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A. theoretical analysis is given of the properties of solid Hes
on the basis of: (1) a gas-phase Lennard-Jones "12—6" potential
modified at small interatomic distances; (2) a Heitler-London
type variational-trial wave function for all the atoms in the solid
constructed from a properly antisymmetrized product of individ-
ual atom orbitals localized on the various lattice points; (3) a
Dirac vector model to describe the symmetry energy with an
exchange integral deduced from (1) and (2); (4) a spin-wave
approximation at "low" temperatures and a Kramers-Qpechowski
approximation at "high" temperatures for calculation of the free
energy of the nuclear spina; and (5) a Debye phonon model for
the description of the vibrationally excited states of the solid.
On this basis, calculated values at low pressures and temperatures
(p=30 atm; T&1 'K) are presented for: (a) the cohesive energy

per atom; (b) the root mean square deviation of an atom from
its lattice site: =0.36Xnearest neighbor distance; (c) the nuclear
magnetic susceptibility which corresponds to an antiferromagnetic
behavior with a "paramagnetic" Curie temperature Tg—0.1 'K;
(d) the variation (decrease) of To with increasing pressure cor-
responding to a possible nuclear antiferromagnetic to nuclear
ferromagnetic transition for p=150 atm; (e) the specific heat
which exhibits an anomaly at T=0.1 'K associated with the
alignment of the nuclear spins; (f) the thermal expansion coeffi-
cient which becomes negative below about 0.6 'K; (g) the melt-
ing curve which is characterized by a minimum at T—0.37 'K
and a maximum at T—0.0g 'K. Comparison of the theory is
made with available experimental data.

1. INTRODUCTION

ELATIVELY little is known from experiment, at
the moment of writing, about the properties of

solid He'. Also, except for a few more or less qualitative
discussions' ' with partially conQicting conclusions,
no detailed quantitative treatment of the solid He'
problem has as yet been presented.

In the present paper we describe a theoretical
analysis of the properties of solid. He' on the basis of:
(1) a gas-phase Lennard-Jones "12-6" potential
modified at small interatomic distances; (2) a Heitler-
London type variational-trial wave function for all
the atoms in the solid constructed from a properly
antisymmetrized product of individual atom orbitals
localized on the various lattice points; (3) a Dirac
vector model to describe the symmetry energy with an
exchange integral deduced from (1) and (2); (4) a spin-
wave approximation at "low" temperatures, and a
Kramers-Opechowski approximation at "high" tem-
peratures, for calculation og the free energy of the
nuclear spins, and (5) a Debye phonon model for the
description of the vibrationally excited states of the
solid. On this basis we calculate several properties
of solid He': cohesive energy, entropy, speciic heat,
coeKcient of thermal expansion, nuclear magnetic
susceptibility, etc. , at pressures p=30 atm and tem-
peratures 7&1 'K as well as obtain the melting curve
for T&0.5 'K.' A summary of the results may be

t This work was partly done at the Ames Laboratory of the
U. S. Atomic Energy Commission and was also supported in
part at Washington University by the U. S. Air Force Ofhce of
Scientific Research.

r J. Pomeranchuk, Zhur. Eksp. i Theoret. Fiz. 20, 919 (1950).
2 H. PrimakoG, Bull. Arn. Phys. Soc. 2, 63 (1957).' L. Goldstein, Ann. Phys. 8, 390 (1959).
4N. Bernardes and H, Primakoff, Phys. Rev. Letters 3, 144

(1959).

found in Sec. 10. The present paper supercedes the
brief and preliminary account which has previously
appeared. '

2. SPIN ALIGNMENT AND NUCLEAR MAGNETIC
SUSCEPTIBILITY OF SOLID He'

Due to the relatively large zero point energy and
weak interatomic attraction, a pressure of the order of
30 atm is necessary in order to solidify He' (or He')
at temperatures T&1 'K. As regards the He' magnetic
properties, Fairbank and his co-workers' have measured
the nuclear magnetic susceptibility of liquid He' for a
wide range of pressures and temperatures, and of solid
He' for pressures above the melting pressure. Some of
their results are presented in Fig. 1. From these results
we can conclude that the nuclear magnetic susceptibility
of He' can be represented, to a fair degree of approxi-
mation, by a Curie-Weiss law,

x(&)=&/(~+&c); &&T'c, (1)

with a pressure dependent "paramagnetic" Curie
temperature T~ given in Table I.

Figure 1 and Table I show that both solid and

TmLz I. Values of Tg obtained from the data in Fig. 1. on the
basis of the definition: x(T)T/C =-', at T= To.
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~N. Bernardes and H. PrimakoG, Phys. Rev. Letters 2, 290
(1959).

6 W. M. Fairbank and G. K. Walters, Suppl. Nuovo cimento
9, 297 (1958).
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FIG. 1. Nuclear magnetic susceptibility x of liquid He and of.
solid He' as a function of temperature according to the measure-
ments of Fairbank. and Walters, reference 6.

liquid He' behave as "nuclear antiferromagnetics, "
i.e., T&)0. For the liquid, Table I indicates that the
pressure coefficient of the Curie temperature, (1/To)
&&(dTc/dp), is —2&(10 '/atm. For the solid, on the
other hand, no systematic data on the variation of
Tg with pressure is available though Fairbank and
Walters' have on occasion observed susceptibilities
corresponding to "nuclear ferromagnetic" behavior,
i.e., to T&&0; unfortunately, the exact experimental
conditions for occurrence of this eGect are not known.
From a theoretical point of view, since the forces
between two He atoms at small distances are strongly
repulsive, one can anticipate that under sufliciently
high pressure the solid becomes a nuclear ferromagnetic
and hence Tg becomes &0. Our calculations in fact
indicate that a pressure of the order of 150 atm may
be sufffcient to produce such an effect Lsee Eq. (23)
below). It should, however, be admitted that the
available experimental data on 7t(T) for solid He' are
not certain and it is even conceivable that solid He'
is a nuclear ferromagnetic at all pressures above the
melting pressure.

Before attempting a quantitative cylculation of the
nuclear magnetic properties of solid He', we have to
understand the mechanisms for spin alignment in
this solid. There are two essentially spin dependent
terms in the effective Hamiltonian of solid He': (1) a
spin-spin magnetic interaction, which gives rise to an
energy per atom LLEt=(z/2)(p'/Rs), where s is the
number of nearest neighbor atoms to a given atom in
the solid, p the nuclear magnetic moment, and E the
nearest neighbor distance; (2) a "symmetry" or
"exchange" interaction between nearest neighbor
atoms which depends on the root mean square deviation,
8, of an atom from its lattice site and which gives rise
to an energy per atom

AZ =(s/2) Lo,W(R,8)+a,V(R,8)j exp/ ——:(R/8)'j,

where W and U are, respectively, the average kinetic
energy and average potential energy per atom in the

solid, and the u's are numerical constants whose absolute
values are of the order of unity.

The spin-spin magnetic interaction, A,Ej, is the only
term considered for the solid by Pomeranchuk' in
his paper on liquid He'; Pomeranchuk argues that
"symmetry" or "exchange" effects, although important
in the liquid, should be negligible in the solid, since
here the atoms are bound to well-separated lattice sites
(8/R(&1) so that the overlap between individual atom
orbitals of neighbor atoms is negligible. From this
argument Pomeranchuk concludes that, in the solid,
spin alignment should not occur above a temperature
To=AEt=(s/2)11, '/Rs, ' which for solid He'

Q= —2.1(ek/2Ã~c) = —1.1&&10 "erg/gauss,
R=3.8A, s=12sj

is of the order of 10 ~ 'K. However, due to the small
mass of the He' atom and to its weak binding within the
solid lattice, 8/R is actually quite large in contrast to
the heavier solids. ' "Thus in solid He' the individual
atom orbitals corresponding to nearest neighbors do
have an appreciable overlap which produces an effective
spin correlation much stronger than that due to the spin-
spin magnetic interaction. This can be seen in a bit more
quantitative detail, by using 8/R= ', , W= —U-=10 K
(see Table II, p. 972), which gives To=hEs=0. 0. 5 'K.
Qn the other hand, the above argument does not
provide any information about the exact magnitude or
even the sign of Tg, since as noted, W= —U and since
the signs of a~ and u2 cannot be predicted without a
detailed calculation. However, we can conclude that
symmetry or exchange eGects represent the predominant
mechanism for spin alignment in solid He at low pres-
sures, and our discussion will be concerned largely with
the determination of the symmetry energy.

7 Here and below we choose our units in such a way that the
Boltzmann constant k is a pure number equal to i. Consequently
energy will be expressed in 'K.

SThe value R=3.8A corresponds to an empirical value of
O.i3 g/cm' for the density of solid He' at T& i'K and p =30 atm
and to the assumption that the solid He' crystal lattice is close-
packed cubic with z=i2, i.e., face-centered cubic, under these
conditions. This assumption is consistent with the known lattice
structures of solid Ne, A, Kr, Xe, and with the fact that the
known lattice structures of the two forms of solid He4 are also
close-packed and is anticipated on the basis of the short-range
character of the attractive Van der Waals forces among closed
shell atoms. On the other hand, an experiment by A. F. Schuch,
E. R. Grilly, and R. L. Mills IPhys. Rev. 110, 775 (1958); see
also E.R. Grilly and R. L. Mills, Ann. Phys. 8, 1 (1959)g indicates
that solid He' possesses a body-centered cubic lattice for i.5'K
&T&3'K and 50 atm&p&i30 atm; as mentioned just above,
the existence of such a non-close-packed cubic lattice, at least
for the states of lowest energy of solid He~, is dificult to under-
stand from the point of view of the short range attractive character
of .the interatomic Van der Waals forces. The various results
obtained below, while calculated for an assumed close-packed
cubic lattice, are also expected to hold at least semiquantitatively
for a body-centered cubic lattice.

s N. Bernardes, Phys. Rev. 112, 1554 (1958); Nuovo cimento
11, 628 (1959), gives S/Efor solid Ne, A, Kr, Xe. .' C. Domb and J. S. Dugdale, Progress ie Low-Tempera&ere
Physics, edited by C. J. Gorter (North-Holland Publishing
Company, Amsterdam, 1957), Vol. II, Chap. 11. These authors
give s/R for solid He4.
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+H'(. ~ ~ X),S)&*&, ~ ) —E„

X+ ( XI„S)&*&, ~ )=0. (2)

In Eq. (2) X& is the space coordinate of the center of
mass of the kth atom, i.e., of the kth nucleus, and
5k&'~ is the corresponding nuclear spin coordinate,
V&,

' is the Laplacian with respect to XI„H'( X&„Sq&*&,
~ ~ ) is the interaction of the E-atom system with
external forces such as an external magnetic Geld, the
walls of a container which may exert an external
pressure on the system, etc., and V(X,;) is a spin
independent, spherically symmetrical, phenomenolog-
ical potential which can be considered as given and
which ultimately reQects the Coulomb interaction
between the nucleus and electrons of the ith atom and
those of the jth atom. An explicit form for this phenom-
enological interatomic potential can be obtained from
low-temperature gas-phase data, e.g., from the second
virial coeKcient. "In fact, it has been shown that the
so-called Lennard- Jones "12—6" potential,

V(X;)= — = (x" "—x" ')—=e&(x;,) ( )
X;," X;,6

where rpx;; —=X;;, and rp and e are such that

(d V/dX)
I
x =so 0, and V(r——o) = —e,

gives a good description of the gas-phase data of all
inert elements and the solid-phase data of Ne, A, Kr,
and Xe up to 20 000 atm. e

The main difficulty in finding the @„( X&, S„&*&,

~ ~ ) and E„of Eq. (2) for solid He' by the various
standard approximation methods is connected with
the strong singularity of the V(X;;) of Eq. (3) at
X;j=0, i.e., with the strong interatomic repulsion at
short distances. In order to eliminate divergences
introduced by these various standard approximation
methods, we modify the V(X;;) by multiplication with
an exponential factor

exp( —lI.x;;—"), (4)

and discuss the eigenfunctions and eigenvalues of
Eq. (2) with V(X;;) replaced by an "effective" non-

"See, for example, R. H. Fowler, Statistical M'echunics (Cam-
bridge University Press, Cambridge, I955), Chap. 10.

3. THE INTERATOMIC POTENTIAL

Within the general limitations of the Born-Oppen-
heimer approximation, it is possible to deduce the
properties of gaseous, liquid, and solid He' from the
energy eigenfunctions and eigenvalues, 4' ( ~ X&„Sz&*&,
~ ) and E„,of the many-atom Schrodinger equation:

singular interatomic potential

V ff(X;;)= ev(x;,') exp( —l&x;; '0) (5)

where X is a small parameter, X«j., whose exact value
is determined below (see Sec. S). The factor

exp( —Xx,,-")
chosen as such for calculational convenience, eGectively
modifies the V(X,;) of Eq. (3) only at small interatomic
distances —X,;&X'~"rp —and consequently does not
upset the Gt to the low-temperature gas-phase data.
We note that since the dominant spatial correlation of
the atoms in solid He' is to individual lattice points
with nearest neighbor distance E=-,ro (see Table II)
and since in addition the %„are very small for X;j
appreciably less than ro (4'„-+0 faster than any
power of X;; as X;;~0), we can write to a very good
approximation:

where H.«differs from the H of Eq. (2) by replacement
of the V(X@) of Eq. (3) by the V,«(X;;) of Eq. (5).

4. SYMMETRY OR EXCHANGE EFFECTS

We now treat the symmetry or exchange eGects in
the energy eigenvalues of solid He'. For the ground-state
energy eigenvalue of the solid, Ep, with corresponding
ground-state energy eigenfunction, 0"p, we have

&0= H'o*IH
I +0&—=(+o*IH «I+o)» (c'o*IH.«I C'o& (6)

with Cp, the variational-trial approximation to 0'p'. Cp
=0'p, expressed as a suitably antisymmetrized product
of individual atom orbitals, rp(Xq —R,)I+a(S&,&'), local-
ized on the various lattice points R;. Thus Co is a
variational-trial wave function of the Heitler-London
type. Further we use the Dirac vector model" for a
quantitative description of the exchange eGects.
According to this model, if we consider: (1) the expecta-
tion values of the Hamiltonian operator

(H «)-=(+-*IH.«lc-)
—fP N N

Vk 2 Veff Xij Cn
2M k-i i~1 j=l

(7)
the Cp 0'p, C'] +$ '' C'n +n

being ordered according to the eigenvalues of

N
2

(He«)0( (He«)1.((Heff)2( but otherwise
involving the same individual atom space orbitals

~P. A. M. Dirac, The Principles of Quantum Mechanics
(Oxford University Press, New York, 1958), 4th ed. , Chap. 9.
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q(Xs —R;); and (2) the corresponding ordered eigen-
values Q„of the equivalent Hamiltonian operator

5. DETERMINATION OF Veff AND CALCULATION
OF THE VOLUME ENERGY

N
0—=E——,

' g P —,'J;,(1+u,"u,),

we have the equality

where
(B,«)„=0„,

fi

E= —d Xi d X~p *(X,—R,) .
q *(X„—R„)

J

The volume energy E of Eqs. (8) and (10) may be

(8) written as:

(—ks)
E(v,u; X)=Xi

~

"dX &*(X)Vx &(X)
42M)

+-,' P P dXdX' qa(X)loe(X')
j=l 4 4

QV ffe(~ X—X'+R;—Rs~)q (X)q (X')

fg2

X P V,s+-;Z P V.«(~,,)2' k=1 i~l j=l

&«(X,—R,)" &(X„—R„) (10)

is the "volume energy" of the system of He' atoms and

—A2

(VP+ Vss)+ V.«(&is).2M

X po(Xi —R;)p(Xs —R;) (11)

is the "exchange integral" between the atoms at R; and
R;. The quantity:

N N—s P P s J,;(1+u; ai)
i=1 j=l

is the "symmetry energy" or "exchange energy" of
the system of He' atoms. From the point of view of
Eqs. (10), (11), the use of V,«rather than V in E
and J;j may be viewed as roughly equivalent to the
replacement of the atom pair potential energy operator
by the corresponding scattering operator.

The equality of the indicated expectation values of
H,«and the corresponding eigenvalues of 0 [Eq. (9)]
is rigorously valid only: (1) if the individual atom space
orbitals in the E and in the J;j of 0 are orthogonal;
and (2) with the further neglect of terms in 0 arising
from higher order permutations involving three or more
atoms. However, Van Vleck" and more recently Carr"
have presented "a priori" arguments showing that it is
indeed plausible in Dirac vector model calculations to
neglect both the nonorthogonality and the higher order
permutation terms, and the success of theories of
electronic ferro- and antiferromagnetism" based on
equations analogous to Eqs. (7)—(11) above constitutes
a further, "a posteriori, " justification.

ro J. H. Van Vleck, Phys. Rev. 49, 232 (1936).' W. J. Carr, Phys. Rev. 92, 28 {1953).
,

'5 See, for example, the excellent review of J. Van Kranendonk
and J. H. Van Vleck, Revs. Modern Phys. 30, 1 (1958).

EeW—p+XeUp, (12)

where V,ff is the "eGective" interatomic potential of
Eq. (5) which depends on the parameter X, V is the
volume which enters through the lattice spacing

~
R,—R;~, and u is a variational parameter appearing

in the individual atom space orbitals which we take to be

p(Xs—R~) = (const)expL ——,'u'(Xs —R;)'j.
Now in solid He' most of the contribution to the
(low-temperature) cohesive energy:

=
i Qp

~

=
~
E+lowest eigenvalue of

N N

L
—l Z Z ~'t(1+ ' ))tLEq (6)-(»)j

comes from the volume energy E; hence, in minimizing
Eo with respect to the variational parameter o., we may
neglect the symmetry energy:

i=1 j=l

This follows since the cohesive energy per atom at zero
pressure in solid He' is only a little less than that in
liquid He' which is, empirically, —2.5 'K' while, again
empirically, ' spin alignment in solid He' first occurs at a
temperature =0.1 'K which, according to Sec. 6
below, corresponds to a numerical value of = s (0.1 K)
for the nearest neighbor J;;. One can therefore, to a
rather good approximation, And the optimum value
no of the variational parameter n, and hence the
optimum individual atom space orbitals, q (X)= (const)
&(expL —supp Xsf, from the condition

(8/clu)E(V, u;li)i = p ——0.

Thus the ground-state energy Eo of solid He' is given
as a function of the volume V by Ep(V,up(V, li);li)
=E(V,up(V, X); X).

The volume energy E(V,up(V, X); X) and so

Eo(V,uo(V, &); &)
' J. de Boer, Progress its Low-Temperutlre Physics, edited by

C. J. Gorter (North-Holland Publishing Company, Amsterdam,
1957), Vol. II, Chap. I.
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TAsx, E II. Calculated ground-state energies and root mean square
deviations obtained by the method described in the text.

R/ro

1.19
1.24
1.28
1.32
1.38

1.19
1.24
1.2g
1.32
1.38

ap'rp'

Solid He4:

8.8
g.6

8.2
8.0

Solid He':
7.0
6.9
6.8
6.6
6.4

a= 10.2
0.35
0.34
0.33
0.32
0.31

&= 10.2
0.39
0.38
0.37
0.36
0.35

Up

'K, ro ——2.88 A; X= 1/15
0.93 —1.40
0.91 —1.42
0.89 -1.42
0.87 —1.40
0.85 -1.32

'K, ra=2.88 A; X=1/15
0.99 —1.21
0.97 —1.22
0.96 —1.23
0.92 —1.17
0.90 —1.13

K/N6

—0.47—0.51—0.53—0.53—0.47

—0.22—0.25—0.27—0.25—0.23

still depend on the parameter X which enters explicitly
in Eq. (12) through the V,«of Eq. (5) and implicitly
through the dependence of no on A, . In order to 6nd a
resonable value for 3, we calculate the ground-state
energy, Eo(V,no(V, X);X), and the mean square devia-
tion of an atom from its lattice site,

82=—(C,*i (X,—R,)2ic.&—(p*(X,—R,) i (X,—R;)'i y(X;—R,))
=sL«(Vh)j '

for solid He', where experimental values are known,
using diferent values of X and determine that X which

gives the best 6t to the experimental values; this value
of X depends on eo and conversely no may be considered
as a function of X so that one can also compare with
experiment calculated values of no (or 5) for various
X. We anticipate that the X appropriate to solid He'
will be fairly close to that appropriate to solid He4

since the actual interatomic potential V(X;;) is the
same in He' and in He' and since the dominant spatial
correlation of the atoms in either the ground. state of
solid He' or in any of the states C in solid He' is to
individual lattice points.

Evaluation of Eo(V no(V X) ' X)=E(V np(V X) ' X)
and of 8(no(V, X)) as a function of X for solid He shows
that X=1/15 gives a fair description of these experi-
mentally known" properties of solid He' at pressures
=30 atm. The same value of 0, used for solid He' then
yields the corresponding Eo(V,no(V, 1/15); 1/15) and
8(no(V, 1/15)). The numerical results are exhibited in
Table II.

The results in Table II are obtained by a variational
calculation with respect to the parameter 0, the
lattice summation involved in Eq. (12) has been
approximated by a summation over the erst 42 neigh-
bors in a close-packed cubic lattice (12 at a distance R,
6 at EV2 and 24 at EVS). The comparison with the
experimental data is made by assuming the values
adopted by de Boer' for the parameters e and ro, i.e.,
e = 10.2 'K and ro= 2,88 A for either of the two isotopes.

The approximate agreement in the case of solid He4

at pressures =30 atm between our results for X= 1/15

and experiment progressively disappears at higher
pressures (smaller R/ro). In particular, we predict too
slow an increase of Eo with pressure for solid He' and
so presumably for solid He'. Thus, it is clear that X

must actually decrease with increasing pressure as in
fact one anticipates since the interatomic repulsion
must become progressively more and more important
in determining Eo at higher pressures. This short-
coming of our procedure is however not serious for the
present calculation since our interest is mainly to
obtain at pressures =30 atm a reasonably good estimate
of the exchange integral J;;in Eq. (11).In a very rough
fashion we can even give a discussion of several interest-
ing phenomena in solid He' at higher pressures, say
10'—10' atm (see Sec. 6), by making a crude estimate
of the variation of X with pressure.

6. EXCHANGE INTEGRAL AND ITS DEPENDENCE
ON PRESSURE

In the preceding section we obtained for solid He' the
ground-state energy and the root mean square deviation
of an atom from its lattice site based on the assumption
that symmetry or exchange effects are negligible.
However, as we discussed in that section, even though
the symmetry terms do not contribute appreciably to
the ground-state energy, they nevertheless play an
essential role in the determination of the magnetic
properties.

According to Eqs. (7)—(11), we have to compute the
exchange integrals J;;of Eq. (11) which constitute the
starting point for a calculation of the nuclear magnetic
properties. Since the individual J;j decrease rapidly
with increasing separation between the lattice points
R; and R; on which the individual atom orbitals are
localized, we may approximate the summation over
all pairs of atoms in Eq. (8) by a summation over
nearest neighbors, i.e., approximate the symmetry
energy as:

where q;;=1 if i and j are nearest neighbors and =0
otherwise, and

15' 15'

d Xd X'(p*( X'—R)p*(X)

X (Vx'+ V'x')+ V.«(i X—X'i)
2M

Xp(X R)p(X') =Jsr+Jo,—(14)—
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t' —As)
Js —=21 l„~

dX oo*(X)V'xsio(X—R) 6,(2~)J (15)

d Xd X' oo*(X'—R)p*(X)

XV,«(l X—X'l)q(X —R)o (X'), (16)

d X q*(X—R) o (X).

—= (noro)'{I(aors, X)}LB. (20)

For no(R, 1/15)ro=2.56 (see Table II) a numerical
integration or an approximate analytical evaluation
gives I(2.56; 1/15) =5.6X10 ', so that Eq. (20) yields
a positive exchange potential energy:

Jv/e=+3. 2X10 ', (21)

corresponding to the greater relative importance, even
at p=30 atm, of the repulsive term in V,«. Equations
(14), (19), and (21) show that J, the exchange integral
between a pair of nearest neighbor atoms, is negative:

J=L
—5.4+3.27X10 'e= —0.02 'K. (22)

From the fact that the exchange integral is negative,
so that the symmetry energy of Eqs. (8), (13) is:

N

+slJI Z Zm'J(1+~' ~.),
i=1 j=l

'7 The value of R appropriate to a pressure of 30 atm, R80, is
certainly less than the value of R appropriate to zero pressure
which, from Table II, is 2.28r0. It is however more accurate to
use an empirical value of R80=3.80 A= 2.32r0 as calculated from
the empirical density at 30 atm obtained by an extrapolation of
the molar volume data of E. R. Griliy and R. L. Mills (Ann.
Phys. S, 1 (1959)j which extends along the melting curve from
230 atm, 3.0'K to 50 atm, 2.3'K.

The empirical value of the nearest neighbor distance
R and the corresponding optimizing value of the
variational parameter 0, are taken from Table II, and
for a pressure of the order of 30 atm are: R=3.80
A=1.32ro ' 'r no(R 1/15)ro= (6.6)&=2.56. Evaluating
the integrals, Eq. (17) yields:

6= expL —s (noro) '(R/ro) '7 =exp L—2.97, (18)

and Eqs. (15), (18) give

Js/e=2$'ol 1—o(croro)'(R/ro)'7&'= —5.4X10 ', (19)

where 5'o=ssA'nor/2cVe=0. 92 is the average kinetic
energy per atom defined in Eq. (12) and also listed in
Table II. Thus, as may be anticipated from general
arguments, the "exchange kinetic energy, " J~ in
Eq. (15), is negatise. Further the "exchange potential
energy, "J~ in Eq. (16), can be written as

[
t2 t

'* i'"
Jt /e= (noro)'

l

—
l dx x'(x—"—2x-')

l&) ~,

X expL ltx "7 expL rs (rroro)sxs7

we conclude that the nuclear spins of neighboring He'
atoms electively align in opposite directions in energet-
ically low-lying states of the solid, . i.e., we conclude
that solid He' behaves as a nuclear antiferromagnetic at
suKciently low temperatures. At temperatures T=T&
=(z/2)

l Jl =6l Jl Lsee Eq. (37) below7 this spin
correlation will be destroyed by thermal agitation;
using Eq. (22), To=6l Jl=0.1 'K, which is close to
the value indicated by the susceptibility measurements
of Fairbank and Walters. ' Similar theoretical results
for Tz have been obtained by PrimakofP on the basis
of a diGerent model for the calculation of the symmetry
energy. On the other hand, and as we have already
noted, Pomeranchuk' predicts Tg= j.0—~ 'K in a
treatment where only the spin-spin magnetic interaction
energy is considered.

The value of the exchange integral J, given by Eq.
(22), is obtained by using values of R and rro(R, 1/15)
in Eqs. (14)—(21) appropriate to a pressure p=30 atm.
We have also estimated the pressure dependence of

. J&R(p),o.o(R(p),X(p)); pp)p on the basis of simple
assumptions regarding the decrease of lt (below 1/15)
with increase of p (beyond 30 atm) and we find'

1 dJ I dTg ——1X10 '/atm. (23)J dp Tc dp

Equation (23) indicates that for pressures & (30+100)
atm=130 atm the exchange integral J is positiee so
that for such higher pressures the energetically low-lying
states of the solid correspond to alignment of neighbor-
ing nuclear spins in the same direction. Thus solid He'
may be expected to behave as a nuclear ferromagnetic
(Tc&0) at sufficiently low temperatures (T&0.1 'K)
and high pressures (p&150 atm) —a possibility by no
means excluded by the available experimental evidence
(see Sec. 2). In fact, our prediction of a nuclear anti-
ferromagnetic to nuclear ferromagnetic transition for
p=150 atm and T&0.1 'K could be connected with
the crystallographic transition observed by Grilly and
Mills" at pressures =100 atm so that the low-pressure
stable (rr:close-packed cubic') and the high-pressure
stable (P:close-packed hexagonal) crystal structures in
solid He' may conceivably be characterized by T&&0
and Tz&0, respectively. "

i. NUCLEAR MAGNETIC SUSCEPTIBILITY AND
SPECIFIC HEAT OF SOLID He'

Having obtained both the volume energy E and the
exchange integral J in the symmetry energy and so

' having specified the equivalent Hamiltonian 0
l Eqs.

(8)-(22)7, we proceed to calculate the (Helmholtz)
free energy of solid He' in an external magnetic field,
F(T,V,B):
exp L

—F(T,V,B)/T7
expL —E„(V,B)/T7. (24)

811 StRtCS: u

To be published.
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Once F(T,V,B) is known we can obtain the nuclear
magnetization M, the entropy 8, and the specific
heat at constant volume and constant 6eld Cy, by
means of the usual formulas of statistical thermo-
dynamics, viz. ,

OF(T,V,B)
M(T, V,B)=—

8

M(T, V,B)=
OF.n (T,V,B)

S(T,V,B)=S,u(T, V,B)+S~h(T,V)

OF,s (T,V,B) OFnh(T, V)

(31)

(32)

OF(T, V,B)
S(T,V,B)=— (26)

OS(T, V,B)
Cv (T,V,B)= T

O'F(T,V,B)
T — . (27)

Also, for T=To, and B(&Tc/14, M is, to a very good
approximation, linear in 8 so that the nuclear magnetic
susceptibility is given by

x(T, V,B)=
OM(T, V,B) O'F(T,V B)

O'F(T,V,B)
l =x (T,V,O). (28)

B=p

In view of our previous discussion in Secs. 1, 4-6,
we can approximately decompose the energy E,(V,B)
of any state v of the solid He' into: (1) the volume
energy E,.t(R) =—E(R,np(R, 1/15); 1/15); (2) the sym-
metry plus spin orientation energy E,~, , (R,B)=—an
eigenvalue of

——;Jl R, , l R,—l; —I P Q q,,(1+;,)
15i 15& '=»=t

—vB Z ~"'
and (3) the lattice vibration or phonon energy, 'p

E,h,.„(R)= P V4„(k,&)bcpl t(R).
k, $

We thus have,

E,(V,B)=E„(R)+E„;.(R,B)+E, ,(R);
V =SRs/K2. (29)

In view of Eq. (29) we can write Eqs. (24)—(28) as:

exp' —F(T,V,B)/Tj
= expL —E,t(R)/T j Q expL —E. ..(R,B)/Tj

sp. states: 1

expL —E~t...(R)/T&
ph. states: v

=expL —
F, ( t)/VjTexpft F,p(T, V,B)//Tj—

Xexpj —F h(T, V)/T3, (30)
' h=—phonon wave number; g=—phonon polarization index;

~s,s(R)—=phonon frequency; 44„(h,g)—=number of phonons with
vrave number h, polarization P in state n.

&v(T, V,B)=&.n(T, V,B)+C,h(T, V)

O'F,n(T, V,B) O'Fnt, (T,V) (33)= —T
' '' —T-'
BT2 BT2

I
O'F,n(T, V,B)

X(T,V,O) =-
! OB

Two diferent mathematica1 methods may now be
used in the evaluation of the free energy of the nuclear
spins,

expL —F"(T,V,B)/T3

exp|' —E. ..(R,B)/T]
sp. states: v

1 J(R) N

=Trace exp — P Q tf;;(1+4r; 4r;)
l 4 T

F,p(T, V,B) S 1 y2b'=————ln2+ + —~'b'
4 y 2 4

+&s(yb)y'+34(yb)y'+ . , (36)

where y= J/T and b= I4B/J.—The higher order—terms in
A s(yb) y', A 4(vb) ys, , constitute a relatively

small correction for T&)
l
J

l
and are neglected below.

44 W. Opechowski, Physica 4, 181 (1937).

IJ„B &
+ Z '*' (35)T'-t '

the 6rst in the case of "high" temperatures, and the
second in the case of "low" temperatures. In the
"low"-temperature region the spin-wave method, as
described for instance by Van Kranendonk and Van

. Vleck," is reasonably satisfactory for calculating
F„(T,V,B), while for "high" temperatures there exist
several diferent though related procedures for approxi-
mately evaluating F.,(T,V,B); we shall use a method
proposed by Kramers, and developed by Opechowski. '

The Kramers-Opechowski method to evaluate
F„(T,V,B) in Eq. (35) involves the expression of

T ln Trace( —) as a series expansion in J/T which
converges rather rapidly for T&)l Jl. Adapting the
results of Kramers and Opechowski to our purpose we
can write
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Equations (36) and (34) give:

NIJ, ' (s) (s—2q (sq '
x(r V 0)= »+ I

— I~+ I &s j(2)
Ep'

V (1-psv)J
=1''/(T ,,'sJ)—.- (37)

0.2 .

0.)-

0.0
0.2 0.4

P a 50 oteoe

0.6 0.8 I.O

are given by

!IJ(R)l 2 Zn, ,(1+c' c;)
i=1 j=1

E.p;. (R,0)=E.p; p(R,O)+pi, I I,&'&(k)A&pi, &" (R)

1I,&'i (k)A&pa&" (R)), (40)

where E,p,.p(R, O) is the spin-wave zero point energy,
k, &p&, &i'(R), &p~"'(R) the spin-wave wave numbers and
corresponding frequencies, and n, &" (k), e„&'i(k) the
numbers of spin-wave quanta or magnons with wave
number k present in the state p. Equations (40), (35)
yield:

F,p(T, V,O) =E., p(R, O)

+T Qi, (1n{1—expj —h&di, &ti (R)/T))
+iii{1—expL —A&0],&"(R)/Tj)). (41)

In the case of zero external magnetic field, and with
neglect of anisotropy, the spin-wave frequencies are
degenerate: &pj,

&'i (R) =&p&,&pi (R) =—&pa(R). Further, at
"low" temperatures, T«Tz, only spin waves with
small wave number IkI are excited, and for these we

Equation (37) is just the Curie-Weiss law with
Tc —(s/——2)J, i.e., in the case of a close-packed lattice,
Tc= —6J. From Eqs. (37) and (22) we conclude that
solid He' is a nuclear antiferromagnetic at pressures
=30 atm, with a "paramagnetic" Curie temperature
Tg—6&0.02 'K=0.1 'K. Experimental results of
Fairbank and Walters (see our Table I and Fig. 1)
indicate tha, t Tc is indeed close to 0.1 'K for p =30 atm.

We can also use Eqs. (32), (33), and (36) to calculate
the entropy and the specific heat of the nuclear spins.
We obtain, considering the case of no external magnetic
field, b=0,

S,p(T, V,O) =1V(ln2 —Tc'/16T ); T»rc, (38)

Csp(T, V,O) =Nrc2/Sr', T»rc. (39)

These results are valid only in the "high"-temperature
region, T»Tg. In the "low"-temperature region,
T«rc, F„(T,V,O), S„(T,V,O), C„(T,V,O), etc., can
be obtained by a suitable adaptation of the spin-wave
method as follows.

According to the two sublattice model of antiferro-
magnetism treated in the spin-wave approximation"
the eigenvalues, E„.„(R,O), of the symmetry energy:

FIG. 2. Specific heat Cv of solid He' as a function of temperature
at a pressure & melting pressure in the indicated temperature
range calculated from Eqs. (33), (39), (45), (46).

can write. "
(R)=(s/~3) I J(R)

I IkI (42)

where, as before, E. is the nearest neighbor distance.
Equations (40)-(42) are derived on basis of a two

simple-cubic sublattice model which is applicable, for
instance, to a body-centered cubic lattice where z=8;
we assume, however, that these equations are also
approximately valid with z = 12 for a close-packed cubic,
i.e., face-centered cubic lattice. Then, substituting
Eqs. (40), (42) into Eq. (41) and using

1VR'/lt2
~ dk

(2s.)'
we obtain, for T(&6I J'I =Tc,

F,p(T, V,O) E.p, p(R, O) —NI 0.6(T/Tc)'j. (43)

Thus, from Eqs. (43), (32), (33),

S. (T,V,O) =NL04(T/Tc)'j; T&(Tc, (44)

C„(T,V,O) =NI 1.2(T/Tc)'j; T&(rc. (45)

Equations (45), (39)—see also plot in Fig. 2—describe
the specific heat of the nuclear spins at temperatures
T&&T&—0.1 'K and T»Tz—0.1 'K, respectively. Pre-
liminary data of Brewer, Sreedhar, Kramers, and
Daunt" seem to indicate a strong deviation of the
measured specific heat of solid He' from the T' law
law of the Debye phonon model at temperatures
T—0.1'K; this deviation, if further confirmed, mill
constitute at least a qualitative experimental verifica-
tion of the above predicted C„(T,V,O).

In concluding the present section it is important to
note that the specific heat, the thermal expansion
coefficient and the susceptibility of solid He' are
expected, in our approximation

I Eqs. (33), (39), (45),
(46), (34), (36), (37), (52), (53)j, to exhibit "singular-
ities" —e.g., cusp-like or otherwise well-defined maxima—at T= Tc while no such singularities (at T= Tc) are
found in the specific heat, " the thermal expansion

2' D. F. Brewer, A. K. Sreedhar, H. C. Kramers, and J. G.
Daunt, Physica 24, S132 (1958).

~ D. F. Brewer, J. G. Daunt, and A. K. Sreedhar, Phys. Rev. .

115, 836 (1959).
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coefBcient23 and the susceptibility' of liquid He' —in
this connection the apparent sharp break in the xT vs
T curve of solid He' ' (see Fig. 1) is to be noted. This
predicted striking difference in the thermodynamic
behavior of the two phases is ultimately to be ascribed
to the difference in the spatial correlation of the atoms
in the solid and in the liquid which implies a correspond-
ing difference in the character of the associated quasi-
particles (magnons and phonons in the solid; individual
atoms with M,«WM in the liquid). This last difference
in turn implies a difference in the corresponding energy
level densities and so a difference in the "degrees of
smoothness" (as a function of T,V,B) of the appertain-
ing free energies.

8. ENTROPY OF SOLID He' AS A FUNCTION OF
PRESSURE AND THE COEFFICIENT

OF THERMAL EXPANSION

Kith the nuclear spin or magnon entropy of solid He'
given in Eqs. (38) and (44) we next calculate the lattice
vibration or phonon entropy of solid He' and also the
corresponding specific heat; Eqs. (29), (30), (32), (33)
yield the standard results of the Debye model:

s.h(r, v) =&[80(rlr~)') i

C~g(T, V) =IV[240(r/Tn)'); T&&TD, (46)

where Tz—=A(&o&, t(R)), is the Debye temperature;
quantitatively, T&=2eWe, ' so that in view of Eq. (12),
the discussion just below Eq. (19), and Table II,
TL—20 'K.

Thus at "high" temperatures (Tc«r«rn) or at
"low" temperatures, (T«rc«ra), the total entropy
is given by CEqs. (46), (44), (38), (32))

1 (Tc't f T't
s(»vo) =&»2—

I I +80116(T) &T )
Tc«T«ru, (47)

3 T 3-

s(r, v,o)=x o.4I I
+8ol

Ere) I rn)

frl~N 0.4l —I; T«rc«rn, (48)
l r,)

so that the phonon entropy is negligible compared to
the magnon entropy at "low" temperatures.

Novr one of the Maxwell thermodynamic relations,

from Eqs. (4"/) —(49), we have:

8V(r,p,o) f)S(r,p,o) 1 )Tci' i 1 drci
r)T Bp 8t. T) trc dp J

( T ~ '( 1 drDy
+24OI jr.) lr~ dp).

Tc«T«rn, (50)

av(r, p,o) r)S{r,po)
—

( T ps
~ 1 drcq

rip (Tcj (rc dp )

f Ti ( 1 dTD)
+24O

t rr) (Tn dp )
T«rc«r&, (51)

LO-

0.0

where, numerically,

[(1/Tc) (dTc/dp)) =—1X10 '/atm [Eq. (23));

C(1/TD) (dr&/dp))= C (d logrz&)/(—d logv(o, p,o))
x[—(d logv(o, p,o)/(dp)) —= (y) (p)

(y=Gruneisen's constant; P=isothermal compressibil-
ity at T=o 'K)=(1.5)(3X10 '/atm) 'r; Tc=0.1'K
[Eqs. (37), (22)); Tn=20 'K [Eq. (46) ff.); V(T,p,o)—V(0, 30 atm& 0)—24 cm'/mole. "' Thus, Eqs. (50),
(51) yield

n (r,p,o)=(—5X10-sr-s+4.5 X10-4rs);
Tc«T«Tg), (52)

n(T,P,O)=(—42T'+4.5X10 4T'); T«r«&r~. (53)

&rom Eq. (53) we see that the magnitudes of the
coeKcients of thermal expansion of solid He' and solid
He' below 0.1 'K should differ by a factor of the order
of 10'(42/4. 5X10 4)

The isobaric thermal expansion coefBcient of solid
He', n(T,p,o), as given by Eqs. (52) and (53), is shown
in Fig. 3 as a function of temperature. From Fig. 3
we see that this coeKcient is negative below about

f)S(r,p,o) 8V(r,p,o)
(49)

eg P
CN

implies that the isobaric thermal expansion coeQicient,
n(T,p,o) =[1/V(T p,o))CBV(r,p,O)/Br), is positive or
negative according to whether the entropy decreases or
increases with pressure along an isothermal. Hence,

~ D. F. Brewer and J. G. Daunt, Phys. Rev. 115, 843 (1959).

5.0
O,R 0.4 0.6 0.8 LO

I'zG. 3.Thermal expansion coefhcient o. of solid He' as a function
of temperature at a pressure & melting pressure in the indicated
temperature range calculated from Eqs. (52), (53).
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0.6'K, and exhibits an anomaly near Tc—0.1'K.
We emphasize again that all the results of this section
hold only for temperatures below 1 'K and for pressures
=30 atm.

The isobaric thermal expansion coefficient, n(r, p,o),
is connected to the temperature change, (hT) s,
occurring under isentropic compression or expansion
by the thermodynamic relation:

n(r, p,o)

so that, from Eqs. (54), (23),

(Sr)s 1 drc——1X10 s/atm.
T(dP)s rc dP

(56)

This approximate equality of (d, r)s/T(hp)s and
(1/Tc)(dTc/dp) is, of course, solely a consequence of
the fact that for T&&T&T& the phonon entropy is
negligible and hence

s(r,p,o)=s"(r,p,o) =s"(r/r. (p)).
av(r, p,o) 1 BS(T,p,o)

Thus, we have

V(T,p,o) BT V(T,p,o) ap

as(r, p,o) ~ ~ar(p, s,o) q

Evr) & ar i & ap

C„(T,P,O) (hr)s
(54)

VT (&p)s

Thus for (hp) s)0—isentropic compression —(Ar) s
has the same sign as n(r, p,o) so that in view of Eqs.
(52), (53) and Fig. 3 it should be possible to cool solid
He' by an isentropic compression if the initial tempera-
ture is less than =0.6 'K. It should also be mentioned
that Eq. (54) has been used by Brewer and Daunt" to
obtain, in liquid Hex, calculated values of cr(P, T,O) from
measured values of (Ar)s/(hp)s, and this method
could be employed as well in solid He'. In addition
Fairbank and Walterse have observed that in an
isentropic expansion of the solid into the liquid-
(Dp)s&0—"heating occurs at the melting point for T
below about 0.4'K and cooling occurs above this
temperature, " i.e., the corresponding (d,r)s)0 for
T&0.4'K. This finding however does not constitute
unambiguous evidence for n(r, p,o) &0 for T&0.4 'K
since (hr)s is necessarily positive in this type of
experiment if, for example, S„i(T,p,o)—Si;u(r, p,o) is
positive and sufficiently large for T&0.4 'K (see Sec. 9).
It is thus clear that isentropic expansion or compression
experiments are necessary at various temperatures
within the solid phase alone to settle I via Eq. (54)j
the question of the sign of the thermal expansion
coeKcient of solid He'.

Finally, it is of some interest to give the numerical
value of (AT)s/T(hp)s as anticipated from Eq. (54).
Confining ourselves to the case: r«rc«rn, Eqs. (45),
(46), (51), (53) yield

as(T,p,o) as(T, p,o)
b,r+ hp=

AT

as(T,p,o)
hT

BS(T,P,O) dTc BS(T,P,O)+ -hp= Ar
BTc dP BT

T BS(T,P,O) dTc
hp,

BT dpTc

whence, in an isentropic change —M=O—

(ar)s 1 drc

r(ap)s rc dp

07 -..;i

06-

Q. MELTING CURVE OF He~

Since X,.i(r,p,o))Xi;u(r, p,o) for 0.1 'K& T&0 O'K.
and p= p~.it, (Fig. 1) we expect that for these tempera-
tures solid He' has less spin alignment and so more
entropy than liquid He'; since at higher temperatures
the entropy of the liquid is greater than that of the
sohd, the melting curve —p .it, vs T .it~hould have
a minimum for T,it,=0.4 'K. If this is true one can,
as first pointed out by Pomeranchuk, ' for instance

C„(r,p,o)~Cv(r, v,o)—C„(T,V,O) =F1.2(r/Tc)'g)

N ( r y
' ) 1 drcp-

~(r,p,o)= 1.21
V t.rc) t.rc dp J Fra. 4. Curve A: entropy of solid He~ from Eqs. (47), (48)

with suitable interpolation near T&=0.1'K. Curve B: entropy
of liquid HP from experiment (reference 23). Both of these
entropies are plotted as functions of temperature along theI,I ~ ( melting curve. The horizontal dotted line corresponds to: entropy

&Tc dP & of solid He'=Ek ln2 and is appropriate to 2'c&10 ' 'K.
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melt solid He' by decreasing its temperature at constant
pressure for appropriate values of pressure and initial
temperature. Direct information bearing on such an
unusual thermodynamic behavior is clearly of consider-
able interest.

At the present stage of development of the theory of
solid He' and liquid He' it is not possible to calculate
the melting curve wholly from first principles. However,
one can construct a relevant part of the melting curve
of He' from the knowledge of: (1) the entropy,
{S,.I(T p,o)) .It—S.,I(T, p=30 atm, 0), of the solid
along the melting curve: our Eqs. (47) and (48) suitably
interpolated near To, (2) the entropy, {SIIp(T,p,o))
of the liquid along the melting curve: from the experi-
ments of Brewer and Daunt" at several pressures,
first suitably extraplated to p=30 atm and then to
p~, tt(T~, It,o); (3) the Clausius-Clapeyron equation

d (T,o)
t

{SI;(T,p,o)) .It—{S„I(T,p,o)} .,„
t

It {VII (T,p,o)} It {Vo1(T p 0)} It

{AS(T,p,o)) .It
{~V(Tp 0))

j..e.,
t

&-It {as(T,p,o)) .„
p It(T It 0) pp+ (57)

rp {aV(T,p,O)) .I,
(4) {AV(T,P,O)) .I~aV(Tp, Pp, o)—1 cms/moletr; (5)
Tp —=melting temperature for which {BS},It

——0; Tp
=0.37 'K from Fig. 4; Pp

=—corresponding melting
pressure, assumed=29. 1 atm for best over-all G.t with
experiment. Figure 4 shows {SI;p(T,p,o))~.It (curve B),
and {S„I(T,p,o)),It=S„I(T,p=30 atm, 0), the latter
for two different values of To. (a) Tc=0.1 'K as given

by Eqs. (37) and (22) and by the susceptibility measure-
ments of Fairbank and Walters' (curve A): and (b)
Tz(10—' 'K i.e., T&=10—' 'K as suggested by Pome-
ranchuk' (horizontal dotted line).

The melting curves for T&0.5 'K, calculated from

BG(T,p,B)
M(T,p, B); —G=F+pV MB—, —

{AG(T,p,B))
—= {GI;0(T,p,B)},It—{G,.I(T,p,B)) .It=0. (59)

Equations (58), (59) yield

Eq (.57) and Fig. 4 with the two quoted vaues of Tc,
are presented in Fig. 5 together with typical experi-
mental points obtained by Baum, Brewer, Daunt, and
Edwards. '4 Agreement between the melting curve
obtained with our Tg=0.1 'K and experiment appears
quite satisfactory; in particular the minimum at
temperatures close to T=0.37 K is well verified. On
the other hand, the melting curve obtained with
Pomeranchuk's Tg=10 ~ 'K, while also possessing a
minimum' close to 0.37 'K, lies considerably above the
experimental points for T—0.1'K. Experiments at
even lower temperatures (0.05 'K& T&0.1 'K) would
be of great interest since a further distinction between
our theory and Pomeranchuk's may be obtained by
the observation or otherwise of the maximum in the
melting curve at T=0.08 'K where our {S„I(T,p,o) )~.It
again equals {SI;p(T,P,O)),It. In fact, granting the
correctness of our S„I(T,p,o), the absence of such a
maximum would imply that the linear-in-T extrapola-
tion of SI;p(T,p,o) for values of T&0.1 'K" is incorrect
and that the actual SI;p(T,P,O) has such an anomaly for
T&0.1'K (due for example to the onset of super-
fluidity) that our {S„I(T,P,O) } .It curve does not cross
the actual {SI;p(T,P,O)),It curve for any T&0.1 'K.

In concluding this section, we wish to emphasize
that all the above results hold exactly only at zero
external magnetic field. In the presence of such a
magnetic field, B, we have from thermodynamics:

BG(T,p,B) BG(T,p,B)
S(Tp») — = V(»p, B), (58)

BT 8

t~P(T»)
t

{~M(TP»)) It Hxt %(T P 0)) .It—{x-I(T,P,O)) .It]B
aB,It {aV(T,p,B)) .I, {aV(T,p,O)) .„ (6o)

and since

Bp(T,B)
t

BT

{AS(Tp, B)}brett {AS(Tp,o)} .It {(8/BB)AS(T&p)B)]B 0} eltB

{~V(Tp»)} .It {~V(T,po)} .It {~V(T,p,o)} .It
{&S(T,P,O)) .I, {(a/aT)~M(T, p,B)], ,) „,B
{~V(T,p 0)}..It {~V(T,p,o)} „„
{AS(T,p,o)) . L{8x;,(T,p,o)/BT) . —{Bx..(T,p,o)/BT) .,)B'

{~V(Tpo)) .It (61)

{x„,(T,p,o)) „«{x,.I(T,p,o)},I„
Bxr;,(T,p,o) Bx„I(T,p,o)),{EV(T,p,o)},tt) 0,"

melt ~T melt

0' J. L. Baunt, D. F. Brewer, J. G. Daunt, and D. O. Edwards, Phys. Rev. Letters 3, 127 (1959).
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(see Fig. 1) we see that the field B decreases the value of pm. lt at fixed T .lt and decres, ses the value of the
temperature Tp(B) PT0(0) —= Tp) corresponding to the minimum of the melting curve.

To estimate the numerical magnitude of the effects involved, we integrate Eqs. (60), (61) and obtain

(p(T0») }-lt—(p(T0 0))-lt (p(T0»)) .lt —po

(p(T0,0)} .lt Pp

Tp

1 (ftB t f
(TC; liq)melt (TC;sol)melt I t +Tp

2 & T,) ( ) (PpAV(Tp, P0,0))

=—(0.5X10 "gauss ')B'

Tp

Tp Tp(B) 2 (ftB 0 t (TC; liq}melt (TC;sol) elmt)

)02(T) &

(62)

=(10 "gauss s)B' (63)

so that, for example, a Geld of 10' gauss is required to
shift the melting curve minimum from Tp ——0.37 'K
to Tp(B) =0.33 'K.

s
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TC a O.l K(BERNAROES AND PRIMAKOFF) ~
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FxG. 5. Melting curves of He', calculated from Eq. (57) and
Fig. 4, for Tq =0.1'I and Tg &10 6 'K; the dots represent experi-
mental points (reference 24).

iO. CONCLUSIONS

In this section we summarize the results we have ob-
tained for solid He' and compare them with experiment.

For solid He' at low pressures, p=30 atm, and low

temperatures, T&1 'K, we And:

(1) For an empirical nearest neighbor distance
E.=3.8 A, our calculation gives a value of 0.36R for
the root mean square deviation, 8, of an atom from its
lattice site. The experimental value of 8 for solid He'
is not known but it should be somewhat larger than
the corresponding value for solid He4 which is known

experimentally to be 0.31R."
(2) The cohesive energy per He' atom in the solid

at zero pressure is found )to be roughly 2.4 'K. Again

there is no experimental data available for solid He' but
its cohesive energy should be only a little less than the
corresponding value for liquid He' which is approxi-
mately 2.5 'K."

(3) From the algebraic sign and numerical value of
the "exchange integral" J we predict that solid He'
should be a nuclear antiferromagnetic at p=30 atm
with a "paramagnetic" Curie temperature T~—0.1 'K.
Nuclear magnetic resonance experiments' indicate that
solid He' is indeed antiferromagnetic with Tg—0.1 'K.
We further predict that Tg decreases with increasing
pressure and may even change sign at p=150 atm;
we may thus, very tentatively, anticipate a nuclear
antiferromagnetic to nuclear ferromagnetic transition
in solid He' at such pressures and sufFiciently low
temperatures (T&0.1 'K).

(4) We predict that the specific heat of solid He'
should exhibit a singularity at T=0.1 'K associated
with the alignment of the nuclear spins. Only prelimin-
ary experimental data are available. "

(5) We also predict that the thermal expansion
coefBcient of solid He' should become negative below
about 0.6 'K. Again no experimental data are available
for solid He', but experiments of Brewer and Daunt"
have demonstrated a similar eGect in liquid He'. Note
added iN proof S G. Sydo.r—iak., R. L. Mills, and E. R.
Grilly LPhys. Rev. Letters 4, 495 (1960)j report ex-
perimental data indicating that the thermal expansion
coeScient of solid He' becomes negative along the
melting curve for T,~~&1 'K.

(6) From (5) it follows that below =0.6 'K an
isentropic compression (expansion) of solid He' should
produce a cooling (heating) effect (1% decrease
(increase) in T per atm for T«Tcj. Fairbank and
Walters' have observed such an eBect below about
0.4 'K but their results are not conclusive since they
allowed the solid to melt during the isentropic expansion.

(7) Finally, we construct the melting curve of He'

(pm, lt vs Tm, lt) for T&0.5 'K and predict a minimum
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in this curve at 2 =0.37 'K and a maximum at T—0.08
'K. The predicted minimum has recently been found
(at 7=0.32 'K) in the experiment of Baum, Brewer,
Daunt, and Edwards. 'e Note added ie proof. S—ee in
addition S. G. Sydoriak, R. L. Mills, and K. R. Grilly,
Phys. Rev. Letters 4, 495 (1960), and D. M. Lee, H. A.

Fairbank, and E. J. Walker, Bull. Am. Phys. Soc. 4,
239 (1959), whose experiments show this minimum at
0.330 'K and 0.32 'K, respectively. We also consider
the inQuence of an external magnetic field on the melting
curve and find that very high ftelds (=10' gauss) are
required for an appreciable e6ect.
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The paper comprises theoretical and experimental studies of
the lattice dynamics of alkali halides. A theory of the lattice
dynamics of ionic crystals is given based on replacement of a
polarizable ion by a model in which a rigid shell of electrons (taken
to have zero mass) can move with respect to the massive ionic core.
The dipolar approximation then makes the model exactly equiva-
lent to a Born-von Kd,re,n crystal in which there are two "atoms"
of di8ering charge at each lattice point, one of the "atoms" having
zero mass. The model has been specialized to the case of an alkali
halide in which only one atom is polarizable, and computations of
dispersion curves have been carried out for sodium iodide. We
have determined the dispersion v(q) relation of the lattice vibra-
tions in the symmetric L001j, L110j, and $111j directions of
sodium iodide at 1jO'K by the methods of neutron spectrometry.

The transverse acoustic, longitudinal acoustic, and transverse
optic branches were determined completely with a probable error
of about 3%. The dispersion relation for the longitudinal optic
(LO) branch was determined for the $001$ directions with less
accuracy. Frequencies of some important phonons with their
errors (units 10n cps) are: TA[0,0,1)1.22+0.04, LA)0,0,1]
1 82~0 06~ TAPs's~ iH1 52~0.05' LAHa'a'32 32~0 06' TOt Oi0'03
3.6v+0.1, TO/0, 0,1)3.8v&0.1, TOP„y,zs)3.5e+0.1. The agree-
ment between the experimental results and the calculations based
on the shell model, while not complete, is quite satisfactory. The
neutron groups corresponding to phonons of the LO branch were
anomalously energy broadened, especially for phonons of long
wavelength, suggesting a remarkably short lifetime for the
phonons of this branch.

I. INTRODUCTION

'HE lattice dynamics of a crystal is described by a
frequency, wave vector dispersion relation, inso-

far as it is harmonic. In the last few years it has become
possible to determine experimentally this dispersion
relation using x-ray diffraction and neutron spec-
trometry. The dispersion relation has been measured
fairly accurately for several metallic' 4 and semicon-
ducting 5 ~ crystals consisting of one kind of atom. The
only determinations for crystals having more than one
kind of atom have been by x-ray diGraction methods.
However, there is good reason to believe that neutron

*This paper was presented at the Washington, D. C., Meeting
of the American Physical Society, April 30-May 2, 1959 LBull.
Am. Phys. Soc. 4, 246 (1959)$.

f Visiting scientist from the Cavendish Laboratory, Cambridge,
England, now returned.

t E. H. Jacobsen, Phys. Rev. 97, 654 (1955). Earlier references
to x-ray work are given here.' C. B.Walker, Phys. Rev. 103, 547 (1956).' B.N. Brockhouse and A. T. Stewart, Revs. Modern Phys. 30,
236 (1958).Earlier references to neutron work are given here.

4 B.N. Brockhouse, T. Arase, G. Caglioti, M. Sakamoto, R. N.
Sinclair, and A. D. B.Woods, Bull. Am. Phys. Soc. 5, 39 (1960).

«B. N. Brockhouse and P. K. Iyengar, Phys. Rev. 111, st 4'?

(1958).
A. Ghose, H. Palevsky, D. J. Hughes, I. Pelah, and C. M.

Eisenhauer, Phys. Rev. 113,49 (1959).
s B.N. Brockhouse, Phys. Rev. Letters 2, 256 (1959).
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Eo—8'=&h v
—=&Ace,

Q—=ko-k'= 2sr'v-tl,
(1.1.1)

where Eo and ko are the energy and momentum of the
incident neutrons, and ~ is any vector of the reciprocal

IR. Weinstock, Phys. Rev. 65, 1 (1944).
n G. Placzek and L. Van Hove, Phys. Rev. 93, 1207 (1954).

measurements are much more accurate than are x-ray
measurements for crystals with more than one atom per
unit cell. Thus it seems desirable to study such crystals
by neutron spectrometry.

In the determination of the dispersion relation by
neutron spectrometry energy distributions of initially
monoenergetic neutrons are measured after scattering
by a single crystal in known orientation. The frequencies
v and wave vectors q of the vibrations are inferred from
conservation of energy and momentum between the
neutrons and single phonons. ' ""If the frequencies and
wave vectors of the phonons are well defined then sharp
groups (broadened of course by imperfect resolution)
are observed in the neutron energy distributions. The
center of a neutron group is taken to define the energy
(E') and wave vector (k') of those neutrons which had
interacted with a particular vibration. The frequency
and wave vector of the vibration are given by the con-
servation equations


