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agrees with that for Group II elements and suggests a
charge of unity for it. We would assume, of course, that
Z'= —1 but the experiments are insensitive to the sign
of Z'.

Every major feature of the experiments has been
explained by using the gradients given by KV. Di-
vergences of theory and experiment are traceable to
the model used for the line shape calculation in every
case and therefore are not significant except to point
the way for an improved model. The impetus to provide
same is lacking at present because in no case was it
possible experimentally to detect or identify specific
component lines arising from known shells. It was
hoped that the study of I vs vo, for instance, might
have allowed a de6nite conclusion regarding the spatial
distribution of q(r). Lacking this, we are unable to
check the details of the q, put forth by KV and must
be content for now to state that although any gradient
roughly proportional to Z'/r' and of suitable magnitude
will explain the observations, the only rigorous theo-
retical calculations which at present provide the
necessary gradient are those of KV which stem from

Friedel's observation that a self consistent treatment
of the charge around a solute atom reveals a variation
in charge density created at a large distance from the
dissolved atom. The importance of this interesting
"second term" which appeared in I'riedel's earlier
electron density calculations seems to be more clearly
emphasized by experiments of the type described here
than any other currently in use.
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Experiments of Bloembergen and Rowland have shown that the intensity of the nuclear resonance
signal in metallic Cu decreases rapidly when small quantities of other elements are alloyed with it. These
results require that each solute atom produces signiGcant electric Geld gradients in its vicinity, sometimes
affecting as many as 85 neighboring Cu nuclei. In this paper we show that Geld gradients of approximately
the required magnitude arise from the redistribution of the conduction electron charge density near the
solute atoms. A crucial feature of our theory is that at large distances r from a solute atom the electron
density behaves as cos(2ksr++)/r' where k' is the Fermi wave number and p is a phase. Our agreement
with experiment is a conGrmation of this behavior. Such an oscillatory behavior is a consequence of a
discontinuous drop at the Fermi surface of a(k), the occupation probability of the conduction band function
with wave vector k.

1. INTRODUCTION

LOEMQ BERGEN and Rowland' and Rowland'
have observed that the nuclear resonance signal

in metallic copper decreases rapidly when small amounts
of solute are introduced. These measurements require
for their explanation that the solute atoms give rise
to substantial Geld gradients which act on the Cu
nuclear quadrupole moments as far as the sixth and
seventh nearest neighbors. Two possible mechanisms

~ Supported in part by the OKce of Naval Research.
$ A preliminary account was published in Bull. Am. Phys.

Soc. S, ~76 (~96O).
t Present address: Department of Physics, University of

California, I a Jolla, California.' N. Bloembergen and T. J. Rowland, Acta Met. 1, 731 (1953).' T. J. Rowland, preceding paper t Phys. Rev. 119,900 (1960)j.

suggest themselves as responsible for this effect. One
is that the field gradients are associated with the
strain around the solute atoms, which does indeed fall
off slowly, namely as r 3. However as one 6nds only
minor correlation between the strains expected around
different solutes and their effectiveness in reducing the
resonance signal, this explanation is not satisfactory.
Another possibility is that the held gradients arise
from the electron charge which screens the solute atoms.
This is supported by the strong correlation of the
measured effects with the valence difference between

the solute and copper. However if the screening is

described by an exponentially decreasing electron

charge density of the Thomas-Fermi type, the associated
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Geld gradients are about two orders of magnitude too
small at the more distant lattice sites.

Recently Friedep has pointed out that on the basis
of a self consistent treatment of an electron gas in
the vicinity of a solute atom one expects the screening
charge to fall o6 much more slowly with distance,
namely as r ' multiplied by a sinusoidal function of r.
A similar behavior was also obtained by Langer and
Vosko' using an approximate many electron perturba-
tion theory. ' A survey of the experimental data at
once suggests that this long range screening might
well be responsible for the Geld gradients. For they are
roughly consistent with the assumption that the
field gradients behave as Z'/r' where Z' is the valence
difference between the impurity and copper.

In this paper we make a rough quantitative estimate
of the Geld gradients associated with such an oscillating
screening charge. In Sec. 2 we derive an expression for
the Geld gradients in terms of the screening phase
shifts of electrons at the Fermi surface due to solutes,
and an enhancement factor o. due to the Bloch character
of the electrons as well as to antishielding eGects of
-the core. The phase shifts are calculated in Sec. 3 from
the Friedel sum rule' and the measured values of
residual resistivities. The enhancement factor a is
calculated in Sec. 4 with the help of a simple orthog-
onalized plane wave procedure. In Sec. 5 we shall show

that our results account for all the general features of
Rowland's experiments and give quantitative agreement
to better than a factor of two. In Sec. 6 we use this
agreement to draw conclusions about the sharpness of
the Fermi surface in copper.

2. GENERAL THEORY

In this section we shall derive an expression for the
oscillating part of the screening charge around a solute
atom in a metal. We follow closely the procedure of
Friedel, ' except that we describe the electrons by Bloch
waves rather than by plane waves.

A solute atom in a metal will be considered to give
rise to a perturbing potential U'(r) acting on the Bloch
electrons. This potential may be thought of as obtained
from a self-consistent calculation and includes the
eGect of screening. However, we shall see that for our

purposes it need not actually be computed. The
electrons are then described by the following Schro-
dinger equation

L
—(5'/2m)~7'+U(r)+U'(r) jp=E&, (2.1)

3 J. Friedel, Phil. Mag. 43, 153 (1952); Advances in Physics
edited by N. F. Mott (Taylor and Francis, Ltd. , London, 1954),
Vol. 3, p. 446; Suppl. Nuovo cimento 2, 287 (1958).

4 J. S. Langer and S. H. Vosko, J. Phys. Chem. Solids 12, 196
(1959).

'Some con6rmation of a similar effect has already been
presented by A. BIandin and E. Daniel U. Phys. Chem. Solids
10, 126 (1959)j who have studied the shift and broadening of
the Knight shift primarily in alloys of Ag which has no quadrupole
moment. However, here there is no conclusive evidence that the
effects extend beyond the third nearest neighbor.

FIG. 1. Scattering of a Bloch
wave by a solute atom.
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where U(r) is the periodic potential in the absence of
the solute.

When U' vanishes, the solutions of (2.1) are the
Bloch waves p~(r), belonging to the conduction band
in question, which we normalize as follows:

(2.2)

For simplicity we shall assume that the conduction
band Ek is spherically symmetrical.

We are now interested in the asymptotic form of
the solutions fa of (2.1), corresponding to an incident
Bloch wave q~ and an outgoing scattered wave. We
shall take the solute atom to be situated at the origin.
In complete analogy with the theory of plane wave
scattering, one Gnds

ltq(r) = 9 1,(r)+Lf(k,k')/rjq I (r),

where
I

k'
I

=
I
k I, and furthermore

k'= k'(r/r),

(2.3)

(2 4)

that is k is in the same direction as r. (See Fig. 1.)
This property can be seen as follows. An electron
arriving at r after being scattered at the origin has a
velocity vector v in the direction of r. Because of the
assumed spherical symmetry of Ez, its k vector is
parallel to v and hence also to r.

In the absence of more detailed information we
assume that f(k,k') depends only on the magnitude of
k and the angle 8 between k and k' or k and r (Fig. 1),
and shall write it as fs(8). We can then expand fs(8)
in spherical harmonics in the usual way,

c)

fs(8) = P (2l+1)(e"&«"l 1)Pi(cos—8), (2.5)
2ik &~

where

8m~(r)—= Ilta(r) I'—
I &p~(r) I'

=Real" +be (2.6)

and

In'"&(r) = (1/r)Lya*(r) fs(8) qa (r)+c.c.), (2.7)

5N&"& (r) = (1/r')
I f& (8) I

'
I ~'(r) I

'
~ (2.8)

where the g~'s are phase shifts. For large r, the excess
electron density contributed by the wave function
P|, can be written as
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The total excess density at r is

2
()= " .()

(2-) ~. " (2.9)

where k' is the wave number at the Fermi surface.
To evaluate be~(') we first introduce the periodic

parts of the Bloch waves

-nucleus

FIG. 2. Coordinate
transformation.

which gives
qg(r) =up(r)e"', (2.10)

fO

be&'&(r) = — u, *(r)ug (r)
(2~)' ~ 4'&"'

parts as in Eq. (2.12). This gives the final result that

be(r) = —(1/4m') (1/r )(exp(2ik'r) ~u~o(r)]'

&(k'f, (~)+c.c.), (2.17)

)(f„(g) eikr(cos8 —1)dk+c c (2.11) where k'points in the direction of r.6 In the special case
of plane waves Puzo(r) =1], Eq. (2.1'/) reduces with
the help of (2.5), to Friedel's result

&([—singi cos(2k'r+gt le)j,—(2.18)

For large r only the exponential in (2.11) is a rapidly
varying function of the angle e between k and r. This
allows us to extract the dominant term by integrating be&„,(r) —= P (21+1)
(2.11) by parts with respect to 8. For, let F(e) be a
slowly varying function of 0. Then

f
P(0)e iver(cos8 1—)d(cose—)

Jp
1 1 1

P(m)e""— F(0)+Oi —i. (2.12)
ik ik

which may be expressed as

bni„, (r) =A cos(2kor+y)/r', (2.19)

Applying this result to (2.11) gives

1 1 p"' fg(m)
bs&" (r) = — ' e"'" u g*(r)ug(r)kdk+C. C.

Qp Z

r "'f~(0)
u'*(r)u" (r)kdk+c. c. . (2.13)

p

The integrals are over the magnitude of k only, its
direction being fixed in the direction of k' or r. The
second bracket in (2.13) is precisely cancelled by the
contribution of be„&'&(r), in virtue of the well-known
optical theorem

d~~ fs(~) ~'=(4n./ik) Im fg(0). (2.14)

Further we may use the identity

A= ((P (21+1)f—singi cos(gi —Ar) j)'
2%2 l

+fQ (21+1)~—singt sin(gi —l~) j)')'*, (2.20)

Pi (2l+1) singi cos(gi —lm)
y=tan ' (2.21)

P~ (21+1) singt sin(gi —l~)

Here the gg's are the scattering phase shifts at the
Fermi surface.

The oscillating electron density (2.17) gives rise to
electric field gradients which act on the quadrupole
moments of the Cu nuclei. To compute the interaction
between the conduction electrons and the Cu nucleus
situated at a distant lattice point r„ it is convenient
to take the z zxis along r„and to define the relative
coordinate (see Fig. 2)

(2.22)

u g*(r) =up(r)
The electrostatic potential due to (2.17) is given by

(2.17)
p bm(r„+r")

V(r') = —e — dr",
fr"—r'/

to obtain
(2.23)

1 1( ~"' f~(m)
e'~~~ Iu~, r) I'kdk c.c. I. (2.16) and may be expanded in spherical harmonics. To a

good approximation we may take V(r') as axially

bl(r) =

Again, for large r, only the exponential is a rapidly 6It may be noted that Nq~(rj occurs in (2.17j just squared,
varying function of k so that one may integrate by notabsolute valuesquared.
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symmetric and write near r'=0,

&(r') = &o+s'(&&/&s')+ . . (2.24)

For our purposes the relevant term is associated with
the spherical harmonic P2 and is given by

This 0, is an enhancement factor, which measures the
increase of q over its value in a plane wave theory
without antishielding. Its magnitude will turn out to
be about 25 for copper. A and p are determined by the
phase shifts ri&, according to Eqs. (2.20) and (2.21).

Vs (r') = s eq'r"Ps (cos0') (2.25) 3. DETERMINATION OF PHASE SHIFTS

where the constant q' is given by

r be(r„+r')
q'= — ' — (3 cos'0' —1)dr'. (2.26)

I

However the actual field gradient at a nucleus is
not yet given by q' but must be corrected for effects
of core polarization. ~—' This leads to a modified constant

q, given by

We see from Eq. (2.28) that the oscillating part of
the electron charge density is determined entirely by
the scattering phase shifts q~ for electrons at the Fermi
surface, and by the form of the Bloch waves. In this
section we shall estimate the values of g~ for various
substitutional impurities in Cu.

One method is especially simple because it does
not require explicit knowledge of the effective scattering
potential U'(r). We recall first the Friedels sum rule

) be(r„+r')
q= — L1+p(r')$(3 cos'0' —1)dr', (2.27)

2Z'=- P (2&+1)»(e), (3 1)

where y(r') is the so-called antishielding factor. ' This
is the quantity which we must calculate at various
lattice sites and compare with experiment.

It is useful to write out (2.2'7) in a way which exhibits
explicitly its dependence on the phase-shifts and on a
(1/r')-type integral involving the Bloch functions and
the antishielding factor y(r'). The main contribution
to the integral in (2.27) comes from small values of
r' because of the 1/r" factor. Since our theory assumes
that r is large we may replace the factor r ' in (2.17)
by r„'. For the same reason k' may be taken in the
direction of r„.With these simplifications and expressing
fI,o(8) in terms of the phase shifts (2.17) becomes

be(r„+r') = P (2l+1) (—1)'+' sinri~
4m' r„' i

XexpLi(2k'r +rig) jgqj, o(r') j'+c.c. (2.28)

Substituting this expression in (2.27) we obtain at the
Ith lattice site

where

Sm. A cos(2k'r„+p)
g'= o.——

3 rn'
(2.29)

I exp(2' r')Ps(cosO~') (1/r")dr'

(2.3O)

7 H. M. Foley, R. M. Sternheimer, and D. Tycko, Phys. Rev.
93, 734 (1954).

R. H. Sternheimer and H. M. Foley, Phys. Rev. 102, 732
{1956).

'M. H. Cohen and F. Reif, Solid-State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc. , New York, 1957),
Vol. 5, p. 321,

where Z' is the valence difference between the solute
atom and copper. This equation results from the
requirement that any excess charge on the impurity
ion be exactly compensated by a shielding charge of
the conduction electrons.

Secondly, the residual resistance of a dilute alloy of
copper is given by

Dp= (M'c/e')o „ (3.2)

where c is the atomic concentration of the solute and
0, is the effective scattering cross section at the Fermi
surface given by

~.=)~(1—cos8)
~ fI,o(g) ~'dQ

4g ~
=—Q l sin'(ri( i-rl(). (3.3)

0 / I

If we now make the assumption that only &0 and p&

are appreciable, " we can attempt to use the known
values of Z' and o, to determine these phase shifts
from (3.1) and (3.3). This procedure gives the results
listed in Table I for solutes in Groups I, III, IV, and V.
For solutes in Group II, the measured resistance is
smaller than any value obtainable with po and p& only,
which satisfy the sum rule (3.1). For these materials rls

and g~ were chosen to give the lowest possible resistance
compatible with (3.1). These values are also listed in
Table I. The last two columns of Table I, give the total
amplitude and phase of the oscillatory part of the
electron density, defined in Eq. (2.28). It will be noticed
that the values of 3 and q are strongly correlated with
with Z'. This is due to the fact that the observed residual
resistivity is very similar for solutes of equal Z'. (See
Table I.)

' If one represents U' by a screened Coulomb potential, one
does indeed 6nd values of q2 so small as not to aBect our further
conclusions by more than about 25%.
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TABLE I. Scattering characteristics of different
impurities in copper.

Impurity

Group I (Z'=0)
Ag
Au

Group II (Z'=1)
Mg
Zn
Cd

Group III (Z'= 2)
Al
Ga
In

Group IV (Z'=3)
Si
Ge
Sn

Group V (Z'=4)
P
As
Sb

Residual
resistivity'

5p gp

0.14 0.136 —0.045 0.0138
0.55 0.275 —0.092 0.0272

0.0454b
0.0906b

0.65 0.521
0.32 0.521
0.30 0.521

0.350 0.0276
0.350 0.0276
0.350 0.0276

0.194
0.194
0.194

1.25 2.715
1.42 2.684
1.06 2.752

0.142 0.0408 —0.138
0.153 0.0434 —0.147
0.130 0.0376 —0.127

3.95 2.983
3.79 3.005
2.88 3.135

0.576 0.0889
0.569 0.0873
0.526 0.0765

0.516
0.518
0.523

6.7
6.8
5.4

3.396 0.962 0.1153
3.382 0.967 0.1164
3.581 0.901 0.1003

1.034
1.036
0.996

a Units —pohm —cm per atomic percent solute.
b Actually only the relative signs of qo and rfI can be determined from

the residual resistance. Reversing the sign leaves A. unchanged but the
sign of y changes; this does not affect the conclusions that follow.

cos(2k'r+rr)
hm(r) =0.0236Z'

r3
(3.4)

In Table II this result is compared with the mean
values obtained from the semiempirical procedure
described above.

We see that the two methods give quite similar
results for the amplitudes A. Of the two sets of values
we prefer that obtained by the semiempirical method,
since effects of the Bloch wave nature of the electron
wave functions and of terms omitted in the approximate
perturbation theoretic treatment are contained in the
"empirical" values of go and gi.

TABLE 'II. Amplitude and phase of oscillatory electron density.

The quantities A and y can also be calculated "from
first principles. "For this purpose we treat the electrons
as a free electron gas (with uniform positive back-
ground) in the presence of an immersed charge Z'e.
Using many-body perturbation theory one can cal-
culate, approximately, the change of the electron
density due to the immersed charge to irst order in
Z'e. This was done by Langer and Vosko' who And

for copper

L~ (r')3'& (c»O')(L1+v(r')3/(r')')«'

(4.1)

where k is the wave vector on the Fermi surface in the
direction of r„and r is the position of the Cu nucleus
in question relative to the solute atom, r' the position
vector relative to r„, O~' is the angle between k and r'
and y(r') is the antishielding factor (see Fig. 2). We
have made only a rough determination of a which we
shall now describe.

The denominator in (4.1) has the value —4m/3. To
estimate the numerator we Heed an approximate form
of the Bloch wave pq(r'). We anticipate (and later
verify) that the main contribution to the integral
comes from regions in r space which lie well inside the
atomic cell. In this cell we approximate p& by a single
orthogonalized plane wave

~ «(r') = (1/&'*)Le""-2 B.~4, i.a(r')3 (4 2)
n, l

Here the g, , t, o are the real normalized atomic core
functions; the B„,i are coeScients chosen to make yI,
orthogonal to the f„,r, o and are given by

B t
—— e+"*'P ( p(r')dr' (43)

the normalization constant is so chosen as to make

f
i ~„(„)i2dr

n~,

where 0 is the volume of the atomic cell:

X=1—(I/n) P iB„,, i2.
n, L

(4.4)

The atomic core functions were taken from a Hartree-
Fock calculation of Cu+."The B,i have the following
values in atomic units:

Bi,o =0,0952,

B2,p= —0.663, B2 t= (0 092)i, .

4. ESTIMATE OF n

Before we can evaluate the field gradients at the
positions of Cu-nuclei in the vicinity of a solute atom,
we must still estimate the quantity

0

2
3
4

0.0000
0.0236
0.0472
0.0708
0.0944

0.0205
0.0276
0.0406
0.0842
0.1107

0.0680
0.194—0.137
0.519
1.022

Perturbation Semiempirical Perturbation Semiempirical
theory method theory method

83,o= 2.919, Bs,r= (—1.639)i, B3,2= —0.920.

The function Lqa(r')$', occurring in (4.1) was then
decomposed into spherical harmonics giving

L"("»= +«"».(- o)+
"D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)

A157, 490 (1936).
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TABLE III. Values of g in units 10"cm at diferent lattice sites relative to solute atom.

Shell
Number of atoms

in shell

Group I (Z'=0)
Ag
Au

Group II (Z'= I)
Mg
Zn
Cd

Group III (Z'=2)
Al
Ga
In

Group IV (Z'=3)
Si
Ge
Sn

Group V (Z'=4)
P
As
Sb

12

1.36
2.59

2.36
2.36
2.36

4.60
4.92
4.22

4.46
4.36
3.77

—1.83—1.87
1 ~ 11

—0.57—1.11

—1.06—1.06—1.06

—1.82—1.94—1.67

—2.52—2.47—2.15

—0.77—0.77—0.84

0.30
0.61

0.65
0.65
0.65

0.79
0.84
0.74

2.23
2.19
1.92

2.55
'

2.57
2.26

12

0.047
0.072

0.027
0.027
0.027

0.25
0.28
0.23

—0.37—0.37—0.33

1.32—1.33—1.10

—0.16—0.32

—0.32—0.32—0.32

—0.45—0.48—0.42

—0.98—0.96—0.84

—0.89—0.90—0.81

—0.028—0.045

—0.020—0.020—0.020

—0.15—0.16—0.13

0.19
0.18
0.17

0.70
0.71
0.59

0.086
0.17

0.18
0.18
0.18

0.22
0.23
0.20

0.63
0.62
0.55

0.74
0.74
0.65

0.054
0.10

0.089
0.089
0.089

0.19
0.20
0.17

0.14
0.13
0.12

—0.16—0.16—0.12

The function p(r') was obtained from a paper by
Foley, Sternheimer, and Tycko, ' and an adjustment
was made to allow for their later correction to y(e&).'
The integral (4.1) was then evaluated numerically
first over an equivalent atomic sphere. It was found that
the major portion comes from distances less than uo,

where y is approximately zero." The integral over the
atomic sphere contributes the value 23.3 to 0.. The
contribution from the outside region was roughly
estimated at 2.3. Thus our final value is

o, =25.6.

This is probably accurate to better than a factor of 2.

5. RESULTS AND COMPARISON WITH
EXPERIMENT

Ke are now in a position to list the values of q at
various lattice sites relative to a given solute atom,
by using Kq. (2.29), the values of A and q listed in
Table I and the value rr=. 25.6. (See Table III.)

The nuclear resonance frequency of a Cu-nucleus
near a solute atom is shifted by the field gradient due to
the solute. The magnitude of this shift depends on the
value of q as well as the orientation of the magnetic
field. Since the field has a random orientation with
respect to the crystal axes of the particles in the
specimen, the contribution to the resonance line from
shells of Cu nuclei in which q is large will be correspond-
ingly broad. If this breadth becomes too large, the
nuclei of such shells make no contribution to the
observed line.

Rowland' has used our values of q for successive
shells near a Ge solute, with a numerical factor as an
adjustable parameter, to calculate the resonance line
to be expected for Cu-Ge alloys. To obtain agreement

'2 Anti-shielding plays a minor role for the value of n. If it were
neglected 0. would be about 20~j& smaller.

0 0 0 0 0 0 0 0 0

0

0

0 0

0 0
j

0

0

0

0

0 0 0 0 0 0

0 0 0 0 0 0

0

0

0 0 0 0 0 0 0 0 0 0 0 O

0 0 0 0 0 0 0 0 0 0 0 0
Fza. 3. Critical radius.

with experiment he 6nds that the numerical factor
needed is 1.5. In other words the 6eld gradients given
in Table III are too small by this factor. We consider
this to constitute very good agreement in view of the
approximations made in our calculation.

Further corroboration of the general correctness of
the theory is provided by a simple analysis of the
totality of Rowland's data dealing with 14 diGerent
solutes. The experimental results for a given solute
and diferent concentrations can be phenomenologically
accounted for by the assumption that all Cu nuclei
which are within a critical distance E of a solute atom
do not contribute to the resonance signal. If we denote
the number of lattice sites within the radius R by n,
this leads to the following concentration dependence
of the intensity

I= Io(i —c)",
t

where c is the atomic concentration of solute (see Fig.
3). Rowland has presented his results in the form of
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TABLE IV. The number of a6ected copper nuclei and
corresponding value of qo.

I I I I I I I I I I I I

140- Q
120-

Solute

Ag
Au
Mg
Zn
Cd
Al
Ga
In
Si
Ge
Sn
P
As
Sb

25
48
23
17
34
27
36
48
61
62
67
75
80
87

qo in 10"cm '

0.35
0.38
0.78
0.88
0.61
0.84
0.77
0.50
0.87
0.85
0.67
0.79
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FIG. 4. Plot of number of affected nuclei n versus qo for Ge and Cu.

n= Pn„
S

(C &co)

(5.2)

where n, is the number of atoms in the shell's. Using
our Table III we can then plot n as a function of qp.

For Ge this is the step function shown in Fig. 4. A
somewhat more realistic dependence is obtained by
smoothing this curve. We can now take the values of n
given by Rowla, nd and thus obtain an empirical value
of qp for each solute. This procedure gave the results for
qp listed in Table IV. From its definition qp should be
independent of the solute, and the moderate variation
of qp derived from the theory is a further confirmation
of its validity. Dr. Rowland has suggested that the
large deviations of qp in Table IV which occur for Ag,
Au, Cd, and In may be correlated with the relatively
large cores of these elements. It is also not surprising
that the deviations are largest for small values of Z'.
For here our theory developed for sites far from the
solute atom, is least reliable and the effects of strains,
which we have neglected, must be expected to play a
relatively larger rolp,

giving a value of n for each solute. His values are
given in Table IV and show a striking correlation
between n and the valence difference Z'. This Gts in
well with the present theory according to which the
amplitude A of the charge fluctuation and hence of q
is also strongly correlated with Z' (Table l). On the
contrary there are only minor correlations between n
a,nd the strain produced by the solute, which shows
that strain fields cannot be primarily responsible for
the electric Geld gradients in the vicinity of the solute
atom.

To make these considerations somewhat more
quantitative, let us adopt the following simplified
picture. We assume that a shell in which q exceeds a
certain critical qp does not contribute to the line. Thus
Rowland's n is given by

It may be worth remarking that for example in the
case of Sb, the last shell of Cu-nuclei, the seventh,
which experiences a significant field gradient, lies
between the fourth and fifth node of the charge density
Quctuations.

ok&0.ikp. (6.1)

Thus we see that in response to an electrostatic field,
the Fermi surface appears as quite sharp.
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0. CONCLUSION

The good agreement between our theory and the
large body of Rowland's data seems to us to be a
strong confirmation of the reality of electron density
fluctuations in the vicinity of a solute atom embedded
in a metal. These Ructuations are a consequence of a
discontinuous drop at the Fermi surface of n(k),
the occupation probability of the conduction band
function with wave number k. ln an independent
electron model there is of course such a discontinuity
at zero temperature, and its small spreading at room
temperature is insignificant for our purposes. On the
other hand the very meaning of a Fermi surface for a
gas of interacting electrons is not yet entirely clear.
Rowland's experiments are therefore of special interest
in providing an upper limit to a possible width of the
many electron Fermi surface. Quite general considera-
tions show that if this width in k space is hk, the
amplitude of the oscillations is decreased for la,rge r by
an extra factor e t'~~'". Using Rowland's data for Sb
in which effects on the Cu nuclei in the sixth or seventh
shell are found for which r=9(k') ', we conclude that


