadening would then be related via the uncertainty
principle to the lifetime of the vibrations. "If this is the
correct explanation of our observations then in NaI at
the low temperature of 110'K the longer wavelength
longitudinal optic modes have very short lifetimes. The
results are not suSciently accurate to allow good values
for the lifetimes to be given, but they appear to be of the
order of the vibrational period.

It will be noted from Fig. 2 that the frequencies ob-
tained from Eqs. (1.1.1) by using the wave vector and
energy corresponding to the center of the broad group
are lower than the frequencies calculated on the shell
model. The value extrapolated to q=0 is also less than
is given by cor, =cor(eo/e)'* This is exp.licable on the life-
time hypothesis; a dissipative term in the diGerential
equation for a harmonic oscillator lowers the frequency.

We have no detailed explanation for this short life-
time but oGer the following argument. The longitudinal
optical modes have associated with them a much higher
macroscopic electric field than do the other branches.
Furthermore, 'the energy of the mode with q= 0(X -+ eo)
is sensitive to the shape of the crystal if X —+ ~ faster
than do the dimensions of the crystal. In fact, for a
spherical crystal of Gnite size there is only one triply
degenerate mode with g =0 and the distinction between.
longitudinal and transverse modes is no longer possible. '4

These are electrostatic surface effects. In a similar way

~The possibility of observing a broadening of the neutron
groups because of a lifetime for the phonons was pointed out
several years ago by G. Placzek (private communication via G. L.
Squires). It has recently been discussed in a formal way by L. Van
Hove, Massachusetts Institute of Technology Technical Report
No. 11, 1959 (unpublished).

e4H. Frohlich, Theory of Dielectrics (Oxford University Press
New York, 1949), Sec. 8.

the energies of the LO modes may be especially sensitive
to the termination of the wavetrain by interaction with
other phonons.

We are now attempting to study the behavior of the
optical branches in more detail using a specimen of
potassium bromide. With potassium bromide the inten-
sities are higher than with sodium iodide, and the
contaminant incoherent scattering is much smaller. We
hope to be able to verify the energy broadening of the
LO modes, and to study it in detail under more favora-
ble conditions than existed for the experiments described
above. This work will be made easier by a new apparatus
which enables energy distributions to be taken at con-
stant Q and thus to avoid the geometrical effects dis-
cussed above.

where p is the density of the material and c is a linear
combination of the -elastic constants c~~, c~2, and c44.
Hence, we 6nd that

1 A (11)+A(22)+2A (12)c=- lim (A.1.1)v~0 q2

On substituting the appropriate values of As(11), etc. ,
we 6nd

Ro+R+ (Z'e'/s) (Ct—Cs)1terms in q', etc.2
c=—lcm

~ ~0 g2

On taking the limit q ~0 we obtain the same result as is
obtained when polarizability is excluded. It is not diK-
cult to show that the result is still true when both ions
are polarizable. The elastic constants are therefore un-
aGected by the use of a shell model. This agrees with
the conclusions of Szigeti' and of Herpin' that polari-

's B. Szigeti, Proc. Roy. Soc. (London) A204, 51 '(1950).
'e A. Herpin, J. phys. radium 14, 611 (1953).

ACKNOWLEDGMENTS

The authors are grateful to K. A. Glaser for tech-
nical assistance, and to Dr. J.M. Kennedy and Miss M.
Millican for machine computations.

APPENDIX ). THE ELASTIC CONSTANTS

We now consider the eGect of polarizability on
acoustic modes having a sma11 value of q, that is, the
eGect on the elastic constants. By expanding A(11),
A(22), and A(12) of Eqs. (2.2.11) as a power series in
g', it is found that this equation reduces to

A s(11)+As(22)+2A s(12)
CO for q

—+0,
mr+ms

where for example, As(11) is the coefficient of the term
in q' in the expression of A (11).In deriving this expres-
sion use is made of invariance relations for the A' s
similar to Eqs. (2.2.5).

When q is in a symmetry direction
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zability does not acct the elastic constants when each
each ion occupies a center of symmetry.

and (A.2.2)
e'B1 (BV»~ )B'V»y

rp4 Br ) „r=rp 4 Br )ir=rp 2v

Similarly we define

(B'Vs, q e'A'

Br )» r=ri 2'v

(A.2.3)
e B

and
1 (BVss) (B'Vss)

riL Br)~~r ri ( Br )|r ri 2v

The stability condition (BUp/Br)r =re=0 now gives the
result

8+28'= —so.~Z'. (A.2.4)

On considering the effect of these additional force con-
stants on the coefEcients R,„(m') it is found that further
terms are added when KK =22, but all others are un-
changed. Using methods similar to those described by
de Launay'~ it is found that the additional terms are, for
example

AR„(22)= (e'/v) L2A'+48'
—A ' cosq, rp (cosq„rp+ cosq, re)
—8'(2 cosq„re cosq, re

+cosq, rp cosq„rp+ cosq,rp cosq, rp) j,
(A.2.5)

DR,„(22)= (e /v) (A
' 8') sinq, rp sinq„rp. —

"J.de Launay, Solid State Physics, edited by F. Seitz and
J.Turnbull (Academic Press, Inc. , New York, 1956), Vol. 2.

APPENDIX 2. EFFECT OF SECOND NEIGHBOR AND
NONCENTRAL FIRST NEIGHBOR INTERACTIONS

We consider brieQy in this section the eGect of intro-
ducing a short-range interaction between the negative
ions (second neighbors). It is readily shown that, pro-
vided this interaction is relatively weak, it does not
matter whether it acts through the shells or through the
cores, so that we treat it as a force between rigid ions.
We take this force also to be a central force. We
simplify the notation of Eq. (2.1.1) by writing V»(rp)
for C&~l(rp), and add a potential Vss(ri) between
negative ions. We then have

Up= —n~(Z'e/rp)+6Vis(rp) 16Vss(ri). (A.2.1)

(The coeflicient of Vss is not twelve but six; although
each negative ion is surrounded by twelve like ions there
are twice as many 1—2 interactions as there are 2—2
interactions. )

Using symbols such as (BV»/Br) ii for the potential
gradients shown in Fig. 1(b), the previous definitions,
(2.1.2), take the form

(B'Vis) e'A

Br ) ~~ r=rp 2v

Using the expressions given in Table I we can 6nd the
amount by which A (22) of Eq. (2.2.11) is changed when

q is in any symmetry direction. %'e may eIso old the
effect on the elastic constants by using Eq. (A.1.1).For
example, when q= (q„0,0), Eq. (A.1.1)' gives c=cii for
a longitudinal mode, c=c44 for a transverse moBe. Io
this way we 6nd, when Eq. (A.2.4) is taken into account,
that

cii= (e'/2rp4) [—2.555s'+ s (A+A'+8') j,
(A.2.6)

cis =c44= (e'/2rp )L0.696Z'+- (A
'—8')].

These give

P '= s (cii+2cis) = (e'/6rp') (—1.163Z'+ sA+A').

This result may be checked by evaluating the com-
pressibility directly, using the result

1 (B'Up)

1gr, ( Br').=.,

When 3'=B'=0 and Z= 1 the above results reduce to
those given by Kellermann.

If we add a noncentral component to the force
between nearest neighbors, the condition

1 (BVip& t'B'Vis)

rp ( Br ) „r=rp 0 Br ) i r=rp

no longer holds, so we write

while

(B'Vis)

Br ) i r=rp

e'(8+8")

1 (BV„)
rp 0 Br )» r=rp .2v

e'B

APPENDIX 3. LATTICE DYNAMICS AND DIELECTRIC
PROPERTIES WITH BOTH IONS POLARIZABLE

The results which were given in Sec. 2 should be
adequate for sodium iodide, where the polarizability of
the sodium ion is relatively very small. It is, however, of
some interest to consider the solution of Eqs. (2.2.7)
when both ions are polarizable, particularly for g=0
where the results are closely connected with the
dielectric properties of the crystal. The exact result for
the optic modes is found to be

Ci(Z'e)'
(pM )p=p=Rp +.

v+uCi

as before. It is then found that c~~ is unchanged, while

cip ——(es/2r p') (0.696Z' —-'8'+-'A '—-'8")
rr

'

c44= (e'/2rp') (0.696Z' '8'+ A'+ '8")—— —-
The effect on the coefficients R„(12),etc., is to replace
8 everywhere by 8+8".
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where

Rp'=Rp—
Tp'(k1+k2+2Fp)

(k1+Fp) (k2+Fp)+So(kr+ k2+2Fp)

alogy with Eq. (2.3.3) we define

—Tp~i
)

k1+Sp+Fp

—Tp~2
(A.3.4)

k2+Fo+So

T0LY2(kr+Fo) —Y1(k2+Fp)jZ'=Z+
(k1+Fp) (k2+Fp)+Sp(kr+k2+2Po) (A.3.1)

s L(k2+Fp) Yl + (k1+Po) Y2 +So(Y1+Y2) g

(k1+Po) (k2+Po) +So(k1+k2+ 2Pp)

e—|4xo.

0+2 3v
(A.3.2)

It may be shown that it is the quantity n which deter-
mines the high-frequency dielectric constant, e, of the
crystal, through the equation (d' d2)

+
0.2 i

Z'= Z+dr —d2.

(A.3.5)

Both are positive quantities, and are measures of the
distortion polarizabilities of the positive and the nega-
tive ion, respectively. . Equation (A.3.'1) may then be
written [see.Eqs. (2.3.5) to (2;3.7)$

p002'= Rp' —42r (&+2) (Z'e) 2/9v,

pcpr2 =R0'+82r (0+2) (Z's)2/9vi,

where the primed quantities can be expressed approxi-
mately in terms of quantities associated with individual
ions as follows:

When n is calculated in terms of the diPole moments use of the result ~~2/~r2 00/0 then leads to the folio~
of the individual atoms, it is found tha

)

SpFi Y2P 2

k1+To (k1+To) (4+To)
and

0= 4r( 0+2)'( Ze)'/9 pvotr

Ro'= prpr'E(00+2)/(0+&2) j.
(A.3.6)

(A.3.7)
S 2

(k1+To) (4+Tp)

P' 2
2

Co=8 +
k2+To (k1+Tp) (k2+Tp)

(A.3.3)

1—
(k1+To) (k2+ To)

whereas before Tp=S0+Fp, and comparison with Eq.
(A.3.1) then shows that a=nr+a2, as expected. How-
ever, only when Sp=0 do we have O, i independent of the
parameters of atom 2, and vice versa, when in fact

I' 2e2

Qi=
4+Po

P 2e2

4+Po

LThese are the values of rr, which appear in Eq. (2.2.9)j.
For our present purpose it is in fact more convenient to
define a slightly diGerent polarizability o.i -which is also
independent of the parameters of atom 2, and is given by

I

P' 2e2 P' 2e2

Qi= , and similarly +2=
k1+T0 k2+ To

When k1 and k2 are large compared with Sp (as appears
likely to be generally true, since in sodium iodide
k1))ks 10$p) these values of nr and a2 give a =nr+n2
to within a few percent, and may be referred to as the
atomic polarizabilities, without qualification. By an-

Tp p (ur+u2 —2S0'y &rrr2)
P6)z =Rp—

1—Sp'y'bio;2

42r(0+2) Tp u n-
9v

00 B. Sziegeti, Trans. Faraday Soc. 45, 155 (1949).~ W. Cochran, Phil. Mag. 4, 1082 (1959).

v(»)
Ze—,(A.3;8)

1—Sp2y@i&'2J

If only first neighbor atoms interact, the result
Rp= 6rp/P should also hold. These results are to be com-
pared with those given by'Szigeti""; (A.B.6) is in
principle the same while (A.3.7) differs through the
replacement of Rp by Rp'. The difference between these
two quantities, e'(dr'/ur+ d2'/n2), is comparatively small

( 10%) for alkali halides. Results similar to those
given here have been obtained, by Hanlon and Lawson. "
If the forces between ions act entirely through the
shells, Il=D=O and T=S=R. The quantity di, for
example, is then given by

d1= RpY1/(k1+Rp—) = —Rp Y1/k1.

One might therefore expect d1/Rp to be characteristic of
a particular ion, and not of the alkali halide in which-' it
occurs. The extent to which Eqs. (A.3.6) and (A.3.7)
agree with observation when this assumption is made,
and with Z= 1, has been brieRy considered elsewhere";
quite good agreement was found.

If we assume further that the shells carry the sam|;
charge, as appears to be the case from the. work of
Hanlon and Lawson, we may write as an abbreviation
p= —(Yre) '= —(Yse) '. Equation (A.3.1) then gives
exactly
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with a similar expression for p+L,'. Thus the coe%cient
Ep is effectively reduced by an amount approximately
proportional to the sum of the polarizabilities, and the
ionic charge Ze by an amount proportional to their
diGerence. The latter conclusion agrees with that of
Hanlon and Lawson, who show that the result holds
rather well in practice. A short calculation, which we
omit, shows that when in the course of an optic
vibration having q= 0 the nuclei are displaced a
relative distance u, the polarization of the medium is
P=Z'e/(s+nCi)u, that is

(e+2)Z'e (e+2)Z'e
P = u(TO) and P= u(LO). (A.3.9)

small compared with k~ or k2. For an alkali halide we
need not distinguish between C2 and C2*, etc., since
each ion is on a center of symmetry. The result is that
in the characteristic Eq. (2.2.11),

e s (dip
~ (11)=~o——

I +
f (n, Sp'nsi

es- ( ns S' ni
+—C,

I
1—dis—dos—+2di I

fp 0 ni Sp' ns i
S Q2

+2Csds —(1+dr)+—(1+2di) (Ci' —C9 )
Sp V

The effective field in the crystal is found to be given by
E= —CiP, that is +(4ir/3)P(TO) and —(Sir/3)P(LO).
This latter value may be regarded as the sum of com-
ponents +(4tr/3)P and —4irP, the term —4srP being
the contribution of the macroscopic field in the crystal. "
In all respects the ions act in optic vibrations for which
q= 0 (or in an externally-applied field) as if their charges
were ~Z'e, instead of ~Ze. This is not so for general
values of q however.

Using numerical results given elsewhere" one can
show that the term e'(dip/ui+dss/ns) is about 10% of
gp at most for alkali halides, while (Z')'(e+2)/3 varies
from 0.7 for KI to 1.05 for NaF, with an average value
of about 0.85. It is then found that to quite a fair
approximation, for all alkali halides, '

titan'= Ep' —4ir (e+2) (Z'e)'/9e
=Ep—4tre'/3s= (e'/s) (3+28—4pr/3). (A.3.10)

This latter value is, however, the result obtained by
Kellermann, " neglecting polarizability. The fact that
Eq. (A.3.10) gives a value for co& in fair agreement with
observation has been a source of confusion, and has, for
example, led to the erroneous conclusion that the
Lorentz formula for the effective field (Ep+47rP/3) is
invalid in alkali halide crystals. "The explanation which
we give here of the apparent validity of (A.3.10) has
been advanced previously, ' "but in somewhat diferent
terms. Although it is not immediately obvious from
Eqs. (2.3.4), in sodium iodide the mutual cancellation
of the sects of "field polarizability" and "distortion
polarizability" applies to a large extent in all modes of
vibration except the longitudinal optic.

Finally, we give the general solution of Eqs. (2.2.7)
in a form which is probably adequate for the alkali
halides, by setting 8=0, Z=1 and assuming that Sp is~¹F. Mott and R. W. Gurney, Electronic I'rocesses As Ioeic
Crystals (Oxford University Press, New York, 1948).

es (dos Ss dip)
~ (22) =&0——

I +
f (us Sps nii

e ~ f ni S ns
+ Cl I

1 ds dl
fv ( us Sp ui

S Q]—2Csdi —(1—ds)+—(1—2ds) (Ci' —Cs'),
Sp V

e' S (dip dos )
A(12) =A(21) =R———

I +f Sp(ni us)
e'

p
S'

q+——Cs 1—
I

1+ ldids
fs 4 Sp'i

S ) n, n, q t S—Ci—
I

di'—+do'—I+I Ci—Cs l(di —ds)
Sp 4 ui upi E Sp

where as before (with Fp=0)

Fg'e' F2'e'Qy=, Q2=
4+So 4+So

Sp~x

ki+So

SpF2
7

ks+So

and f is now an abbreviation for

Cg QyQ2

1+—(ni+ns)+ (Ci' —Cs') .
V V

On the reasonable assumptions that the forces act
through the shells, and that these carry equal charges,
all the parameters in the above expressions can be
determined from ep, e, and P (or cii). We have not yet
been able to test the validity of these expressions experi-
mentally, since in sodium iodide the polarizability of
the positive ion is very small (ni=0.03ns) and Eq.
(2.3.4) is thus an adequate approximation.


